arm.c 35.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
32
#include <trace/events/kvm.h>
33
#include <kvm/arm_pmu.h>
34 35 36 37

#define CREATE_TRACE_POINTS
#include "trace.h"

38
#include <linux/uaccess.h>
39 40
#include <asm/ptrace.h>
#include <asm/mman.h>
41
#include <asm/tlbflush.h>
42
#include <asm/cacheflush.h>
43 44 45 46
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
47
#include <asm/kvm_emulate.h>
48
#include <asm/kvm_coproc.h>
49
#include <asm/kvm_psci.h>
50
#include <asm/sections.h>
51 52 53 54 55

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

56
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
57
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
58

59 60 61
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

62 63
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 65
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
66
static DEFINE_SPINLOCK(kvm_vmid_lock);
67

68 69
static bool vgic_present;

70 71
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

72 73
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
74
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 76
}

77 78
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

79 80 81 82 83 84
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
85
	return __this_cpu_read(kvm_arm_running_vcpu);
86 87 88 89 90
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
91
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 93 94 95
{
	return &kvm_arm_running_vcpu;
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


112 113 114 115
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
116 117
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
118
	int ret, cpu;
119

120 121 122
	if (type)
		return -EINVAL;

123 124 125 126 127 128 129
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

130 131 132 133
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

134
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 136 137
	if (ret)
		goto out_free_stage2_pgd;

138
	kvm_vgic_early_init(kvm);
139

140 141 142
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

143
	/* The maximum number of VCPUs is limited by the host's GIC model */
144 145
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146

147 148 149 150
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
151 152
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
153
	return ret;
154 155
}

156 157 158 159 160 161 162 163 164 165
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

166 167 168 169 170 171
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177 178 179
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

180 181
	kvm_vgic_destroy(kvm);

182 183 184
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

185 186 187 188 189 190
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
191
	atomic_set(&kvm->online_vcpus, 0);
192 193
}

194
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 196 197
{
	int r;
	switch (ext) {
198
	case KVM_CAP_IRQCHIP:
199 200
		r = vgic_present;
		break;
201
	case KVM_CAP_IOEVENTFD:
202
	case KVM_CAP_DEVICE_CTRL:
203 204 205 206
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
207
	case KVM_CAP_ARM_PSCI:
208
	case KVM_CAP_ARM_PSCI_0_2:
209
	case KVM_CAP_READONLY_MEM:
210
	case KVM_CAP_MP_STATE:
211
	case KVM_CAP_IMMEDIATE_EXIT:
212 213
		r = 1;
		break;
214 215
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
216
		break;
217 218 219 220 221 222
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
223 224 225
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
226 227 228 229 230 231
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
232 233 234 235 236 237 238
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
239
	default:
240
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

258 259 260 261 262
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

263 264 265 266 267
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

268 269 270 271 272 273 274 275 276 277
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

278
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 280 281
	if (err)
		goto vcpu_uninit;

282
	return vcpu;
283 284
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
285 286 287 288 289 290
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

291
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292
{
293
	kvm_vgic_vcpu_early_init(vcpu);
294 295 296 297
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
298
	kvm_mmu_free_memory_caches(vcpu);
299
	kvm_timer_vcpu_terminate(vcpu);
300
	kvm_pmu_vcpu_destroy(vcpu);
301
	kvm_vcpu_uninit(vcpu);
302
	kmem_cache_free(kvm_vcpu_cache, vcpu);
303 304 305 306
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
307 308
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);
309 310 311 312 313
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
314
	return kvm_timer_is_pending(vcpu);
315 316
}

317 318 319
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
320
	kvm_vgic_v4_enable_doorbell(vcpu);
321 322 323 324 325
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
326
	kvm_vgic_v4_disable_doorbell(vcpu);
327 328
}

329 330
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
331 332
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
333
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
334

335 336 337
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

338 339
	kvm_arm_reset_debug_ptr(vcpu);

340
	return kvm_vgic_vcpu_init(vcpu);
341 342 343 344
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
345 346 347 348 349 350 351 352 353 354 355 356 357
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

358
	vcpu->cpu = cpu;
359
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
360

361
	kvm_arm_set_running_vcpu(vcpu);
362
	kvm_vgic_load(vcpu);
363
	kvm_timer_vcpu_load(vcpu);
364 365 366 367
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
368
	kvm_timer_vcpu_put(vcpu);
369 370
	kvm_vgic_put(vcpu);

371 372
	vcpu->cpu = -1;

373
	kvm_arm_set_running_vcpu(NULL);
374 375
}

A
Andrew Jones 已提交
376 377 378
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
379
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
380 381 382
	kvm_vcpu_kick(vcpu);
}

383 384 385
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
386
	if (vcpu->arch.power_off)
387 388 389 390 391
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
392 393 394 395 396
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
397 398
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
399
		vcpu->arch.power_off = false;
400 401
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
402
		vcpu_power_off(vcpu);
403 404 405 406 407 408
		break;
	default:
		return -EINVAL;
	}

	return 0;
409 410
}

411 412 413 414 415 416 417
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
418 419
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
420
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
421
		&& !v->arch.power_off && !v->arch.pause);
422 423
}

424 425
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
426
	return vcpu_mode_priv(vcpu);
427 428
}

429 430 431 432 433 434 435
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
436
	preempt_disable();
437
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
438
	preempt_enable();
439 440 441 442
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
443
 * @kvm: The VM's VMID to check
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
508
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
509 510

	/* update vttbr to be used with the new vmid */
511
	pgd_phys = virt_to_phys(kvm->arch.pgd);
512
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
513
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
514
	kvm->arch.vttbr = pgd_phys | vmid;
515 516 517 518 519 520

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
521
	struct kvm *kvm = vcpu->kvm;
522
	int ret = 0;
523

524 525 526 527
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
528

529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
545 546
	}

547
	ret = kvm_timer_enable(vcpu);
548 549 550 551
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
552

553
	return ret;
554 555
}

556 557 558 559 560
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

561
void kvm_arm_halt_guest(struct kvm *kvm)
562 563 564 565 566 567
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
568
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
569 570
}

571
void kvm_arm_resume_guest(struct kvm *kvm)
572 573 574 575
{
	int i;
	struct kvm_vcpu *vcpu;

576 577 578 579
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
		swake_up(kvm_arch_vcpu_wq(vcpu));
	}
580 581
}

582
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
583
{
584
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
585

586
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
587
				       (!vcpu->arch.pause)));
588

A
Andrew Jones 已提交
589
	if (vcpu->arch.power_off || vcpu->arch.pause) {
590
		/* Awaken to handle a signal, request we sleep again later. */
591
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
592
	}
593 594
}

595 596 597 598 599
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

600 601 602
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
603 604
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
605 606 607 608 609 610

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
611 612 613
	}
}

614 615 616 617 618 619 620 621 622 623 624
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
625 626
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
627 628
	int ret;

629
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
630 631 632 633 634 635
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
636 637 638 639
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
640 641 642
		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
			return 0;

C
Christoffer Dall 已提交
643 644
	}

645 646 647
	if (run->immediate_exit)
		return -EINTR;

648
	kvm_sigset_activate(vcpu);
649 650 651 652 653 654 655 656 657 658 659

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

660 661
		check_vcpu_requests(vcpu);

662 663 664 665 666
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
667
		preempt_disable();
668

669 670 671
		/* Flush FP/SIMD state that can't survive guest entry/exit */
		kvm_fpsimd_flush_cpu_state();

672
		kvm_pmu_flush_hwstate(vcpu);
673

674 675
		local_irq_disable();

676 677
		kvm_vgic_flush_hwstate(vcpu);

678
		/*
679 680
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
681
		 */
682
		if (signal_pending(current)) {
683 684 685 686
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

702 703 704 705 706 707 708 709
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

710
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
711
		    kvm_request_pending(vcpu)) {
712
			vcpu->mode = OUTSIDE_GUEST_MODE;
713
			kvm_pmu_sync_hwstate(vcpu);
714 715
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
716
			kvm_vgic_sync_hwstate(vcpu);
717
			local_irq_enable();
718
			preempt_enable();
719 720 721
			continue;
		}

722 723
		kvm_arm_setup_debug(vcpu);

724 725 726 727
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
728
		guest_enter_irqoff();
729 730 731 732

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
733
		vcpu->stat.exits++;
734 735 736 737
		/*
		 * Back from guest
		 *************************************************************/

738 739
		kvm_arm_clear_debug(vcpu);

740
		/*
741
		 * We must sync the PMU state before the vgic state so
742 743 744 745 746
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

747 748 749 750 751
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
752 753
		kvm_vgic_sync_hwstate(vcpu);

754 755 756 757 758
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
759 760
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
761

762 763 764 765 766 767 768 769 770 771 772 773 774
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
775
		 * We do local_irq_enable() before calling guest_exit() so
776 777
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
778
		 * preemption after calling guest_exit() so that if we get
779 780 781
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
782
		guest_exit();
783
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
784

785 786
		preempt_enable();

787 788 789
		ret = handle_exit(vcpu, run, ret);
	}

790
	/* Tell userspace about in-kernel device output levels */
791 792 793 794
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
795

796 797
	kvm_sigset_deactivate(vcpu);

798
	return ret;
799 800
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
829
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
830 831 832 833 834
	kvm_vcpu_kick(vcpu);

	return 0;
}

835 836
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
837 838 839 840 841 842 843 844 845 846 847 848 849
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

850 851 852 853
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
854

855 856
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
857

858 859 860
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
879

880
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
881 882 883 884
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

885
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
886 887
			return -EINVAL;

888
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
889 890 891
	}

	return -EINVAL;
892 893
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


936 937 938 939 940 941 942 943 944
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

945 946 947 948 949 950 951
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

952 953
	vcpu_reset_hcr(vcpu);

954
	/*
955
	 * Handle the "start in power-off" case.
956
	 */
957
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
958
		vcpu_power_off(vcpu);
959
	else
960
		vcpu->arch.power_off = false;
961 962 963 964

	return 0;
}

965 966 967 968 969 970 971
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
972
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
973 974 975 976 977 978 979 980 981 982 983 984 985
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
986
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
987 988 989 990 991 992 993 994 995 996 997 998 999
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1000
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1001 1002 1003 1004 1005 1006
		break;
	}

	return ret;
}

1007 1008 1009 1010 1011
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1012
	struct kvm_device_attr attr;
1013 1014 1015 1016 1017 1018 1019 1020

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

1021
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1022 1023 1024 1025
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1026 1027 1028 1029

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1042 1043 1044
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
1070 1071 1072 1073 1074
	default:
		return -EINVAL;
	}
}

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1094 1095
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1108 1109
}

1110 1111 1112
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1113 1114 1115 1116 1117 1118 1119 1120 1121
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1122 1123
		if (!vgic_present)
			return -ENXIO;
1124
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1125 1126 1127
	default:
		return -ENODEV;
	}
1128 1129
}

1130 1131 1132
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1133 1134 1135 1136
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1137
	case KVM_CREATE_IRQCHIP: {
1138
		int ret;
1139 1140
		if (!vgic_present)
			return -ENXIO;
1141 1142 1143 1144
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1145
	}
1146 1147 1148 1149 1150 1151 1152
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1166 1167 1168
	default:
		return -EINVAL;
	}
1169 1170
}

1171
static void cpu_init_hyp_mode(void *dummy)
1172
{
1173
	phys_addr_t pgd_ptr;
1174 1175 1176 1177 1178
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1179
	__hyp_set_vectors(kvm_get_idmap_vector());
1180

1181
	pgd_ptr = kvm_mmu_get_httbr();
1182
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1183
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1184
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1185

M
Marc Zyngier 已提交
1186
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1187
	__cpu_init_stage2();
1188 1189

	kvm_arm_init_debug();
1190 1191
}

1192 1193 1194 1195 1196 1197
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1198 1199
static void cpu_hyp_reinit(void)
{
1200 1201
	cpu_hyp_reset();

1202 1203
	if (is_kernel_in_hyp_mode()) {
		/*
1204
		 * __cpu_init_stage2() is safe to call even if the PM
1205 1206
		 * event was cancelled before the CPU was reset.
		 */
1207
		__cpu_init_stage2();
1208
		kvm_timer_init_vhe();
1209
	} else {
1210
		cpu_init_hyp_mode(NULL);
1211
	}
1212 1213 1214

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1215 1216
}

1217 1218 1219
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1220
		cpu_hyp_reinit();
1221
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1222
	}
1223
}
1224

1225 1226 1227 1228
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1229 1230
}

1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1243

1244 1245 1246 1247 1248
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1264
		return NOTIFY_OK;
1265
	case CPU_PM_ENTER_FAILED:
1266 1267 1268 1269
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1270

1271 1272 1273 1274 1275
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1286 1287 1288 1289
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1290 1291 1292 1293
#else
static inline void hyp_cpu_pm_init(void)
{
}
1294 1295 1296
static inline void hyp_cpu_pm_exit(void)
{
}
1297 1298
#endif

1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

1312 1313 1314 1315
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1316 1317 1318 1319 1320
	return 0;
}

static int init_subsystems(void)
{
1321
	int err = 0;
1322

1323
	/*
1324
	 * Enable hardware so that subsystem initialisation can access EL2.
1325
	 */
1326
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1327 1328 1329 1330 1331 1332

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1344
		err = 0;
1345 1346
		break;
	default:
1347
		goto out;
1348 1349 1350 1351 1352 1353 1354
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1355
		goto out;
1356 1357 1358 1359

	kvm_perf_init();
	kvm_coproc_table_init();

1360 1361 1362 1363
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1364 1365 1366 1367 1368 1369 1370 1371 1372
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1373
	hyp_cpu_pm_exit();
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1400
			goto out_err;
1401 1402 1403 1404 1405 1406 1407 1408
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1409
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1410
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1411 1412
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1413
		goto out_err;
1414 1415
	}

1416
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1417
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1418 1419
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1420 1421 1422 1423 1424 1425 1426
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1427
		goto out_err;
1428 1429
	}

1430 1431 1432 1433 1434
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1435 1436
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1437 1438 1439

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1440
			goto out_err;
1441 1442 1443 1444
		}
	}

	for_each_possible_cpu(cpu) {
1445
		kvm_cpu_context_t *cpu_ctxt;
1446

1447
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1448
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1449 1450

		if (err) {
1451
			kvm_err("Cannot map host CPU state: %d\n", err);
1452
			goto out_err;
1453 1454 1455 1456
		}
	}

	return 0;
1457

1458
out_err:
1459
	teardown_hyp_mode();
1460 1461 1462 1463
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1464 1465 1466 1467 1468
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1493 1494
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1495 1496 1497 1498 1499 1500 1501
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1502 1503
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1522 1523 1524
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1525 1526
int kvm_arch_init(void *opaque)
{
1527
	int err;
1528
	int ret, cpu;
1529
	bool in_hyp_mode;
1530 1531

	if (!is_hyp_mode_available()) {
1532
		kvm_info("HYP mode not available\n");
1533 1534 1535
		return -ENODEV;
	}

1536 1537 1538 1539 1540 1541
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1542 1543
	}

1544
	err = init_common_resources();
1545
	if (err)
1546
		return err;
1547

1548 1549 1550
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1551
		err = init_hyp_mode();
1552 1553 1554
		if (err)
			goto out_err;
	}
1555

1556 1557 1558
	err = init_subsystems();
	if (err)
		goto out_hyp;
1559

1560 1561 1562 1563 1564
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1565
	return 0;
1566 1567

out_hyp:
1568 1569
	if (!in_hyp_mode)
		teardown_hyp_mode();
1570
out_err:
1571
	teardown_common_resources();
1572
	return err;
1573 1574 1575 1576 1577
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1578
	kvm_perf_teardown();
1579 1580 1581 1582 1583 1584 1585 1586 1587
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);