arm.c 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67
static u32 kvm_next_vmid;
68
static DEFINE_SPINLOCK(kvm_vmid_lock);
69

70 71
static bool vgic_present;

72 73
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

74 75
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
76
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 78
}

79 80
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

81 82 83 84 85 86
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
87
	return __this_cpu_read(kvm_arm_running_vcpu);
88 89 90 91 92
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
93
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
94 95 96 97
{
	return &kvm_arm_running_vcpu;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


114 115 116 117
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
118 119
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
120
	int ret, cpu;
121

122
	ret = kvm_arm_setup_stage2(kvm, type);
123 124
	if (ret)
		return ret;
125

126 127 128 129 130 131 132
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

133 134 135 136
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

137
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 139 140
	if (ret)
		goto out_free_stage2_pgd;

141
	kvm_vgic_early_init(kvm);
142

143
	/* Mark the initial VMID generation invalid */
144
	kvm->arch.vmid.vmid_gen = 0;
145

146
	/* The maximum number of VCPUs is limited by the host's GIC model */
147 148
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149

150 151 152 153
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
154 155
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
156
	return ret;
157 158
}

159 160 161 162 163 164 165 166 167 168
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

169
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 171 172 173 174
{
	return VM_FAULT_SIGBUS;
}


175 176 177 178
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
179 180 181 182
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

183 184
	kvm_vgic_destroy(kvm);

185 186 187
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

188 189 190 191 192 193
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
194
	atomic_set(&kvm->online_vcpus, 0);
195 196
}

197
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 199 200
{
	int r;
	switch (ext) {
201
	case KVM_CAP_IRQCHIP:
202 203
		r = vgic_present;
		break;
204
	case KVM_CAP_IOEVENTFD:
205
	case KVM_CAP_DEVICE_CTRL:
206 207 208 209
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
210
	case KVM_CAP_ARM_PSCI:
211
	case KVM_CAP_ARM_PSCI_0_2:
212
	case KVM_CAP_READONLY_MEM:
213
	case KVM_CAP_MP_STATE:
214
	case KVM_CAP_IMMEDIATE_EXIT:
215
	case KVM_CAP_VCPU_EVENTS:
216 217
		r = 1;
		break;
218 219
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
220
		break;
221 222 223 224 225 226
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
227 228 229
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
V
Vladimir Murzin 已提交
230 231 232 233 234 235
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
236 237 238 239 240 241 242
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
243
	default:
244
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
245 246 247 248 249 250 251 252 253 254 255
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
271 272 273 274 275 276

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

277 278 279 280 281
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

282 283 284 285 286
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

287 288 289 290 291 292 293 294 295 296
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

297
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
298 299 300
	if (err)
		goto vcpu_uninit;

301
	return vcpu;
302 303
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
304 305 306 307 308 309
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

310
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
311 312 313 314 315
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
316 317 318
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

319
	kvm_mmu_free_memory_caches(vcpu);
320
	kvm_timer_vcpu_terminate(vcpu);
321
	kvm_pmu_vcpu_destroy(vcpu);
322
	kvm_vcpu_uninit(vcpu);
323
	kmem_cache_free(kvm_vcpu_cache, vcpu);
324 325 326 327 328 329 330 331 332
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
333
	return kvm_timer_is_pending(vcpu);
334 335
}

336 337
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
338
	kvm_vgic_v4_enable_doorbell(vcpu);
339 340 341 342
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
343
	kvm_vgic_v4_disable_doorbell(vcpu);
344 345
}

346 347
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
348 349
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
350
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
351

352 353 354
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

355 356
	kvm_arm_reset_debug_ptr(vcpu);

357
	return kvm_vgic_vcpu_init(vcpu);
358 359 360 361
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
362
	int *last_ran;
363
	kvm_host_data_t *cpu_data;
364 365

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
366
	cpu_data = this_cpu_ptr(&kvm_host_data);
367 368 369 370 371 372 373 374 375 376

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

377
	vcpu->cpu = cpu;
378
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
379

380
	kvm_arm_set_running_vcpu(vcpu);
381
	kvm_vgic_load(vcpu);
382
	kvm_timer_vcpu_load(vcpu);
383
	kvm_vcpu_load_sysregs(vcpu);
384
	kvm_arch_vcpu_load_fp(vcpu);
385
	kvm_vcpu_pmu_restore_guest(vcpu);
386 387 388 389 390

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
391 392

	vcpu_ptrauth_setup_lazy(vcpu);
393 394 395 396
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
397
	kvm_arch_vcpu_put_fp(vcpu);
398
	kvm_vcpu_put_sysregs(vcpu);
399
	kvm_timer_vcpu_put(vcpu);
400
	kvm_vgic_put(vcpu);
401
	kvm_vcpu_pmu_restore_host(vcpu);
402

403 404
	vcpu->cpu = -1;

405
	kvm_arm_set_running_vcpu(NULL);
406 407
}

A
Andrew Jones 已提交
408 409 410
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
411
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
412 413 414
	kvm_vcpu_kick(vcpu);
}

415 416 417
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
418
	if (vcpu->arch.power_off)
419 420 421 422 423
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
424 425 426 427 428
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
429 430
	int ret = 0;

431 432
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
433
		vcpu->arch.power_off = false;
434 435
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
436
		vcpu_power_off(vcpu);
437 438
		break;
	default:
439
		ret = -EINVAL;
440 441
	}

442
	return ret;
443 444
}

445 446 447 448 449 450 451
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
452 453
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
454 455
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
456
		&& !v->arch.power_off && !v->arch.pause);
457 458
}

459 460
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
461
	return vcpu_mode_priv(vcpu);
462 463
}

464 465 466 467 468 469 470
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
471
	preempt_disable();
472
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
473
	preempt_enable();
474 475 476 477
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
478
 * @vmid: The VMID to check
479 480 481
 *
 * return true if there is a new generation of VMIDs being used
 *
482 483 484 485 486
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
487
 */
488
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
489
{
490 491
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
492
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
493 494 495
}

/**
496 497 498
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
499
 */
500
static void update_vmid(struct kvm_vmid *vmid)
501
{
502
	if (!need_new_vmid_gen(vmid))
503 504
		return;

505
	spin_lock(&kvm_vmid_lock);
506 507 508 509 510 511

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
512
	if (!need_new_vmid_gen(vmid)) {
513
		spin_unlock(&kvm_vmid_lock);
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

536
	vmid->vmid = kvm_next_vmid;
537
	kvm_next_vmid++;
538
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
539

540
	smp_wmb();
541
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
542 543

	spin_unlock(&kvm_vmid_lock);
544 545 546 547
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
548
	struct kvm *kvm = vcpu->kvm;
549
	int ret = 0;
550

551 552 553
	if (likely(vcpu->arch.has_run_once))
		return 0;

554 555 556
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

557
	vcpu->arch.has_run_once = true;
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
575 576
	}

577
	ret = kvm_timer_enable(vcpu);
578 579 580 581
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
582

583
	return ret;
584 585
}

586 587 588 589 590
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

591
void kvm_arm_halt_guest(struct kvm *kvm)
592 593 594 595 596 597
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
598
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
599 600
}

601
void kvm_arm_resume_guest(struct kvm *kvm)
602 603 604 605
{
	int i;
	struct kvm_vcpu *vcpu;

606 607
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
608
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
609
	}
610 611
}

612
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
613
{
614
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
615

616
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
617
				       (!vcpu->arch.pause)));
618

A
Andrew Jones 已提交
619
	if (vcpu->arch.power_off || vcpu->arch.pause) {
620
		/* Awaken to handle a signal, request we sleep again later. */
621
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
622
	}
623 624 625 626 627 628 629

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
630 631
}

632 633 634 635 636
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

637 638 639
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
640 641
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
642

643 644 645
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

646 647 648 649 650
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
651 652 653
	}
}

654 655 656 657 658 659 660 661 662 663 664
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
665 666
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
667 668
	int ret;

669
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
670 671 672 673
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
674
		return ret;
675

C
Christoffer Dall 已提交
676 677 678
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
679
			return ret;
C
Christoffer Dall 已提交
680 681
	}

682 683 684 685
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
686

687
	kvm_sigset_activate(vcpu);
688 689 690 691 692 693 694 695 696

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

697
		update_vmid(&vcpu->kvm->arch.vmid);
698

699 700
		check_vcpu_requests(vcpu);

701 702 703 704 705
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
706
		preempt_disable();
707

708
		kvm_pmu_flush_hwstate(vcpu);
709

710 711
		local_irq_disable();

712 713
		kvm_vgic_flush_hwstate(vcpu);

714
		/*
715 716
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
717
		 */
718
		if (signal_pending(current)) {
719 720 721 722
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

738 739 740 741 742 743 744 745
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

746
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
747
		    kvm_request_pending(vcpu)) {
748
			vcpu->mode = OUTSIDE_GUEST_MODE;
749
			isb(); /* Ensure work in x_flush_hwstate is committed */
750
			kvm_pmu_sync_hwstate(vcpu);
751 752
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
753
			kvm_vgic_sync_hwstate(vcpu);
754
			local_irq_enable();
755
			preempt_enable();
756 757 758
			continue;
		}

759 760
		kvm_arm_setup_debug(vcpu);

761 762 763 764
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
765
		guest_enter_irqoff();
766

767 768 769
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
770
			kvm_arm_vhe_guest_exit();
771
		} else {
772
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
773 774
		}

775
		vcpu->mode = OUTSIDE_GUEST_MODE;
776
		vcpu->stat.exits++;
777 778 779 780
		/*
		 * Back from guest
		 *************************************************************/

781 782
		kvm_arm_clear_debug(vcpu);

783
		/*
784
		 * We must sync the PMU state before the vgic state so
785 786 787 788 789
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

790 791 792 793 794
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
795 796
		kvm_vgic_sync_hwstate(vcpu);

797 798 799 800 801
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
802 803
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
804

805 806
		kvm_arch_vcpu_ctxsync_fp(vcpu);

807 808 809 810 811 812 813 814 815 816 817 818 819
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
820
		 * We do local_irq_enable() before calling guest_exit() so
821 822
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
823
		 * preemption after calling guest_exit() so that if we get
824 825 826
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
827
		guest_exit();
828
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
829

830 831 832
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

833 834
		preempt_enable();

835 836 837
		ret = handle_exit(vcpu, run, ret);
	}

838
	/* Tell userspace about in-kernel device output levels */
839 840 841 842
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
843

844 845
	kvm_sigset_deactivate(vcpu);

846
	vcpu_put(vcpu);
847
	return ret;
848 849
}

850 851 852 853
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
854
	unsigned long *hcr;
855 856 857 858 859 860

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

861
	hcr = vcpu_hcr(vcpu);
862
	if (level)
863
		set = test_and_set_bit(bit_index, hcr);
864
	else
865
		set = test_and_clear_bit(bit_index, hcr);
866 867 868 869 870 871 872 873 874 875 876 877

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
878
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
879 880 881 882 883
	kvm_vcpu_kick(vcpu);

	return 0;
}

884 885
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
886 887 888 889 890 891 892 893 894 895 896 897 898
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

899 900 901 902
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
903

904 905
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
906

907 908 909
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
910

911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
928

929
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
930 931 932 933
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

934
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
935 936
			return -EINVAL;

937
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
938 939 940
	}

	return -EINVAL;
941 942
}

943 944 945
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
946
	unsigned int i, ret;
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
981 982 983 984 985
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
986

987 988
	return ret;
}
989

990 991 992 993 994 995 996 997 998
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

999 1000 1001 1002 1003 1004 1005
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1006 1007
	vcpu_reset_hcr(vcpu);

1008
	/*
1009
	 * Handle the "start in power-off" case.
1010
	 */
1011
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1012
		vcpu_power_off(vcpu);
1013
	else
1014
		vcpu->arch.power_off = false;
1015 1016 1017 1018

	return 0;
}

1019 1020 1021 1022 1023 1024 1025
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1026
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1040
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1054
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1055 1056 1057 1058 1059 1060
		break;
	}

	return ret;
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1087 1088 1089 1090 1091
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1092
	struct kvm_device_attr attr;
1093 1094
	long r;

1095 1096 1097 1098
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1099
		r = -EFAULT;
1100
		if (copy_from_user(&init, argp, sizeof(init)))
1101
			break;
1102

1103 1104
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1105 1106 1107 1108
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1109

1110
		r = -ENOEXEC;
1111
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1112
			break;
1113

1114
		r = -EFAULT;
1115
		if (copy_from_user(&reg, argp, sizeof(reg)))
1116 1117
			break;

1118
		if (ioctl == KVM_SET_ONE_REG)
1119
			r = kvm_arm_set_reg(vcpu, &reg);
1120
		else
1121 1122
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1123 1124 1125 1126 1127 1128
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1129
		r = -ENOEXEC;
1130
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1131
			break;
1132

1133 1134 1135 1136
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1137
		r = -EFAULT;
1138
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1139
			break;
1140 1141 1142
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1143 1144
			break;
		r = -E2BIG;
1145
		if (n < reg_list.n)
1146 1147 1148
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1149
	}
1150
	case KVM_SET_DEVICE_ATTR: {
1151
		r = -EFAULT;
1152
		if (copy_from_user(&attr, argp, sizeof(attr)))
1153 1154 1155
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1156 1157
	}
	case KVM_GET_DEVICE_ATTR: {
1158
		r = -EFAULT;
1159
		if (copy_from_user(&attr, argp, sizeof(attr)))
1160 1161 1162
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1163 1164
	}
	case KVM_HAS_DEVICE_ATTR: {
1165
		r = -EFAULT;
1166
		if (copy_from_user(&attr, argp, sizeof(attr)))
1167 1168 1169
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1170
	}
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1201
	default:
1202
		r = -EINVAL;
1203
	}
1204 1205

	return r;
1206 1207
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1227 1228
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1229
	bool flush = false;
1230 1231 1232 1233
	int r;

	mutex_lock(&kvm->slots_lock);

1234
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1235

1236
	if (flush)
1237 1238 1239 1240
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1241 1242
}

1243 1244 1245
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1246 1247 1248 1249
	int r;

	mutex_lock(&kvm->slots_lock);

1250
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1251

1252
	if (flush)
1253 1254 1255 1256
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1257 1258
}

1259 1260 1261
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1262 1263 1264 1265 1266 1267 1268 1269 1270
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1271 1272
		if (!vgic_present)
			return -ENXIO;
1273
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1274 1275 1276
	default:
		return -ENODEV;
	}
1277 1278
}

1279 1280 1281
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1282 1283 1284 1285
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1286
	case KVM_CREATE_IRQCHIP: {
1287
		int ret;
1288 1289
		if (!vgic_present)
			return -ENXIO;
1290 1291 1292 1293
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1294
	}
1295 1296 1297 1298 1299 1300 1301
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1315 1316 1317
	default:
		return -EINVAL;
	}
1318 1319
}

1320
static void cpu_init_hyp_mode(void *dummy)
1321
{
1322
	phys_addr_t pgd_ptr;
1323 1324 1325 1326 1327
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1328
	__hyp_set_vectors(kvm_get_idmap_vector());
1329

1330
	pgd_ptr = kvm_mmu_get_httbr();
1331
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1332
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1333
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1334

M
Marc Zyngier 已提交
1335
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1336
	__cpu_init_stage2();
1337 1338
}

1339 1340 1341 1342 1343 1344
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1345 1346
static void cpu_hyp_reinit(void)
{
1347 1348
	cpu_hyp_reset();

1349
	if (is_kernel_in_hyp_mode())
1350
		kvm_timer_init_vhe();
1351
	else
1352
		cpu_init_hyp_mode(NULL);
1353

1354
	kvm_arm_init_debug();
1355 1356 1357

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1358 1359
}

1360 1361 1362
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1363
		cpu_hyp_reinit();
1364
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1365
	}
1366
}
1367

1368 1369 1370 1371
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1372 1373
}

1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1386

1387 1388 1389 1390 1391
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1407
		return NOTIFY_OK;
1408
	case CPU_PM_ENTER_FAILED:
1409 1410 1411 1412
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1413

1414 1415 1416 1417 1418
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1429 1430 1431 1432
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1433 1434 1435 1436
#else
static inline void hyp_cpu_pm_init(void)
{
}
1437 1438 1439
static inline void hyp_cpu_pm_exit(void)
{
}
1440 1441
#endif

1442 1443
static int init_common_resources(void)
{
1444 1445
	kvm_set_ipa_limit();

1446 1447 1448 1449 1450
	return 0;
}

static int init_subsystems(void)
{
1451
	int err = 0;
1452

1453
	/*
1454
	 * Enable hardware so that subsystem initialisation can access EL2.
1455
	 */
1456
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1457 1458 1459 1460 1461 1462

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1474
		err = 0;
1475 1476
		break;
	default:
1477
		goto out;
1478 1479 1480 1481 1482
	}

	/*
	 * Init HYP architected timer support
	 */
1483
	err = kvm_timer_hyp_init(vgic_present);
1484
	if (err)
1485
		goto out;
1486 1487 1488 1489

	kvm_perf_init();
	kvm_coproc_table_init();

1490 1491 1492 1493
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1494 1495 1496 1497 1498 1499 1500 1501 1502
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1503
	hyp_cpu_pm_exit();
1504 1505
}

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1530
			goto out_err;
1531 1532 1533 1534 1535 1536 1537 1538
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1539
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1540
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1541 1542
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1543
		goto out_err;
1544 1545
	}

1546
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1547
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1548 1549
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1550 1551 1552 1553 1554 1555 1556
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1557
		goto out_err;
1558 1559
	}

1560 1561 1562 1563 1564 1565
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1566 1567 1568 1569 1570
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1571 1572
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1573 1574 1575

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1576
			goto out_err;
1577 1578 1579 1580
		}
	}

	for_each_possible_cpu(cpu) {
1581
		kvm_host_data_t *cpu_data;
1582

1583 1584 1585
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		kvm_init_host_cpu_context(&cpu_data->host_ctxt, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1586 1587

		if (err) {
1588
			kvm_err("Cannot map host CPU state: %d\n", err);
1589
			goto out_err;
1590 1591 1592
		}
	}

1593 1594
	err = hyp_map_aux_data();
	if (err)
1595
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1596

1597
	return 0;
1598

1599
out_err:
1600
	teardown_hyp_mode();
1601 1602 1603 1604
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1605 1606 1607 1608 1609
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1634 1635
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1636 1637 1638 1639 1640 1641 1642
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1643 1644
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1663 1664 1665
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1666 1667
int kvm_arch_init(void *opaque)
{
1668
	int err;
1669
	int ret, cpu;
1670
	bool in_hyp_mode;
1671 1672

	if (!is_hyp_mode_available()) {
1673
		kvm_info("HYP mode not available\n");
1674 1675 1676
		return -ENODEV;
	}

1677 1678 1679 1680
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1681 1682 1683
		return -ENODEV;
	}

1684 1685 1686 1687 1688 1689
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1690 1691
	}

1692
	err = init_common_resources();
1693
	if (err)
1694
		return err;
1695

1696
	err = kvm_arm_init_sve();
1697 1698 1699
	if (err)
		return err;

1700
	if (!in_hyp_mode) {
1701
		err = init_hyp_mode();
1702 1703 1704
		if (err)
			goto out_err;
	}
1705

1706 1707 1708
	err = init_subsystems();
	if (err)
		goto out_hyp;
1709

1710 1711 1712 1713 1714
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1715
	return 0;
1716 1717

out_hyp:
1718 1719
	if (!in_hyp_mode)
		teardown_hyp_mode();
1720 1721
out_err:
	return err;
1722 1723 1724 1725 1726
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1727
	kvm_perf_teardown();
1728 1729 1730 1731 1732 1733 1734 1735 1736
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);