arm.c 37.5 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <trace/events/kvm.h>
23
#include <kvm/arm_pmu.h>
24
#include <kvm/arm_psci.h>
25 26 27 28

#define CREATE_TRACE_POINTS
#include "trace.h"

29
#include <linux/uaccess.h>
30 31
#include <asm/ptrace.h>
#include <asm/mman.h>
32
#include <asm/tlbflush.h>
33
#include <asm/cacheflush.h>
34
#include <asm/cpufeature.h>
35 36 37 38
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
39
#include <asm/kvm_emulate.h>
40
#include <asm/kvm_coproc.h>
41
#include <asm/sections.h>
42 43 44 45 46

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

47
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
48 49
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

50 51 52
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

53 54
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55
static u32 kvm_next_vmid;
56
static DEFINE_SPINLOCK(kvm_vmid_lock);
57

58 59
static bool vgic_present;

60 61
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

62 63
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
64
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
65 66
}

67 68
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

69 70 71 72 73 74
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
75
	return __this_cpu_read(kvm_arm_running_vcpu);
76 77 78 79 80
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
81
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
82 83 84 85
{
	return &kvm_arm_running_vcpu;
}

86 87 88 89 90 91 92 93 94 95
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

96
int kvm_arch_check_processor_compat(void)
97
{
98
	return 0;
99 100 101
}


102 103 104 105
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
106 107
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
108
	int ret, cpu;
109

110
	ret = kvm_arm_setup_stage2(kvm, type);
111 112
	if (ret)
		return ret;
113

114 115 116 117 118 119 120
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

121 122 123 124
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

125
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
126 127 128
	if (ret)
		goto out_free_stage2_pgd;

129
	kvm_vgic_early_init(kvm);
130

131
	/* Mark the initial VMID generation invalid */
132
	kvm->arch.vmid.vmid_gen = 0;
133

134
	/* The maximum number of VCPUs is limited by the host's GIC model */
135 136
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
137

138 139 140 141
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
142 143
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
144
	return ret;
145 146
}

147 148 149 150 151
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

152
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 154 155 156 157
{
	return VM_FAULT_SIGBUS;
}


158 159 160 161
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
162 163 164 165
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

166 167
	kvm_vgic_destroy(kvm);

168 169 170
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

171 172 173 174 175 176
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
177
	atomic_set(&kvm->online_vcpus, 0);
178 179
}

180
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
181 182 183
{
	int r;
	switch (ext) {
184
	case KVM_CAP_IRQCHIP:
185 186
		r = vgic_present;
		break;
187
	case KVM_CAP_IOEVENTFD:
188
	case KVM_CAP_DEVICE_CTRL:
189 190 191 192
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
193
	case KVM_CAP_ARM_PSCI:
194
	case KVM_CAP_ARM_PSCI_0_2:
195
	case KVM_CAP_READONLY_MEM:
196
	case KVM_CAP_MP_STATE:
197
	case KVM_CAP_IMMEDIATE_EXIT:
198
	case KVM_CAP_VCPU_EVENTS:
199
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
200 201
		r = 1;
		break;
202 203
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
204
		break;
205 206 207 208 209 210
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
211 212 213
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
V
Vladimir Murzin 已提交
214 215 216 217 218 219
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
220 221 222 223 224 225 226
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
227
	default:
228
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
229 230 231 232 233 234 235 236 237 238 239
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
255 256 257 258 259 260

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

261 262 263 264 265
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

266 267 268 269 270
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

271 272 273 274 275 276 277 278 279 280
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

281
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
282 283 284
	if (err)
		goto vcpu_uninit;

285
	return vcpu;
286 287
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
288 289 290 291 292 293
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

294
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
295 296 297 298 299
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
300 301 302
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

303
	kvm_mmu_free_memory_caches(vcpu);
304
	kvm_timer_vcpu_terminate(vcpu);
305
	kvm_pmu_vcpu_destroy(vcpu);
306
	kvm_vcpu_uninit(vcpu);
307
	kmem_cache_free(kvm_vcpu_cache, vcpu);
308 309 310 311 312 313 314 315 316
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
317
	return kvm_timer_is_pending(vcpu);
318 319
}

320 321
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
322 323 324 325 326 327 328 329 330 331 332
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
	 * so that we have the lastest PMR and group enables. This ensures
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
	preempt_enable();

333
	kvm_vgic_v4_enable_doorbell(vcpu);
334 335 336 337
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
338
	kvm_vgic_v4_disable_doorbell(vcpu);
339 340
}

341 342
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
343 344
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
345
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
346

347 348 349
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

350 351
	kvm_pmu_vcpu_init(vcpu);

352 353
	kvm_arm_reset_debug_ptr(vcpu);

354
	return kvm_vgic_vcpu_init(vcpu);
355 356 357 358
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
359
	int *last_ran;
360
	kvm_host_data_t *cpu_data;
361 362

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
363
	cpu_data = this_cpu_ptr(&kvm_host_data);
364 365 366 367 368 369 370 371 372 373

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

374
	vcpu->cpu = cpu;
375
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
376

377
	kvm_arm_set_running_vcpu(vcpu);
378
	kvm_vgic_load(vcpu);
379
	kvm_timer_vcpu_load(vcpu);
380
	kvm_vcpu_load_sysregs(vcpu);
381
	kvm_arch_vcpu_load_fp(vcpu);
382
	kvm_vcpu_pmu_restore_guest(vcpu);
383 384 385 386 387

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
388 389

	vcpu_ptrauth_setup_lazy(vcpu);
390 391 392 393
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
394
	kvm_arch_vcpu_put_fp(vcpu);
395
	kvm_vcpu_put_sysregs(vcpu);
396
	kvm_timer_vcpu_put(vcpu);
397
	kvm_vgic_put(vcpu);
398
	kvm_vcpu_pmu_restore_host(vcpu);
399

400 401
	vcpu->cpu = -1;

402
	kvm_arm_set_running_vcpu(NULL);
403 404
}

A
Andrew Jones 已提交
405 406 407
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
408
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
409 410 411
	kvm_vcpu_kick(vcpu);
}

412 413 414
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
415
	if (vcpu->arch.power_off)
416 417 418 419 420
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
421 422 423 424 425
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
426 427
	int ret = 0;

428 429
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
430
		vcpu->arch.power_off = false;
431 432
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
433
		vcpu_power_off(vcpu);
434 435
		break;
	default:
436
		ret = -EINVAL;
437 438
	}

439
	return ret;
440 441
}

442 443 444 445 446 447 448
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
449 450
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
451 452
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453
		&& !v->arch.power_off && !v->arch.pause);
454 455
}

456 457
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
458
	return vcpu_mode_priv(vcpu);
459 460
}

461 462 463 464 465 466 467
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
468
	preempt_disable();
469
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
470
	preempt_enable();
471 472 473 474
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
475
 * @vmid: The VMID to check
476 477 478
 *
 * return true if there is a new generation of VMIDs being used
 *
479 480 481 482 483
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
484
 */
485
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
486
{
487 488
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
489
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
490 491 492
}

/**
493 494 495
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
496
 */
497
static void update_vmid(struct kvm_vmid *vmid)
498
{
499
	if (!need_new_vmid_gen(vmid))
500 501
		return;

502
	spin_lock(&kvm_vmid_lock);
503 504 505 506 507 508

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
509
	if (!need_new_vmid_gen(vmid)) {
510
		spin_unlock(&kvm_vmid_lock);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

533
	vmid->vmid = kvm_next_vmid;
534
	kvm_next_vmid++;
535
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
536

537
	smp_wmb();
538
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
539 540

	spin_unlock(&kvm_vmid_lock);
541 542 543 544
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
545
	struct kvm *kvm = vcpu->kvm;
546
	int ret = 0;
547

548 549 550
	if (likely(vcpu->arch.has_run_once))
		return 0;

551 552 553
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

554
	vcpu->arch.has_run_once = true;
555

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
572 573
	}

574
	ret = kvm_timer_enable(vcpu);
575 576 577 578
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
579

580
	return ret;
581 582
}

583 584 585 586 587
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

588
void kvm_arm_halt_guest(struct kvm *kvm)
589 590 591 592 593 594
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
595
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
596 597
}

598
void kvm_arm_resume_guest(struct kvm *kvm)
599 600 601 602
{
	int i;
	struct kvm_vcpu *vcpu;

603 604
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
605
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
606
	}
607 608
}

609
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
610
{
611
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
612

613
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
614
				       (!vcpu->arch.pause)));
615

A
Andrew Jones 已提交
616
	if (vcpu->arch.power_off || vcpu->arch.pause) {
617
		/* Awaken to handle a signal, request we sleep again later. */
618
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
619
	}
620 621 622 623 624 625 626

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
627 628
}

629 630 631 632 633
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

634 635 636
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
637 638
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
639

640 641 642
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

643 644 645 646 647
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
648 649 650
	}
}

651 652 653 654 655 656 657 658 659 660 661
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
662 663
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
664 665
	int ret;

666
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
667 668 669 670
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
671
		return ret;
672

C
Christoffer Dall 已提交
673 674 675
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
676
			return ret;
C
Christoffer Dall 已提交
677 678
	}

679 680 681 682
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
683

684
	kvm_sigset_activate(vcpu);
685 686 687 688 689 690 691 692 693

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

694
		update_vmid(&vcpu->kvm->arch.vmid);
695

696 697
		check_vcpu_requests(vcpu);

698 699 700 701 702
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
703
		preempt_disable();
704

705
		kvm_pmu_flush_hwstate(vcpu);
706

707 708
		local_irq_disable();

709 710
		kvm_vgic_flush_hwstate(vcpu);

711
		/*
712 713
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
714
		 */
715
		if (signal_pending(current)) {
716 717 718 719
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

735 736 737 738
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
739
		 * Documentation/virt/kvm/vcpu-requests.rst
740 741 742
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

743
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
744
		    kvm_request_pending(vcpu)) {
745
			vcpu->mode = OUTSIDE_GUEST_MODE;
746
			isb(); /* Ensure work in x_flush_hwstate is committed */
747
			kvm_pmu_sync_hwstate(vcpu);
748 749
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
750
			kvm_vgic_sync_hwstate(vcpu);
751
			local_irq_enable();
752
			preempt_enable();
753 754 755
			continue;
		}

756 757
		kvm_arm_setup_debug(vcpu);

758 759 760 761
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
762
		guest_enter_irqoff();
763

764 765 766
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
767
			kvm_arm_vhe_guest_exit();
768
		} else {
769
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
770 771
		}

772
		vcpu->mode = OUTSIDE_GUEST_MODE;
773
		vcpu->stat.exits++;
774 775 776 777
		/*
		 * Back from guest
		 *************************************************************/

778 779
		kvm_arm_clear_debug(vcpu);

780
		/*
781
		 * We must sync the PMU state before the vgic state so
782 783 784 785 786
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

787 788 789 790 791
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
792 793
		kvm_vgic_sync_hwstate(vcpu);

794 795 796 797 798
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
799 800
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
801

802 803
		kvm_arch_vcpu_ctxsync_fp(vcpu);

804 805 806 807 808 809 810 811 812 813 814 815 816
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
817
		 * We do local_irq_enable() before calling guest_exit() so
818 819
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
820
		 * preemption after calling guest_exit() so that if we get
821 822 823
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
824
		guest_exit();
825
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
826

827 828 829
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

830 831
		preempt_enable();

832 833 834
		ret = handle_exit(vcpu, run, ret);
	}

835
	/* Tell userspace about in-kernel device output levels */
836 837 838 839
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
840

841 842
	kvm_sigset_deactivate(vcpu);

843
	vcpu_put(vcpu);
844
	return ret;
845 846
}

847 848 849 850
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
851
	unsigned long *hcr;
852 853 854 855 856 857

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

858
	hcr = vcpu_hcr(vcpu);
859
	if (level)
860
		set = test_and_set_bit(bit_index, hcr);
861
	else
862
		set = test_and_clear_bit(bit_index, hcr);
863 864 865 866 867 868 869 870 871 872 873 874

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
875
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
876 877 878 879 880
	kvm_vcpu_kick(vcpu);

	return 0;
}

881 882
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
883 884 885 886 887 888 889 890 891
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
892
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
893 894 895 896
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

897 898 899 900
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
901

902 903
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
904

905 906 907
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
908

909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
926

927
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
928 929 930 931
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

932
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
933 934
			return -EINVAL;

935
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
936 937 938
	}

	return -EINVAL;
939 940
}

941 942 943
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
944
	unsigned int i, ret;
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
979 980 981 982 983
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
984

985 986
	return ret;
}
987

988 989 990 991 992 993 994 995 996
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

997 998 999 1000 1001 1002 1003
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1004 1005
	vcpu_reset_hcr(vcpu);

1006
	/*
1007
	 * Handle the "start in power-off" case.
1008
	 */
1009
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1010
		vcpu_power_off(vcpu);
1011
	else
1012
		vcpu->arch.power_off = false;
1013 1014 1015 1016

	return 0;
}

1017 1018 1019 1020 1021 1022 1023
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1024
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1038
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1052
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1053 1054 1055 1056 1057 1058
		break;
	}

	return ret;
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1085 1086 1087 1088 1089
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1090
	struct kvm_device_attr attr;
1091 1092
	long r;

1093 1094 1095 1096
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1097
		r = -EFAULT;
1098
		if (copy_from_user(&init, argp, sizeof(init)))
1099
			break;
1100

1101 1102
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1103 1104 1105 1106
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1107

1108
		r = -ENOEXEC;
1109
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1110
			break;
1111

1112
		r = -EFAULT;
1113
		if (copy_from_user(&reg, argp, sizeof(reg)))
1114 1115
			break;

1116
		if (ioctl == KVM_SET_ONE_REG)
1117
			r = kvm_arm_set_reg(vcpu, &reg);
1118
		else
1119 1120
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1121 1122 1123 1124 1125 1126
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1127
		r = -ENOEXEC;
1128
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1129
			break;
1130

1131 1132 1133 1134
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1135
		r = -EFAULT;
1136
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1137
			break;
1138 1139 1140
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1141 1142
			break;
		r = -E2BIG;
1143
		if (n < reg_list.n)
1144 1145 1146
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1147
	}
1148
	case KVM_SET_DEVICE_ATTR: {
1149
		r = -EFAULT;
1150
		if (copy_from_user(&attr, argp, sizeof(attr)))
1151 1152 1153
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1154 1155
	}
	case KVM_GET_DEVICE_ATTR: {
1156
		r = -EFAULT;
1157
		if (copy_from_user(&attr, argp, sizeof(attr)))
1158 1159 1160
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1161 1162
	}
	case KVM_HAS_DEVICE_ATTR: {
1163
		r = -EFAULT;
1164
		if (copy_from_user(&attr, argp, sizeof(attr)))
1165 1166 1167
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1168
	}
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1199
	default:
1200
		r = -EINVAL;
1201
	}
1202 1203

	return r;
1204 1205
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1225 1226
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1227
	bool flush = false;
1228 1229 1230 1231
	int r;

	mutex_lock(&kvm->slots_lock);

1232
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1233

1234
	if (flush)
1235 1236 1237 1238
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1239 1240
}

1241 1242 1243
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1244 1245 1246 1247
	int r;

	mutex_lock(&kvm->slots_lock);

1248
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1249

1250
	if (flush)
1251 1252 1253 1254
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1255 1256
}

1257 1258 1259
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1260 1261 1262 1263 1264 1265 1266 1267 1268
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1269 1270
		if (!vgic_present)
			return -ENXIO;
1271
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1272 1273 1274
	default:
		return -ENODEV;
	}
1275 1276
}

1277 1278 1279
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1280 1281 1282 1283
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1284
	case KVM_CREATE_IRQCHIP: {
1285
		int ret;
1286 1287
		if (!vgic_present)
			return -ENXIO;
1288 1289 1290 1291
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1292
	}
1293 1294 1295 1296 1297 1298 1299
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1313 1314 1315
	default:
		return -EINVAL;
	}
1316 1317
}

1318
static void cpu_init_hyp_mode(void *dummy)
1319
{
1320
	phys_addr_t pgd_ptr;
1321 1322 1323 1324 1325
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1326
	__hyp_set_vectors(kvm_get_idmap_vector());
1327

1328
	pgd_ptr = kvm_mmu_get_httbr();
1329
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1330
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1331
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1332

M
Marc Zyngier 已提交
1333
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1334
	__cpu_init_stage2();
1335 1336
}

1337 1338 1339 1340 1341 1342
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1343 1344
static void cpu_hyp_reinit(void)
{
1345 1346
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1347 1348
	cpu_hyp_reset();

1349
	if (is_kernel_in_hyp_mode())
1350
		kvm_timer_init_vhe();
1351
	else
1352
		cpu_init_hyp_mode(NULL);
1353

1354
	kvm_arm_init_debug();
1355 1356 1357

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1358 1359
}

1360 1361 1362
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1363
		cpu_hyp_reinit();
1364
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1365
	}
1366
}
1367

1368 1369 1370 1371
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1372 1373
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1386

1387 1388 1389 1390 1391
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1407
		return NOTIFY_OK;
1408
	case CPU_PM_ENTER_FAILED:
1409 1410 1411 1412
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1413

1414 1415 1416 1417 1418
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1429 1430 1431 1432
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1433 1434 1435 1436
#else
static inline void hyp_cpu_pm_init(void)
{
}
1437 1438 1439
static inline void hyp_cpu_pm_exit(void)
{
}
1440 1441
#endif

1442 1443
static int init_common_resources(void)
{
1444 1445
	kvm_set_ipa_limit();

1446 1447 1448 1449 1450
	return 0;
}

static int init_subsystems(void)
{
1451
	int err = 0;
1452

1453
	/*
1454
	 * Enable hardware so that subsystem initialisation can access EL2.
1455
	 */
1456
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1457 1458 1459 1460 1461 1462

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1474
		err = 0;
1475 1476
		break;
	default:
1477
		goto out;
1478 1479 1480 1481 1482
	}

	/*
	 * Init HYP architected timer support
	 */
1483
	err = kvm_timer_hyp_init(vgic_present);
1484
	if (err)
1485
		goto out;
1486 1487 1488 1489

	kvm_perf_init();
	kvm_coproc_table_init();

1490 1491 1492 1493
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1494 1495 1496 1497 1498 1499 1500 1501 1502
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1503
	hyp_cpu_pm_exit();
1504 1505
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1530
			goto out_err;
1531 1532 1533 1534 1535 1536 1537 1538
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1539
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1540
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1541 1542
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1543
		goto out_err;
1544 1545
	}

1546
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1547
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1548 1549
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1550 1551 1552 1553 1554 1555 1556
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1557
		goto out_err;
1558 1559
	}

1560 1561 1562 1563 1564 1565
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1566 1567 1568 1569 1570
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1571 1572
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1573 1574 1575

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1576
			goto out_err;
1577 1578 1579 1580
		}
	}

	for_each_possible_cpu(cpu) {
1581
		kvm_host_data_t *cpu_data;
1582

1583 1584
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1585 1586

		if (err) {
1587
			kvm_err("Cannot map host CPU state: %d\n", err);
1588
			goto out_err;
1589 1590 1591
		}
	}

1592 1593
	err = hyp_map_aux_data();
	if (err)
1594
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1595

1596
	return 0;
1597

1598
out_err:
1599
	teardown_hyp_mode();
1600 1601 1602 1603
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1604 1605 1606 1607 1608
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1633 1634
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1635 1636 1637 1638 1639 1640 1641
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1642 1643
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1662 1663 1664
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1665 1666
int kvm_arch_init(void *opaque)
{
1667
	int err;
1668
	int ret, cpu;
1669
	bool in_hyp_mode;
1670 1671

	if (!is_hyp_mode_available()) {
1672
		kvm_info("HYP mode not available\n");
1673 1674 1675
		return -ENODEV;
	}

1676 1677 1678 1679
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1680 1681 1682
		return -ENODEV;
	}

1683 1684 1685 1686 1687 1688
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1689 1690
	}

1691
	err = init_common_resources();
1692
	if (err)
1693
		return err;
1694

1695
	err = kvm_arm_init_sve();
1696 1697 1698
	if (err)
		return err;

1699
	if (!in_hyp_mode) {
1700
		err = init_hyp_mode();
1701 1702 1703
		if (err)
			goto out_err;
	}
1704

1705 1706 1707
	err = init_subsystems();
	if (err)
		goto out_hyp;
1708

1709 1710 1711 1712 1713
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1714
	return 0;
1715 1716

out_hyp:
1717 1718
	if (!in_hyp_mode)
		teardown_hyp_mode();
1719 1720
out_err:
	return err;
1721 1722 1723 1724 1725
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1726
	kvm_perf_teardown();
1727 1728 1729 1730 1731 1732 1733 1734 1735
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);