arm.c 33.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35

#define CREATE_TRACE_POINTS
#include "trace.h"

36
#include <linux/uaccess.h>
37 38
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56

57 58 59
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

60 61
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 63
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
64
static DEFINE_SPINLOCK(kvm_vmid_lock);
65

66 67
static bool vgic_present;

68 69
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

70 71 72
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
73
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 75 76 77 78 79 80 81 82
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
83
	return __this_cpu_read(kvm_arm_running_vcpu);
84 85 86 87 88
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
89
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 91 92 93
{
	return &kvm_arm_running_vcpu;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


110 111 112 113
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
114 115
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
116
	int ret, cpu;
117

118 119 120
	if (type)
		return -EINVAL;

121 122 123 124 125 126 127
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

128 129 130 131
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

132
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133 134 135
	if (ret)
		goto out_free_stage2_pgd;

136
	kvm_vgic_early_init(kvm);
137

138 139 140
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

141
	/* The maximum number of VCPUs is limited by the host's GIC model */
142 143
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144

145 146 147 148
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
149 150
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
151
	return ret;
152 153
}

154 155 156 157 158 159 160 161 162 163
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

164 165 166 167 168 169
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


170 171 172 173
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
174 175 176 177
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

178 179 180
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

181 182 183 184 185 186
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
187 188

	kvm_vgic_destroy(kvm);
189 190
}

191
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 193 194
{
	int r;
	switch (ext) {
195
	case KVM_CAP_IRQCHIP:
196 197
		r = vgic_present;
		break;
198
	case KVM_CAP_IOEVENTFD:
199
	case KVM_CAP_DEVICE_CTRL:
200 201 202 203
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
204
	case KVM_CAP_ARM_PSCI:
205
	case KVM_CAP_ARM_PSCI_0_2:
206
	case KVM_CAP_READONLY_MEM:
207
	case KVM_CAP_MP_STATE:
208
	case KVM_CAP_IMMEDIATE_EXIT:
209 210
		r = 1;
		break;
211 212
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
213
		break;
214 215 216 217 218 219
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
220 221 222
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
223 224 225 226 227 228
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
229 230 231 232 233 234 235
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
236
	default:
237
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

255 256 257 258 259
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

260 261 262 263 264
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

265 266 267 268 269 270 271 272 273 274
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

275
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276 277 278
	if (err)
		goto vcpu_uninit;

279
	return vcpu;
280 281
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
282 283 284 285 286 287
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

288
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289
{
290
	kvm_vgic_vcpu_early_init(vcpu);
291 292 293 294
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
295
	kvm_mmu_free_memory_caches(vcpu);
296
	kvm_timer_vcpu_terminate(vcpu);
297
	kvm_vgic_vcpu_destroy(vcpu);
298
	kvm_pmu_vcpu_destroy(vcpu);
299
	kvm_vcpu_uninit(vcpu);
300
	kmem_cache_free(kvm_vcpu_cache, vcpu);
301 302 303 304 305 306 307 308 309
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
310 311
	return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
	       kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 313
}

314 315 316 317 318 319 320 321 322 323
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

324 325
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
326 327
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
328
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329

330 331 332
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

333 334
	kvm_arm_reset_debug_ptr(vcpu);

335
	return kvm_vgic_vcpu_init(vcpu);
336 337 338 339
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
340 341 342 343 344 345 346 347 348 349 350 351 352
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

353
	vcpu->cpu = cpu;
354
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355

356
	kvm_arm_set_running_vcpu(vcpu);
357
	kvm_vgic_load(vcpu);
358
	kvm_timer_vcpu_load(vcpu);
359 360 361 362
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
363
	kvm_timer_vcpu_put(vcpu);
364 365
	kvm_vgic_put(vcpu);

366 367
	vcpu->cpu = -1;

368
	kvm_arm_set_running_vcpu(NULL);
369 370
}

A
Andrew Jones 已提交
371 372 373
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
374
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
375 376 377
	kvm_vcpu_kick(vcpu);
}

378 379 380
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
381
	if (vcpu->arch.power_off)
382 383 384 385 386
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
387 388 389 390 391
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
392 393
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
394
		vcpu->arch.power_off = false;
395 396
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
397
		vcpu_power_off(vcpu);
398 399 400 401 402 403
		break;
	default:
		return -EINVAL;
	}

	return 0;
404 405
}

406 407 408 409 410 411 412
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
413 414
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
415
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
416
		&& !v->arch.power_off && !v->arch.pause);
417 418
}

419 420
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
421
	return vcpu_mode_priv(vcpu);
422 423
}

424 425 426 427 428 429 430
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
431
	preempt_disable();
432
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
433
	preempt_enable();
434 435 436 437
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
438
 * @kvm: The VM's VMID to check
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
503
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
504 505

	/* update vttbr to be used with the new vmid */
506
	pgd_phys = virt_to_phys(kvm->arch.pgd);
507
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
508
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
509
	kvm->arch.vttbr = pgd_phys | vmid;
510 511 512 513 514 515

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
516
	struct kvm *kvm = vcpu->kvm;
517
	int ret = 0;
518

519 520 521 522
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
523

524
	/*
525 526
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
527
	 */
528
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
529
		ret = kvm_vgic_map_resources(kvm);
530 531 532 533
		if (ret)
			return ret;
	}

534
	ret = kvm_timer_enable(vcpu);
535 536 537 538
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
539

540
	return ret;
541 542
}

543 544 545 546 547
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

548
void kvm_arm_halt_guest(struct kvm *kvm)
549 550 551 552 553 554
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
555
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
556 557
}

558
void kvm_arm_resume_guest(struct kvm *kvm)
559 560 561 562
{
	int i;
	struct kvm_vcpu *vcpu;

563 564 565 566
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
		swake_up(kvm_arch_vcpu_wq(vcpu));
	}
567 568
}

569
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
570
{
571
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
572

573
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
574
				       (!vcpu->arch.pause)));
575

A
Andrew Jones 已提交
576
	if (vcpu->arch.power_off || vcpu->arch.pause) {
577
		/* Awaken to handle a signal, request we sleep again later. */
578
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
579
	}
580 581
}

582 583 584 585 586
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

587 588 589
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
590 591
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
592 593 594 595 596 597

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
598 599 600
	}
}

601 602 603 604 605 606 607 608 609 610 611
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
612 613
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
614 615 616
	int ret;
	sigset_t sigsaved;

617
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
618 619 620 621 622 623
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
624 625 626 627 628 629
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

630 631 632
	if (run->immediate_exit)
		return -EINTR;

633 634 635 636 637 638 639 640 641 642 643 644 645
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

646 647
		check_vcpu_requests(vcpu);

648 649 650 651 652
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
653
		preempt_disable();
654

655
		kvm_pmu_flush_hwstate(vcpu);
656

657 658
		local_irq_disable();

659 660
		kvm_vgic_flush_hwstate(vcpu);

661
		/*
662
		 * If we have a singal pending, or need to notify a userspace
663 664 665
		 * irqchip about timer or PMU level changes, then we exit (and
		 * update the timer level state in kvm_timer_update_run
		 * below).
666
		 */
667
		if (signal_pending(current) ||
668 669
		    kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
670 671 672 673
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

674 675 676 677 678 679 680 681
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

682
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
683
		    kvm_request_pending(vcpu)) {
684
			vcpu->mode = OUTSIDE_GUEST_MODE;
685
			kvm_pmu_sync_hwstate(vcpu);
686
			kvm_timer_sync_hwstate(vcpu);
687
			kvm_vgic_sync_hwstate(vcpu);
688
			local_irq_enable();
689
			preempt_enable();
690 691 692
			continue;
		}

693 694
		kvm_arm_setup_debug(vcpu);

695 696 697 698
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
699
		guest_enter_irqoff();
700 701 702 703

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
704
		vcpu->stat.exits++;
705 706 707 708
		/*
		 * Back from guest
		 *************************************************************/

709 710
		kvm_arm_clear_debug(vcpu);

711
		/*
712
		 * We must sync the PMU state before the vgic state so
713 714 715 716 717
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

718 719 720 721 722
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
723 724
		kvm_vgic_sync_hwstate(vcpu);

725 726 727 728 729 730 731
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
		kvm_timer_sync_hwstate(vcpu);

732 733 734 735 736 737 738 739 740 741 742 743 744
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
745
		 * We do local_irq_enable() before calling guest_exit() so
746 747
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
748
		 * preemption after calling guest_exit() so that if we get
749 750 751
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
752
		guest_exit();
753
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
754

755 756
		preempt_enable();

757 758 759
		ret = handle_exit(vcpu, run, ret);
	}

760
	/* Tell userspace about in-kernel device output levels */
761 762 763 764
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
765

766 767 768
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
769 770
}

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
799
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
800 801 802 803 804
	kvm_vcpu_kick(vcpu);

	return 0;
}

805 806
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
807 808 809 810 811 812 813 814 815 816 817 818 819
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

820 821 822 823
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
824

825 826
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
827

828 829 830
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
849

850
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
851 852 853 854
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

855
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
856 857
			return -EINVAL;

858
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
859 860 861
	}

	return -EINVAL;
862 863
}

864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


906 907 908 909 910 911 912 913 914
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

915 916 917 918 919 920 921
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

922 923
	vcpu_reset_hcr(vcpu);

924
	/*
925
	 * Handle the "start in power-off" case.
926
	 */
927
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
928
		vcpu_power_off(vcpu);
929
	else
930
		vcpu->arch.power_off = false;
931 932 933 934

	return 0;
}

935 936 937 938 939 940 941
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
942
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
943 944 945 946 947 948 949 950 951 952 953 954 955
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
956
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
957 958 959 960 961 962 963 964 965 966 967 968 969
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
970
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
971 972 973 974 975 976
		break;
	}

	return ret;
}

977 978 979 980 981
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
982
	struct kvm_device_attr attr;
983 984 985 986 987 988 989 990

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

991
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
992 993 994 995
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
996 997 998 999

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1012 1013 1014
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
1040 1041 1042 1043 1044
	default:
		return -EINVAL;
	}
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1064 1065
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1078 1079
}

1080 1081 1082
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1083 1084 1085 1086 1087 1088 1089 1090 1091
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1092 1093
		if (!vgic_present)
			return -ENXIO;
1094
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1095 1096 1097
	default:
		return -ENODEV;
	}
1098 1099
}

1100 1101 1102
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1103 1104 1105 1106
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1107
	case KVM_CREATE_IRQCHIP: {
1108
		int ret;
1109 1110
		if (!vgic_present)
			return -ENXIO;
1111 1112 1113 1114
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1115
	}
1116 1117 1118 1119 1120 1121 1122
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1136 1137 1138
	default:
		return -EINVAL;
	}
1139 1140
}

1141
static void cpu_init_hyp_mode(void *dummy)
1142
{
1143
	phys_addr_t pgd_ptr;
1144 1145 1146 1147 1148
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1149
	__hyp_set_vectors(kvm_get_idmap_vector());
1150

1151
	pgd_ptr = kvm_mmu_get_httbr();
1152
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1153
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1154
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1155

M
Marc Zyngier 已提交
1156
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1157
	__cpu_init_stage2();
1158 1159

	kvm_arm_init_debug();
1160 1161
}

1162 1163 1164 1165 1166 1167
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1168 1169
static void cpu_hyp_reinit(void)
{
1170 1171
	cpu_hyp_reset();

1172 1173
	if (is_kernel_in_hyp_mode()) {
		/*
1174
		 * __cpu_init_stage2() is safe to call even if the PM
1175 1176
		 * event was cancelled before the CPU was reset.
		 */
1177
		__cpu_init_stage2();
1178
		kvm_timer_init_vhe();
1179
	} else {
1180
		cpu_init_hyp_mode(NULL);
1181
	}
1182 1183 1184

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1185 1186
}

1187 1188 1189
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1190
		cpu_hyp_reinit();
1191
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1192
	}
1193
}
1194

1195 1196 1197 1198
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1199 1200
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1213

1214 1215 1216 1217 1218
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1234
		return NOTIFY_OK;
1235 1236 1237 1238
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1239

1240 1241 1242 1243 1244
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1255 1256 1257 1258
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1259 1260 1261 1262
#else
static inline void hyp_cpu_pm_init(void)
{
}
1263 1264 1265
static inline void hyp_cpu_pm_exit(void)
{
}
1266 1267
#endif

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

1281 1282 1283 1284
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1285 1286 1287 1288 1289
	return 0;
}

static int init_subsystems(void)
{
1290
	int err = 0;
1291

1292
	/*
1293
	 * Enable hardware so that subsystem initialisation can access EL2.
1294
	 */
1295
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1296 1297 1298 1299 1300 1301

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1313
		err = 0;
1314 1315
		break;
	default:
1316
		goto out;
1317 1318 1319 1320 1321 1322 1323
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1324
		goto out;
1325 1326 1327 1328

	kvm_perf_init();
	kvm_coproc_table_init();

1329 1330 1331 1332
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1345
	hyp_cpu_pm_exit();
1346 1347 1348 1349 1350 1351 1352 1353
}

static int init_vhe_mode(void)
{
	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1378
			goto out_err;
1379 1380 1381 1382 1383 1384 1385 1386
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1387
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1388
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1389 1390
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1391
		goto out_err;
1392 1393
	}

1394
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1395
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1396 1397
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1398 1399 1400 1401 1402 1403 1404
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1405
		goto out_err;
1406 1407
	}

1408 1409 1410 1411 1412
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1413 1414
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1415 1416 1417

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1418
			goto out_err;
1419 1420 1421 1422
		}
	}

	for_each_possible_cpu(cpu) {
1423
		kvm_cpu_context_t *cpu_ctxt;
1424

1425
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1426
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1427 1428

		if (err) {
1429
			kvm_err("Cannot map host CPU state: %d\n", err);
1430
			goto out_err;
1431 1432 1433 1434
		}
	}

	kvm_info("Hyp mode initialized successfully\n");
1435

1436
	return 0;
1437

1438
out_err:
1439
	teardown_hyp_mode();
1440 1441 1442 1443
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1444 1445 1446 1447 1448
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1462 1463 1464
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1465 1466
int kvm_arch_init(void *opaque)
{
1467
	int err;
1468
	int ret, cpu;
1469 1470 1471 1472 1473 1474

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1475 1476 1477 1478 1479 1480
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1481 1482
	}

1483
	err = init_common_resources();
1484
	if (err)
1485
		return err;
1486

1487 1488 1489 1490 1491
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1492
		goto out_err;
1493

1494 1495 1496
	err = init_subsystems();
	if (err)
		goto out_hyp;
1497

1498
	return 0;
1499 1500 1501

out_hyp:
	teardown_hyp_mode();
1502
out_err:
1503
	teardown_common_resources();
1504
	return err;
1505 1506 1507 1508 1509
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1510
	kvm_perf_teardown();
1511 1512 1513 1514 1515 1516 1517 1518 1519
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);