arm.c 37.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <trace/events/kvm.h>
23
#include <kvm/arm_pmu.h>
24
#include <kvm/arm_psci.h>
25 26 27 28

#define CREATE_TRACE_POINTS
#include "trace.h"

29
#include <linux/uaccess.h>
30 31
#include <asm/ptrace.h>
#include <asm/mman.h>
32
#include <asm/tlbflush.h>
33
#include <asm/cacheflush.h>
34
#include <asm/cpufeature.h>
35 36 37 38
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
39
#include <asm/kvm_emulate.h>
40
#include <asm/kvm_coproc.h>
41
#include <asm/sections.h>
42 43 44 45 46

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

47
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
48 49
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

50 51 52
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

53 54
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55
static u32 kvm_next_vmid;
56
static DEFINE_SPINLOCK(kvm_vmid_lock);
57

58 59
static bool vgic_present;

60 61
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

62 63
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
64
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
65 66
}

67 68
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

69 70 71 72 73 74
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
75
	return __this_cpu_read(kvm_arm_running_vcpu);
76 77 78 79 80
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
81
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
82 83 84 85
{
	return &kvm_arm_running_vcpu;
}

86 87 88 89 90 91 92 93 94 95
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

96
int kvm_arch_check_processor_compat(void)
97
{
98
	return 0;
99 100
}

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
121

122 123 124 125
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
126 127
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
128
	int ret, cpu;
129

130
	ret = kvm_arm_setup_stage2(kvm, type);
131 132
	if (ret)
		return ret;
133

134 135 136 137 138 139 140
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

141 142 143 144
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

145
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
146 147 148
	if (ret)
		goto out_free_stage2_pgd;

149
	kvm_vgic_early_init(kvm);
150

151
	/* Mark the initial VMID generation invalid */
152
	kvm->arch.vmid.vmid_gen = 0;
153

154
	/* The maximum number of VCPUs is limited by the host's GIC model */
155 156
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
157

158 159 160 161
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
162 163
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
164
	return ret;
165 166
}

167 168 169 170 171
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

172
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
173 174 175 176 177
{
	return VM_FAULT_SIGBUS;
}


178 179 180 181
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
182 183 184 185
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

186 187
	kvm_vgic_destroy(kvm);

188 189 190
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

191 192 193 194 195 196
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
197
	atomic_set(&kvm->online_vcpus, 0);
198 199
}

200
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
201 202 203
{
	int r;
	switch (ext) {
204
	case KVM_CAP_IRQCHIP:
205 206
		r = vgic_present;
		break;
207
	case KVM_CAP_IOEVENTFD:
208
	case KVM_CAP_DEVICE_CTRL:
209 210 211 212
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
213
	case KVM_CAP_ARM_PSCI:
214
	case KVM_CAP_ARM_PSCI_0_2:
215
	case KVM_CAP_READONLY_MEM:
216
	case KVM_CAP_MP_STATE:
217
	case KVM_CAP_IMMEDIATE_EXIT:
218
	case KVM_CAP_VCPU_EVENTS:
219
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
220
	case KVM_CAP_ARM_NISV_TO_USER:
221 222
		r = 1;
		break;
223 224
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
225
		break;
226 227 228 229 230 231
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
232 233 234
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
V
Vladimir Murzin 已提交
235 236 237 238 239 240
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
241 242 243 244 245 246 247
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
248
	default:
249
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
250 251 252 253 254 255 256 257 258 259 260
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
276 277 278 279 280 281

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

282 283 284 285 286
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

287 288 289 290 291
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

292 293 294 295 296 297 298 299 300 301
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

302
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
303 304 305
	if (err)
		goto vcpu_uninit;

306
	return vcpu;
307 308
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
309 310 311 312 313 314
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

315
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
316 317 318 319 320
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
321 322 323
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

324
	kvm_mmu_free_memory_caches(vcpu);
325
	kvm_timer_vcpu_terminate(vcpu);
326
	kvm_pmu_vcpu_destroy(vcpu);
327
	kvm_vcpu_uninit(vcpu);
328
	kmem_cache_free(kvm_vcpu_cache, vcpu);
329 330 331 332 333 334 335 336 337
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
338
	return kvm_timer_is_pending(vcpu);
339 340
}

341 342
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
343 344 345 346 347 348 349 350 351 352 353
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
	 * so that we have the lastest PMR and group enables. This ensures
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
	preempt_enable();

354
	kvm_vgic_v4_enable_doorbell(vcpu);
355 356 357 358
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
359
	kvm_vgic_v4_disable_doorbell(vcpu);
360 361
}

362 363
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
364 365
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
366
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
367

368 369 370
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

371 372
	kvm_pmu_vcpu_init(vcpu);

373 374
	kvm_arm_reset_debug_ptr(vcpu);

375
	return kvm_vgic_vcpu_init(vcpu);
376 377 378 379
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
380
	int *last_ran;
381
	kvm_host_data_t *cpu_data;
382 383

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
384
	cpu_data = this_cpu_ptr(&kvm_host_data);
385 386 387 388 389 390 391 392 393 394

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

395
	vcpu->cpu = cpu;
396
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
397

398
	kvm_arm_set_running_vcpu(vcpu);
399
	kvm_vgic_load(vcpu);
400
	kvm_timer_vcpu_load(vcpu);
401
	kvm_vcpu_load_sysregs(vcpu);
402
	kvm_arch_vcpu_load_fp(vcpu);
403
	kvm_vcpu_pmu_restore_guest(vcpu);
404 405 406 407 408

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
409 410

	vcpu_ptrauth_setup_lazy(vcpu);
411 412 413 414
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
415
	kvm_arch_vcpu_put_fp(vcpu);
416
	kvm_vcpu_put_sysregs(vcpu);
417
	kvm_timer_vcpu_put(vcpu);
418
	kvm_vgic_put(vcpu);
419
	kvm_vcpu_pmu_restore_host(vcpu);
420

421 422
	vcpu->cpu = -1;

423
	kvm_arm_set_running_vcpu(NULL);
424 425
}

A
Andrew Jones 已提交
426 427 428
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
429
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
430 431 432
	kvm_vcpu_kick(vcpu);
}

433 434 435
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
436
	if (vcpu->arch.power_off)
437 438 439 440 441
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
442 443 444 445 446
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
447 448
	int ret = 0;

449 450
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
451
		vcpu->arch.power_off = false;
452 453
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
454
		vcpu_power_off(vcpu);
455 456
		break;
	default:
457
		ret = -EINVAL;
458 459
	}

460
	return ret;
461 462
}

463 464 465 466 467 468 469
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
470 471
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
472 473
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
474
		&& !v->arch.power_off && !v->arch.pause);
475 476
}

477 478
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
479
	return vcpu_mode_priv(vcpu);
480 481
}

482 483 484 485 486 487 488
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
489
	preempt_disable();
490
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
491
	preempt_enable();
492 493 494 495
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
496
 * @vmid: The VMID to check
497 498 499
 *
 * return true if there is a new generation of VMIDs being used
 *
500 501 502 503 504
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
505
 */
506
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
507
{
508 509
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
510
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
511 512 513
}

/**
514 515 516
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
517
 */
518
static void update_vmid(struct kvm_vmid *vmid)
519
{
520
	if (!need_new_vmid_gen(vmid))
521 522
		return;

523
	spin_lock(&kvm_vmid_lock);
524 525 526 527 528 529

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
530
	if (!need_new_vmid_gen(vmid)) {
531
		spin_unlock(&kvm_vmid_lock);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

554
	vmid->vmid = kvm_next_vmid;
555
	kvm_next_vmid++;
556
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
557

558
	smp_wmb();
559
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
560 561

	spin_unlock(&kvm_vmid_lock);
562 563 564 565
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
566
	struct kvm *kvm = vcpu->kvm;
567
	int ret = 0;
568

569 570 571
	if (likely(vcpu->arch.has_run_once))
		return 0;

572 573 574
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

575
	vcpu->arch.has_run_once = true;
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
593 594
	}

595
	ret = kvm_timer_enable(vcpu);
596 597 598 599
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
600

601
	return ret;
602 603
}

604 605 606 607 608
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

609
void kvm_arm_halt_guest(struct kvm *kvm)
610 611 612 613 614 615
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
616
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
617 618
}

619
void kvm_arm_resume_guest(struct kvm *kvm)
620 621 622 623
{
	int i;
	struct kvm_vcpu *vcpu;

624 625
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
626
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
627
	}
628 629
}

630
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
631
{
632
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
633

634
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
635
				       (!vcpu->arch.pause)));
636

A
Andrew Jones 已提交
637
	if (vcpu->arch.power_off || vcpu->arch.pause) {
638
		/* Awaken to handle a signal, request we sleep again later. */
639
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
640
	}
641 642 643 644 645 646 647

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
648 649
}

650 651 652 653 654
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

655 656 657
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
658 659
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
660

661 662 663
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

664 665 666 667 668
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
669 670 671
	}
}

672 673 674 675 676 677 678 679 680 681 682
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
683 684
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
685 686
	int ret;

687
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
688 689 690 691
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
692
		return ret;
693

C
Christoffer Dall 已提交
694 695 696
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
697
			return ret;
C
Christoffer Dall 已提交
698 699
	}

700 701 702 703
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
704

705
	kvm_sigset_activate(vcpu);
706 707 708 709 710 711 712 713 714

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

715
		update_vmid(&vcpu->kvm->arch.vmid);
716

717 718
		check_vcpu_requests(vcpu);

719 720 721 722 723
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
724
		preempt_disable();
725

726
		kvm_pmu_flush_hwstate(vcpu);
727

728 729
		local_irq_disable();

730 731
		kvm_vgic_flush_hwstate(vcpu);

732
		/*
733 734
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
735
		 */
736
		if (signal_pending(current)) {
737 738 739 740
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

756 757 758 759
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
760
		 * Documentation/virt/kvm/vcpu-requests.rst
761 762 763
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

764
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
765
		    kvm_request_pending(vcpu)) {
766
			vcpu->mode = OUTSIDE_GUEST_MODE;
767
			isb(); /* Ensure work in x_flush_hwstate is committed */
768
			kvm_pmu_sync_hwstate(vcpu);
769 770
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
771
			kvm_vgic_sync_hwstate(vcpu);
772
			local_irq_enable();
773
			preempt_enable();
774 775 776
			continue;
		}

777 778
		kvm_arm_setup_debug(vcpu);

779 780 781 782
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
783
		guest_enter_irqoff();
784

785 786 787
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
788
			kvm_arm_vhe_guest_exit();
789
		} else {
790
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
791 792
		}

793
		vcpu->mode = OUTSIDE_GUEST_MODE;
794
		vcpu->stat.exits++;
795 796 797 798
		/*
		 * Back from guest
		 *************************************************************/

799 800
		kvm_arm_clear_debug(vcpu);

801
		/*
802
		 * We must sync the PMU state before the vgic state so
803 804 805 806 807
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

808 809 810 811 812
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
813 814
		kvm_vgic_sync_hwstate(vcpu);

815 816 817 818 819
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
820 821
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
822

823 824
		kvm_arch_vcpu_ctxsync_fp(vcpu);

825 826 827 828 829 830 831 832 833 834 835 836 837
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
838
		 * We do local_irq_enable() before calling guest_exit() so
839 840
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
841
		 * preemption after calling guest_exit() so that if we get
842 843 844
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
845
		guest_exit();
846
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
847

848 849 850
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

851 852
		preempt_enable();

853 854 855
		ret = handle_exit(vcpu, run, ret);
	}

856
	/* Tell userspace about in-kernel device output levels */
857 858 859 860
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
861

862 863
	kvm_sigset_deactivate(vcpu);

864
	vcpu_put(vcpu);
865
	return ret;
866 867
}

868 869 870 871
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
872
	unsigned long *hcr;
873 874 875 876 877 878

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

879
	hcr = vcpu_hcr(vcpu);
880
	if (level)
881
		set = test_and_set_bit(bit_index, hcr);
882
	else
883
		set = test_and_clear_bit(bit_index, hcr);
884 885 886 887 888 889 890 891 892 893 894 895

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
896
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
897 898 899 900 901
	kvm_vcpu_kick(vcpu);

	return 0;
}

902 903
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
904 905 906 907 908 909 910 911 912
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
913
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
914 915 916 917
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

918 919 920 921
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
922

923 924
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
925

926 927 928
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
947

948
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
949 950 951 952
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

953
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
954 955
			return -EINVAL;

956
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
957 958 959
	}

	return -EINVAL;
960 961
}

962 963 964
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
965
	unsigned int i, ret;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1000 1001 1002 1003 1004
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1005

1006 1007
	return ret;
}
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1018 1019 1020 1021 1022 1023 1024
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1025 1026
	vcpu_reset_hcr(vcpu);

1027
	/*
1028
	 * Handle the "start in power-off" case.
1029
	 */
1030
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1031
		vcpu_power_off(vcpu);
1032
	else
1033
		vcpu->arch.power_off = false;
1034 1035 1036 1037

	return 0;
}

1038 1039 1040 1041 1042 1043 1044
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1045
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1059
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1073
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1074 1075 1076 1077 1078 1079
		break;
	}

	return ret;
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1106 1107 1108 1109 1110
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1111
	struct kvm_device_attr attr;
1112 1113
	long r;

1114 1115 1116 1117
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1118
		r = -EFAULT;
1119
		if (copy_from_user(&init, argp, sizeof(init)))
1120
			break;
1121

1122 1123
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1124 1125 1126 1127
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1128

1129
		r = -ENOEXEC;
1130
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1131
			break;
1132

1133
		r = -EFAULT;
1134
		if (copy_from_user(&reg, argp, sizeof(reg)))
1135 1136
			break;

1137
		if (ioctl == KVM_SET_ONE_REG)
1138
			r = kvm_arm_set_reg(vcpu, &reg);
1139
		else
1140 1141
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1142 1143 1144 1145 1146 1147
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1148
		r = -ENOEXEC;
1149
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1150
			break;
1151

1152 1153 1154 1155
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1156
		r = -EFAULT;
1157
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1158
			break;
1159 1160 1161
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1162 1163
			break;
		r = -E2BIG;
1164
		if (n < reg_list.n)
1165 1166 1167
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1168
	}
1169
	case KVM_SET_DEVICE_ATTR: {
1170
		r = -EFAULT;
1171
		if (copy_from_user(&attr, argp, sizeof(attr)))
1172 1173 1174
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1175 1176
	}
	case KVM_GET_DEVICE_ATTR: {
1177
		r = -EFAULT;
1178
		if (copy_from_user(&attr, argp, sizeof(attr)))
1179 1180 1181
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1182 1183
	}
	case KVM_HAS_DEVICE_ATTR: {
1184
		r = -EFAULT;
1185
		if (copy_from_user(&attr, argp, sizeof(attr)))
1186 1187 1188
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1189
	}
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1220
	default:
1221
		r = -EINVAL;
1222
	}
1223 1224

	return r;
1225 1226
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1246 1247
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1248
	bool flush = false;
1249 1250 1251 1252
	int r;

	mutex_lock(&kvm->slots_lock);

1253
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1254

1255
	if (flush)
1256 1257 1258 1259
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1260 1261
}

1262 1263 1264
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1265 1266 1267 1268
	int r;

	mutex_lock(&kvm->slots_lock);

1269
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1270

1271
	if (flush)
1272 1273 1274 1275
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1276 1277
}

1278 1279 1280
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1281 1282 1283 1284 1285 1286 1287 1288 1289
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1290 1291
		if (!vgic_present)
			return -ENXIO;
1292
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1293 1294 1295
	default:
		return -ENODEV;
	}
1296 1297
}

1298 1299 1300
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1301 1302 1303 1304
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1305
	case KVM_CREATE_IRQCHIP: {
1306
		int ret;
1307 1308
		if (!vgic_present)
			return -ENXIO;
1309 1310 1311 1312
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1313
	}
1314 1315 1316 1317 1318 1319 1320
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1334 1335 1336
	default:
		return -EINVAL;
	}
1337 1338
}

1339
static void cpu_init_hyp_mode(void *dummy)
1340
{
1341
	phys_addr_t pgd_ptr;
1342 1343 1344 1345 1346
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1347
	__hyp_set_vectors(kvm_get_idmap_vector());
1348

1349
	pgd_ptr = kvm_mmu_get_httbr();
1350
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1351
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1352
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1353

M
Marc Zyngier 已提交
1354
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1355
	__cpu_init_stage2();
1356 1357
}

1358 1359 1360 1361 1362 1363
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1364 1365
static void cpu_hyp_reinit(void)
{
1366 1367
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1368 1369
	cpu_hyp_reset();

1370
	if (is_kernel_in_hyp_mode())
1371
		kvm_timer_init_vhe();
1372
	else
1373
		cpu_init_hyp_mode(NULL);
1374

1375
	kvm_arm_init_debug();
1376 1377 1378

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1379 1380
}

1381 1382 1383
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1384
		cpu_hyp_reinit();
1385
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1386
	}
1387
}
1388

1389 1390 1391 1392
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1393 1394
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1407

1408 1409 1410 1411 1412
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1428
		return NOTIFY_OK;
1429
	case CPU_PM_ENTER_FAILED:
1430 1431 1432 1433
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1434

1435 1436 1437 1438 1439
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1450 1451 1452 1453
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1454 1455 1456 1457
#else
static inline void hyp_cpu_pm_init(void)
{
}
1458 1459 1460
static inline void hyp_cpu_pm_exit(void)
{
}
1461 1462
#endif

1463 1464
static int init_common_resources(void)
{
1465 1466
	kvm_set_ipa_limit();

1467 1468 1469 1470 1471
	return 0;
}

static int init_subsystems(void)
{
1472
	int err = 0;
1473

1474
	/*
1475
	 * Enable hardware so that subsystem initialisation can access EL2.
1476
	 */
1477
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1478 1479 1480 1481 1482 1483

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1495
		err = 0;
1496 1497
		break;
	default:
1498
		goto out;
1499 1500 1501 1502 1503
	}

	/*
	 * Init HYP architected timer support
	 */
1504
	err = kvm_timer_hyp_init(vgic_present);
1505
	if (err)
1506
		goto out;
1507 1508 1509 1510

	kvm_perf_init();
	kvm_coproc_table_init();

1511 1512 1513 1514
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1515 1516 1517 1518 1519 1520 1521 1522 1523
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1524
	hyp_cpu_pm_exit();
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1551
			goto out_err;
1552 1553 1554 1555 1556 1557 1558 1559
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1560
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1561
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1562 1563
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1564
		goto out_err;
1565 1566
	}

1567
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1568
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1569 1570
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1571 1572 1573 1574 1575 1576 1577
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1578
		goto out_err;
1579 1580
	}

1581 1582 1583 1584 1585 1586
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1587 1588 1589 1590 1591
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1592 1593
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1594 1595 1596

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1597
			goto out_err;
1598 1599 1600 1601
		}
	}

	for_each_possible_cpu(cpu) {
1602
		kvm_host_data_t *cpu_data;
1603

1604 1605
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1606 1607

		if (err) {
1608
			kvm_err("Cannot map host CPU state: %d\n", err);
1609
			goto out_err;
1610 1611 1612
		}
	}

1613 1614
	err = hyp_map_aux_data();
	if (err)
1615
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1616

1617
	return 0;
1618

1619
out_err:
1620
	teardown_hyp_mode();
1621 1622 1623 1624
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1625 1626 1627 1628 1629
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1654 1655
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1656 1657 1658 1659 1660 1661 1662
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1663 1664
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1683 1684 1685
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1686 1687
int kvm_arch_init(void *opaque)
{
1688
	int err;
1689
	int ret, cpu;
1690
	bool in_hyp_mode;
1691 1692

	if (!is_hyp_mode_available()) {
1693
		kvm_info("HYP mode not available\n");
1694 1695 1696
		return -ENODEV;
	}

1697 1698 1699 1700
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1701 1702 1703
		return -ENODEV;
	}

1704 1705 1706 1707 1708 1709
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1710 1711
	}

1712
	err = init_common_resources();
1713
	if (err)
1714
		return err;
1715

1716
	err = kvm_arm_init_sve();
1717 1718 1719
	if (err)
		return err;

1720
	if (!in_hyp_mode) {
1721
		err = init_hyp_mode();
1722 1723 1724
		if (err)
			goto out_err;
	}
1725

1726 1727 1728
	err = init_subsystems();
	if (err)
		goto out_hyp;
1729

1730 1731 1732 1733 1734
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1735
	return 0;
1736 1737

out_hyp:
1738 1739
	if (!in_hyp_mode)
		teardown_hyp_mode();
1740 1741
out_err:
	return err;
1742 1743 1744 1745 1746
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1747
	kvm_perf_teardown();
1748 1749 1750 1751 1752 1753 1754 1755 1756
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);