arm.c 33.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30
#include <trace/events/kvm.h>
31
#include <kvm/arm_pmu.h>
32 33 34 35

#define CREATE_TRACE_POINTS
#include "trace.h"

36
#include <linux/uaccess.h>
37 38
#include <asm/ptrace.h>
#include <asm/mman.h>
39
#include <asm/tlbflush.h>
40
#include <asm/cacheflush.h>
41 42 43 44
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
45
#include <asm/kvm_emulate.h>
46
#include <asm/kvm_coproc.h>
47
#include <asm/kvm_psci.h>
48
#include <asm/sections.h>
49 50 51 52 53

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

54
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55
static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56

57 58 59
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

60 61
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 63
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
64
static DEFINE_SPINLOCK(kvm_vmid_lock);
65

66 67
static bool vgic_present;

68 69
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

70 71 72
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
	BUG_ON(preemptible());
73
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 75 76 77 78 79 80 81 82
}

/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
	BUG_ON(preemptible());
83
	return __this_cpu_read(kvm_arm_running_vcpu);
84 85 86 87 88
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
89
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 91 92 93
{
	return &kvm_arm_running_vcpu;
}

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


110 111 112 113
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
114 115
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
116
	int ret, cpu;
117

118 119 120
	if (type)
		return -EINVAL;

121 122 123 124 125 126 127
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

128 129 130 131
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

132
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133 134 135
	if (ret)
		goto out_free_stage2_pgd;

136
	kvm_vgic_early_init(kvm);
137

138 139 140
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

141
	/* The maximum number of VCPUs is limited by the host's GIC model */
142 143
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144

145 146 147 148
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
149 150
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
151
	return ret;
152 153
}

154 155 156 157 158 159 160 161 162 163
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

164 165 166 167 168 169
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


170 171 172 173
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
174 175 176 177
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

178 179 180
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

181 182 183 184 185 186
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
187 188

	kvm_vgic_destroy(kvm);
189 190
}

191
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 193 194
{
	int r;
	switch (ext) {
195
	case KVM_CAP_IRQCHIP:
196 197
		r = vgic_present;
		break;
198
	case KVM_CAP_IOEVENTFD:
199
	case KVM_CAP_DEVICE_CTRL:
200 201 202 203
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
204
	case KVM_CAP_ARM_PSCI:
205
	case KVM_CAP_ARM_PSCI_0_2:
206
	case KVM_CAP_READONLY_MEM:
207
	case KVM_CAP_MP_STATE:
208
	case KVM_CAP_IMMEDIATE_EXIT:
209 210
		r = 1;
		break;
211 212
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
213
		break;
214 215 216 217 218 219
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
220 221 222
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
223 224 225 226 227 228
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
229 230 231 232 233 234 235
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
236
	default:
237
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

255 256 257 258 259
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

260 261 262 263 264
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

265 266 267 268 269 270 271 272 273 274
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

275
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276 277 278
	if (err)
		goto vcpu_uninit;

279
	return vcpu;
280 281
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
282 283 284 285 286 287
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

288
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289
{
290
	kvm_vgic_vcpu_early_init(vcpu);
291 292 293 294
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
295
	kvm_mmu_free_memory_caches(vcpu);
296
	kvm_timer_vcpu_terminate(vcpu);
297
	kvm_vgic_vcpu_destroy(vcpu);
298
	kvm_pmu_vcpu_destroy(vcpu);
299
	kvm_vcpu_uninit(vcpu);
300
	kmem_cache_free(kvm_vcpu_cache, vcpu);
301 302 303 304 305 306 307 308 309
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
310
	return kvm_timer_is_pending(vcpu);
311 312
}

313 314 315 316 317 318 319 320 321 322
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
}

323 324
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
325 326
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
327
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
328

329 330 331
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

332 333
	kvm_arm_reset_debug_ptr(vcpu);

334
	return kvm_vgic_vcpu_init(vcpu);
335 336 337 338
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
339 340 341 342 343 344 345 346 347 348 349 350 351
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

352
	vcpu->cpu = cpu;
353
	vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
354

355
	kvm_arm_set_running_vcpu(vcpu);
356
	kvm_vgic_load(vcpu);
357
	kvm_timer_vcpu_load(vcpu);
358 359 360 361
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
362
	kvm_timer_vcpu_put(vcpu);
363 364
	kvm_vgic_put(vcpu);

365 366
	vcpu->cpu = -1;

367
	kvm_arm_set_running_vcpu(NULL);
368 369
}

A
Andrew Jones 已提交
370 371 372
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
373
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
374 375 376
	kvm_vcpu_kick(vcpu);
}

377 378 379
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
380
	if (vcpu->arch.power_off)
381 382 383 384 385
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
386 387 388 389 390
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
391 392
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
393
		vcpu->arch.power_off = false;
394 395
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
396
		vcpu_power_off(vcpu);
397 398 399 400 401 402
		break;
	default:
		return -EINVAL;
	}

	return 0;
403 404
}

405 406 407 408 409 410 411
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
412 413
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
414
	return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
415
		&& !v->arch.power_off && !v->arch.pause);
416 417
}

418 419
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
420
	return vcpu_mode_priv(vcpu);
421 422
}

423 424 425 426 427 428 429
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
430
	preempt_disable();
431
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
432
	preempt_enable();
433 434 435 436
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
437
 * @kvm: The VM's VMID to check
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;

	if (!need_new_vmid_gen(kvm))
		return;

	spin_lock(&kvm_vmid_lock);

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
		spin_unlock(&kvm_vmid_lock);
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
502
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
503 504

	/* update vttbr to be used with the new vmid */
505
	pgd_phys = virt_to_phys(kvm->arch.pgd);
506
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
507
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
508
	kvm->arch.vttbr = pgd_phys | vmid;
509 510 511 512 513 514

	spin_unlock(&kvm_vmid_lock);
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
515
	struct kvm *kvm = vcpu->kvm;
516
	int ret = 0;
517

518 519 520 521
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
522

523
	/*
524 525
	 * Map the VGIC hardware resources before running a vcpu the first
	 * time on this VM.
526
	 */
527
	if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
528
		ret = kvm_vgic_map_resources(kvm);
529 530 531 532
		if (ret)
			return ret;
	}

533
	ret = kvm_timer_enable(vcpu);
534 535 536 537
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
538

539
	return ret;
540 541
}

542 543 544 545 546
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

547
void kvm_arm_halt_guest(struct kvm *kvm)
548 549 550 551 552 553
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
554
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
555 556
}

557
void kvm_arm_resume_guest(struct kvm *kvm)
558 559 560 561
{
	int i;
	struct kvm_vcpu *vcpu;

562 563 564 565
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
		swake_up(kvm_arch_vcpu_wq(vcpu));
	}
566 567
}

568
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
569
{
570
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
571

572
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
573
				       (!vcpu->arch.pause)));
574

A
Andrew Jones 已提交
575
	if (vcpu->arch.power_off || vcpu->arch.pause) {
576
		/* Awaken to handle a signal, request we sleep again later. */
577
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
578
	}
579 580
}

581 582 583 584 585
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

586 587 588
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
589 590
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
591 592 593 594 595 596

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
597 598 599
	}
}

600 601 602 603 604 605 606 607 608 609 610
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
611 612
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
613 614 615
	int ret;
	sigset_t sigsaved;

616
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
617 618 619 620 621 622
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
		return ret;

C
Christoffer Dall 已提交
623 624 625 626 627 628
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
			return ret;
	}

629 630 631
	if (run->immediate_exit)
		return -EINTR;

632 633 634 635 636 637 638 639 640 641 642 643 644
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

645 646
		check_vcpu_requests(vcpu);

647 648 649 650 651
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
652
		preempt_disable();
653

654
		kvm_pmu_flush_hwstate(vcpu);
655

656 657
		local_irq_disable();

658 659
		kvm_vgic_flush_hwstate(vcpu);

660
		/*
661
		 * If we have a singal pending, or need to notify a userspace
662 663 664
		 * irqchip about timer or PMU level changes, then we exit (and
		 * update the timer level state in kvm_timer_update_run
		 * below).
665
		 */
666
		if (signal_pending(current) ||
667 668
		    kvm_timer_should_notify_user(vcpu) ||
		    kvm_pmu_should_notify_user(vcpu)) {
669 670 671 672
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

673 674 675 676 677 678 679 680
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

681
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
682
		    kvm_request_pending(vcpu)) {
683
			vcpu->mode = OUTSIDE_GUEST_MODE;
684
			kvm_pmu_sync_hwstate(vcpu);
685
			kvm_timer_sync_hwstate(vcpu);
686
			kvm_vgic_sync_hwstate(vcpu);
687
			local_irq_enable();
688
			preempt_enable();
689 690 691
			continue;
		}

692 693
		kvm_arm_setup_debug(vcpu);

694 695 696 697
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
698
		guest_enter_irqoff();
699 700 701 702

		ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);

		vcpu->mode = OUTSIDE_GUEST_MODE;
703
		vcpu->stat.exits++;
704 705 706 707
		/*
		 * Back from guest
		 *************************************************************/

708 709
		kvm_arm_clear_debug(vcpu);

710
		/*
711
		 * We must sync the PMU state before the vgic state so
712 713 714 715 716
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

717 718 719 720 721
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
722 723
		kvm_vgic_sync_hwstate(vcpu);

724 725 726 727 728 729 730
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
		kvm_timer_sync_hwstate(vcpu);

731 732 733 734 735 736 737 738 739 740 741 742 743
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
744
		 * We do local_irq_enable() before calling guest_exit() so
745 746
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
747
		 * preemption after calling guest_exit() so that if we get
748 749 750
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
751
		guest_exit();
752
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
753

754 755
		preempt_enable();

756 757 758
		ret = handle_exit(vcpu, run, ret);
	}

759
	/* Tell userspace about in-kernel device output levels */
760 761 762 763
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
764

765 766 767
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
	return ret;
768 769
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
	unsigned long *ptr;

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

	ptr = (unsigned long *)&vcpu->arch.irq_lines;
	if (level)
		set = test_and_set_bit(bit_index, ptr);
	else
		set = test_and_clear_bit(bit_index, ptr);

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
798
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
799 800 801 802 803
	kvm_vcpu_kick(vcpu);

	return 0;
}

804 805
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
806 807 808 809 810 811 812 813 814 815 816 817 818
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

819 820 821 822
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
823

824 825
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
826

827 828 829
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
848

849
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
850 851 852 853
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

854
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
855 856
			return -EINVAL;

857
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
858 859 860
	}

	return -EINVAL;
861 862
}

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


905 906 907 908 909 910 911 912 913
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

914 915 916 917 918 919 920
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

921 922
	vcpu_reset_hcr(vcpu);

923
	/*
924
	 * Handle the "start in power-off" case.
925
	 */
926
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
927
		vcpu_power_off(vcpu);
928
	else
929
		vcpu->arch.power_off = false;
930 931 932 933

	return 0;
}

934 935 936 937 938 939 940
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
941
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
942 943 944 945 946 947 948 949 950 951 952 953 954
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
955
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
956 957 958 959 960 961 962 963 964 965 966 967 968
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
969
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
970 971 972 973 974 975
		break;
	}

	return ret;
}

976 977 978 979 980
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
981
	struct kvm_device_attr attr;
982 983 984 985 986 987 988 989

	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

		if (copy_from_user(&init, argp, sizeof(init)))
			return -EFAULT;

990
		return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
991 992 993 994
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
995 996 997 998

		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		if (copy_from_user(&reg, argp, sizeof(reg)))
			return -EFAULT;
		if (ioctl == KVM_SET_ONE_REG)
			return kvm_arm_set_reg(vcpu, &reg);
		else
			return kvm_arm_get_reg(vcpu, &reg);
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1011 1012 1013
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
			return -ENOEXEC;

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
			return -EFAULT;
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
			return -EFAULT;
		if (n < reg_list.n)
			return -E2BIG;
		return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
	}
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	case KVM_SET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_set_attr(vcpu, &attr);
	}
	case KVM_GET_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_get_attr(vcpu, &attr);
	}
	case KVM_HAS_DEVICE_ATTR: {
		if (copy_from_user(&attr, argp, sizeof(attr)))
			return -EFAULT;
		return kvm_arm_vcpu_has_attr(vcpu, &attr);
	}
1039 1040 1041 1042 1043
	default:
		return -EINVAL;
	}
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1063 1064
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1077 1078
}

1079 1080 1081
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1082 1083 1084 1085 1086 1087 1088 1089 1090
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1091 1092
		if (!vgic_present)
			return -ENXIO;
1093
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1094 1095 1096
	default:
		return -ENODEV;
	}
1097 1098
}

1099 1100 1101
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1102 1103 1104 1105
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1106
	case KVM_CREATE_IRQCHIP: {
1107
		int ret;
1108 1109
		if (!vgic_present)
			return -ENXIO;
1110 1111 1112 1113
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1114
	}
1115 1116 1117 1118 1119 1120 1121
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1135 1136 1137
	default:
		return -EINVAL;
	}
1138 1139
}

1140
static void cpu_init_hyp_mode(void *dummy)
1141
{
1142
	phys_addr_t pgd_ptr;
1143 1144 1145 1146 1147
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1148
	__hyp_set_vectors(kvm_get_idmap_vector());
1149

1150
	pgd_ptr = kvm_mmu_get_httbr();
1151
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1152
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1153
	vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1154

M
Marc Zyngier 已提交
1155
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1156
	__cpu_init_stage2();
1157 1158

	kvm_arm_init_debug();
1159 1160
}

1161 1162 1163 1164 1165 1166
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1167 1168
static void cpu_hyp_reinit(void)
{
1169 1170
	cpu_hyp_reset();

1171 1172
	if (is_kernel_in_hyp_mode()) {
		/*
1173
		 * __cpu_init_stage2() is safe to call even if the PM
1174 1175
		 * event was cancelled before the CPU was reset.
		 */
1176
		__cpu_init_stage2();
1177
		kvm_timer_init_vhe();
1178
	} else {
1179
		cpu_init_hyp_mode(NULL);
1180
	}
1181 1182 1183

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1184 1185
}

1186 1187 1188
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1189
		cpu_hyp_reinit();
1190
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1191
	}
1192
}
1193

1194 1195 1196 1197
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1198 1199
}

1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1212

1213 1214 1215 1216 1217
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1233
		return NOTIFY_OK;
1234 1235 1236 1237
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1238

1239 1240 1241 1242 1243
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1254 1255 1256 1257
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1258 1259 1260 1261
#else
static inline void hyp_cpu_pm_init(void)
{
}
1262 1263 1264
static inline void hyp_cpu_pm_exit(void)
{
}
1265 1266
#endif

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
static void teardown_common_resources(void)
{
	free_percpu(kvm_host_cpu_state);
}

static int init_common_resources(void)
{
	kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
	if (!kvm_host_cpu_state) {
		kvm_err("Cannot allocate host CPU state\n");
		return -ENOMEM;
	}

1280 1281 1282 1283
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1284 1285 1286 1287 1288
	return 0;
}

static int init_subsystems(void)
{
1289
	int err = 0;
1290

1291
	/*
1292
	 * Enable hardware so that subsystem initialisation can access EL2.
1293
	 */
1294
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1295 1296 1297 1298 1299 1300

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1312
		err = 0;
1313 1314
		break;
	default:
1315
		goto out;
1316 1317 1318 1319 1320 1321 1322
	}

	/*
	 * Init HYP architected timer support
	 */
	err = kvm_timer_hyp_init();
	if (err)
1323
		goto out;
1324 1325 1326 1327

	kvm_perf_init();
	kvm_coproc_table_init();

1328 1329 1330 1331
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
}

static void teardown_hyp_mode(void)
{
	int cpu;

	if (is_kernel_in_hyp_mode())
		return;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1344
	hyp_cpu_pm_exit();
1345 1346 1347 1348 1349 1350 1351 1352
}

static int init_vhe_mode(void)
{
	kvm_info("VHE mode initialized successfully\n");
	return 0;
}

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1377
			goto out_err;
1378 1379 1380 1381 1382 1383 1384 1385
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1386
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1387
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1388 1389
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1390
		goto out_err;
1391 1392
	}

1393
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1394
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1395 1396
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1397 1398 1399 1400 1401 1402 1403
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1404
		goto out_err;
1405 1406
	}

1407 1408 1409 1410 1411
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1412 1413
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1414 1415 1416

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1417
			goto out_err;
1418 1419 1420 1421
		}
	}

	for_each_possible_cpu(cpu) {
1422
		kvm_cpu_context_t *cpu_ctxt;
1423

1424
		cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1425
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1426 1427

		if (err) {
1428
			kvm_err("Cannot map host CPU state: %d\n", err);
1429
			goto out_err;
1430 1431 1432 1433
		}
	}

	kvm_info("Hyp mode initialized successfully\n");
1434

1435
	return 0;
1436

1437
out_err:
1438
	teardown_hyp_mode();
1439 1440 1441 1442
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1443 1444 1445 1446 1447
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1461 1462 1463
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1464 1465
int kvm_arch_init(void *opaque)
{
1466
	int err;
1467
	int ret, cpu;
1468 1469 1470 1471 1472 1473

	if (!is_hyp_mode_available()) {
		kvm_err("HYP mode not available\n");
		return -ENODEV;
	}

1474 1475 1476 1477 1478 1479
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1480 1481
	}

1482
	err = init_common_resources();
1483
	if (err)
1484
		return err;
1485

1486 1487 1488 1489 1490
	if (is_kernel_in_hyp_mode())
		err = init_vhe_mode();
	else
		err = init_hyp_mode();
	if (err)
1491
		goto out_err;
1492

1493 1494 1495
	err = init_subsystems();
	if (err)
		goto out_hyp;
1496

1497
	return 0;
1498 1499 1500

out_hyp:
	teardown_hyp_mode();
1501
out_err:
1502
	teardown_common_resources();
1503
	return err;
1504 1505 1506 1507 1508
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1509
	kvm_perf_teardown();
1510 1511 1512 1513 1514 1515 1516 1517 1518
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);