arm.c 37.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <trace/events/kvm.h>
23
#include <kvm/arm_pmu.h>
24
#include <kvm/arm_psci.h>
25 26 27 28

#define CREATE_TRACE_POINTS
#include "trace.h"

29
#include <linux/uaccess.h>
30 31
#include <asm/ptrace.h>
#include <asm/mman.h>
32
#include <asm/tlbflush.h>
33
#include <asm/cacheflush.h>
34
#include <asm/cpufeature.h>
35 36 37 38
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
39
#include <asm/kvm_emulate.h>
40
#include <asm/kvm_coproc.h>
41
#include <asm/sections.h>
42 43 44 45 46

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

47
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
48 49
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

50 51 52
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

53 54
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
55
static u32 kvm_next_vmid;
56
static DEFINE_SPINLOCK(kvm_vmid_lock);
57

58 59
static bool vgic_present;

60 61
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

62 63
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
64
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
65 66
}

67 68
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

69 70 71 72 73 74
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
75
	return __this_cpu_read(kvm_arm_running_vcpu);
76 77 78 79 80
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
81
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
82 83 84 85
{
	return &kvm_arm_running_vcpu;
}

86 87 88 89 90 91 92 93 94 95
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

96
int kvm_arch_check_processor_compat(void)
97
{
98
	return 0;
99 100 101
}


102 103 104 105
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
106 107
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
108
	int ret, cpu;
109

110
	ret = kvm_arm_setup_stage2(kvm, type);
111 112
	if (ret)
		return ret;
113

114 115 116 117 118 119 120
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

121 122 123 124
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

125
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
126 127 128
	if (ret)
		goto out_free_stage2_pgd;

129
	kvm_vgic_early_init(kvm);
130

131
	/* Mark the initial VMID generation invalid */
132
	kvm->arch.vmid.vmid_gen = 0;
133

134
	/* The maximum number of VCPUs is limited by the host's GIC model */
135 136
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
137

138 139 140 141
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
142 143
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
144
	return ret;
145 146
}

147 148 149 150 151 152 153 154 155 156
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

157
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
158 159 160 161 162
{
	return VM_FAULT_SIGBUS;
}


163 164 165 166
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
167 168 169 170
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

171 172
	kvm_vgic_destroy(kvm);

173 174 175
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

176 177 178 179 180 181
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
182
	atomic_set(&kvm->online_vcpus, 0);
183 184
}

185
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
186 187 188
{
	int r;
	switch (ext) {
189
	case KVM_CAP_IRQCHIP:
190 191
		r = vgic_present;
		break;
192
	case KVM_CAP_IOEVENTFD:
193
	case KVM_CAP_DEVICE_CTRL:
194 195 196 197
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
198
	case KVM_CAP_ARM_PSCI:
199
	case KVM_CAP_ARM_PSCI_0_2:
200
	case KVM_CAP_READONLY_MEM:
201
	case KVM_CAP_MP_STATE:
202
	case KVM_CAP_IMMEDIATE_EXIT:
203
	case KVM_CAP_VCPU_EVENTS:
204 205
		r = 1;
		break;
206 207
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
208
		break;
209 210 211 212 213 214
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
215 216 217
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
V
Vladimir Murzin 已提交
218 219 220 221 222 223
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
224 225 226 227 228 229 230
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
231
	default:
232
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
233 234 235 236 237 238 239 240 241 242 243
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
259 260 261 262 263 264

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

265 266 267 268 269
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

270 271 272 273 274
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

275 276 277 278 279 280 281 282 283 284
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

285
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
286 287 288
	if (err)
		goto vcpu_uninit;

289
	return vcpu;
290 291
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
292 293 294 295 296 297
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

298
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
299 300 301 302 303
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
304 305 306
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

307
	kvm_mmu_free_memory_caches(vcpu);
308
	kvm_timer_vcpu_terminate(vcpu);
309
	kvm_pmu_vcpu_destroy(vcpu);
310
	kvm_vcpu_uninit(vcpu);
311
	kmem_cache_free(kvm_vcpu_cache, vcpu);
312 313 314 315 316 317 318 319 320
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
321
	return kvm_timer_is_pending(vcpu);
322 323
}

324 325
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
326
	kvm_vgic_v4_enable_doorbell(vcpu);
327 328 329 330
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
331
	kvm_vgic_v4_disable_doorbell(vcpu);
332 333
}

334 335
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
336 337
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
338
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
339

340 341 342
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

343 344
	kvm_arm_reset_debug_ptr(vcpu);

345
	return kvm_vgic_vcpu_init(vcpu);
346 347 348 349
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
350
	int *last_ran;
351
	kvm_host_data_t *cpu_data;
352 353

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
354
	cpu_data = this_cpu_ptr(&kvm_host_data);
355 356 357 358 359 360 361 362 363 364

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

365
	vcpu->cpu = cpu;
366
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
367

368
	kvm_arm_set_running_vcpu(vcpu);
369
	kvm_vgic_load(vcpu);
370
	kvm_timer_vcpu_load(vcpu);
371
	kvm_vcpu_load_sysregs(vcpu);
372
	kvm_arch_vcpu_load_fp(vcpu);
373
	kvm_vcpu_pmu_restore_guest(vcpu);
374 375 376 377 378

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
379 380

	vcpu_ptrauth_setup_lazy(vcpu);
381 382 383 384
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
385
	kvm_arch_vcpu_put_fp(vcpu);
386
	kvm_vcpu_put_sysregs(vcpu);
387
	kvm_timer_vcpu_put(vcpu);
388
	kvm_vgic_put(vcpu);
389
	kvm_vcpu_pmu_restore_host(vcpu);
390

391 392
	vcpu->cpu = -1;

393
	kvm_arm_set_running_vcpu(NULL);
394 395
}

A
Andrew Jones 已提交
396 397 398
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
399
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
400 401 402
	kvm_vcpu_kick(vcpu);
}

403 404 405
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
406
	if (vcpu->arch.power_off)
407 408 409 410 411
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
412 413 414 415 416
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
417 418
	int ret = 0;

419 420
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
421
		vcpu->arch.power_off = false;
422 423
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
424
		vcpu_power_off(vcpu);
425 426
		break;
	default:
427
		ret = -EINVAL;
428 429
	}

430
	return ret;
431 432
}

433 434 435 436 437 438 439
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
440 441
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
442 443
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
444
		&& !v->arch.power_off && !v->arch.pause);
445 446
}

447 448
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
449
	return vcpu_mode_priv(vcpu);
450 451
}

452 453 454 455 456 457 458
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
459
	preempt_disable();
460
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
461
	preempt_enable();
462 463 464 465
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
466
 * @vmid: The VMID to check
467 468 469
 *
 * return true if there is a new generation of VMIDs being used
 *
470 471 472 473 474
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
475
 */
476
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
477
{
478 479
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
480
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
481 482 483
}

/**
484 485 486
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
487
 */
488
static void update_vmid(struct kvm_vmid *vmid)
489
{
490
	if (!need_new_vmid_gen(vmid))
491 492
		return;

493
	spin_lock(&kvm_vmid_lock);
494 495 496 497 498 499

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
500
	if (!need_new_vmid_gen(vmid)) {
501
		spin_unlock(&kvm_vmid_lock);
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

524
	vmid->vmid = kvm_next_vmid;
525
	kvm_next_vmid++;
526
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
527

528
	smp_wmb();
529
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
530 531

	spin_unlock(&kvm_vmid_lock);
532 533 534 535
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
536
	struct kvm *kvm = vcpu->kvm;
537
	int ret = 0;
538

539 540 541
	if (likely(vcpu->arch.has_run_once))
		return 0;

542 543 544
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

545
	vcpu->arch.has_run_once = true;
546

547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
563 564
	}

565
	ret = kvm_timer_enable(vcpu);
566 567 568 569
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
570

571
	return ret;
572 573
}

574 575 576 577 578
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

579
void kvm_arm_halt_guest(struct kvm *kvm)
580 581 582 583 584 585
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
586
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
587 588
}

589
void kvm_arm_resume_guest(struct kvm *kvm)
590 591 592 593
{
	int i;
	struct kvm_vcpu *vcpu;

594 595
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
596
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
597
	}
598 599
}

600
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
601
{
602
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
603

604
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
605
				       (!vcpu->arch.pause)));
606

A
Andrew Jones 已提交
607
	if (vcpu->arch.power_off || vcpu->arch.pause) {
608
		/* Awaken to handle a signal, request we sleep again later. */
609
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
610
	}
611 612 613 614 615 616 617

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
618 619
}

620 621 622 623 624
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

625 626 627
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
628 629
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
630

631 632 633
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

634 635 636 637 638
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
639 640 641
	}
}

642 643 644 645 646 647 648 649 650 651 652
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
653 654
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
655 656
	int ret;

657
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
658 659 660 661
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
662
		return ret;
663

C
Christoffer Dall 已提交
664 665 666
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
667
			return ret;
C
Christoffer Dall 已提交
668 669
	}

670 671 672 673
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
674

675
	kvm_sigset_activate(vcpu);
676 677 678 679 680 681 682 683 684

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

685
		update_vmid(&vcpu->kvm->arch.vmid);
686

687 688
		check_vcpu_requests(vcpu);

689 690 691 692 693
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
694
		preempt_disable();
695

696
		kvm_pmu_flush_hwstate(vcpu);
697

698 699
		local_irq_disable();

700 701
		kvm_vgic_flush_hwstate(vcpu);

702
		/*
703 704
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
705
		 */
706
		if (signal_pending(current)) {
707 708 709 710
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

726 727 728 729 730 731 732 733
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

734
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
735
		    kvm_request_pending(vcpu)) {
736
			vcpu->mode = OUTSIDE_GUEST_MODE;
737
			isb(); /* Ensure work in x_flush_hwstate is committed */
738
			kvm_pmu_sync_hwstate(vcpu);
739 740
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
741
			kvm_vgic_sync_hwstate(vcpu);
742
			local_irq_enable();
743
			preempt_enable();
744 745 746
			continue;
		}

747 748
		kvm_arm_setup_debug(vcpu);

749 750 751 752
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
753
		guest_enter_irqoff();
754

755 756 757
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
758
			kvm_arm_vhe_guest_exit();
759
		} else {
760
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
761 762
		}

763
		vcpu->mode = OUTSIDE_GUEST_MODE;
764
		vcpu->stat.exits++;
765 766 767 768
		/*
		 * Back from guest
		 *************************************************************/

769 770
		kvm_arm_clear_debug(vcpu);

771
		/*
772
		 * We must sync the PMU state before the vgic state so
773 774 775 776 777
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

778 779 780 781 782
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
783 784
		kvm_vgic_sync_hwstate(vcpu);

785 786 787 788 789
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
790 791
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
792

793 794
		kvm_arch_vcpu_ctxsync_fp(vcpu);

795 796 797 798 799 800 801 802 803 804 805 806 807
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
808
		 * We do local_irq_enable() before calling guest_exit() so
809 810
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
811
		 * preemption after calling guest_exit() so that if we get
812 813 814
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
815
		guest_exit();
816
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
817

818 819 820
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

821 822
		preempt_enable();

823 824 825
		ret = handle_exit(vcpu, run, ret);
	}

826
	/* Tell userspace about in-kernel device output levels */
827 828 829 830
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
831

832 833
	kvm_sigset_deactivate(vcpu);

834
	vcpu_put(vcpu);
835
	return ret;
836 837
}

838 839 840 841
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
842
	unsigned long *hcr;
843 844 845 846 847 848

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

849
	hcr = vcpu_hcr(vcpu);
850
	if (level)
851
		set = test_and_set_bit(bit_index, hcr);
852
	else
853
		set = test_and_clear_bit(bit_index, hcr);
854 855 856 857 858 859 860 861 862 863 864 865

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
866
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
867 868 869 870 871
	kvm_vcpu_kick(vcpu);

	return 0;
}

872 873
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
874 875 876 877 878 879 880 881 882 883 884 885 886
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

887 888 889 890
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
891

892 893
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
894

895 896 897
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
898

899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
916

917
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
918 919 920 921
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

922
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
923 924
			return -EINVAL;

925
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
926 927 928
	}

	return -EINVAL;
929 930
}

931 932 933
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
934
	unsigned int i, ret;
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
969 970 971 972 973
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
974

975 976
	return ret;
}
977

978 979 980 981 982 983 984 985 986
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

987 988 989 990 991 992 993
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

994 995
	vcpu_reset_hcr(vcpu);

996
	/*
997
	 * Handle the "start in power-off" case.
998
	 */
999
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1000
		vcpu_power_off(vcpu);
1001
	else
1002
		vcpu->arch.power_off = false;
1003 1004 1005 1006

	return 0;
}

1007 1008 1009 1010 1011 1012 1013
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1014
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1028
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1042
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1043 1044 1045 1046 1047 1048
		break;
	}

	return ret;
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1075 1076 1077 1078 1079
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1080
	struct kvm_device_attr attr;
1081 1082
	long r;

1083 1084 1085 1086
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1087
		r = -EFAULT;
1088
		if (copy_from_user(&init, argp, sizeof(init)))
1089
			break;
1090

1091 1092
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1093 1094 1095 1096
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1097

1098
		r = -ENOEXEC;
1099
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1100
			break;
1101

1102
		r = -EFAULT;
1103
		if (copy_from_user(&reg, argp, sizeof(reg)))
1104 1105
			break;

1106
		if (ioctl == KVM_SET_ONE_REG)
1107
			r = kvm_arm_set_reg(vcpu, &reg);
1108
		else
1109 1110
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1111 1112 1113 1114 1115 1116
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1117
		r = -ENOEXEC;
1118
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1119
			break;
1120

1121 1122 1123 1124
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1125
		r = -EFAULT;
1126
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1127
			break;
1128 1129 1130
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1131 1132
			break;
		r = -E2BIG;
1133
		if (n < reg_list.n)
1134 1135 1136
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1137
	}
1138
	case KVM_SET_DEVICE_ATTR: {
1139
		r = -EFAULT;
1140
		if (copy_from_user(&attr, argp, sizeof(attr)))
1141 1142 1143
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1144 1145
	}
	case KVM_GET_DEVICE_ATTR: {
1146
		r = -EFAULT;
1147
		if (copy_from_user(&attr, argp, sizeof(attr)))
1148 1149 1150
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1151 1152
	}
	case KVM_HAS_DEVICE_ATTR: {
1153
		r = -EFAULT;
1154
		if (copy_from_user(&attr, argp, sizeof(attr)))
1155 1156 1157
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1158
	}
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1189
	default:
1190
		r = -EINVAL;
1191
	}
1192 1193

	return r;
1194 1195
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1215 1216
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1217
	bool flush = false;
1218 1219 1220 1221
	int r;

	mutex_lock(&kvm->slots_lock);

1222
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1223

1224
	if (flush)
1225 1226 1227 1228
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1229 1230
}

1231 1232 1233
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1234 1235 1236 1237
	int r;

	mutex_lock(&kvm->slots_lock);

1238
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1239

1240
	if (flush)
1241 1242 1243 1244
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1245 1246
}

1247 1248 1249
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1250 1251 1252 1253 1254 1255 1256 1257 1258
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1259 1260
		if (!vgic_present)
			return -ENXIO;
1261
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1262 1263 1264
	default:
		return -ENODEV;
	}
1265 1266
}

1267 1268 1269
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1270 1271 1272 1273
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1274
	case KVM_CREATE_IRQCHIP: {
1275
		int ret;
1276 1277
		if (!vgic_present)
			return -ENXIO;
1278 1279 1280 1281
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1282
	}
1283 1284 1285 1286 1287 1288 1289
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1303 1304 1305
	default:
		return -EINVAL;
	}
1306 1307
}

1308
static void cpu_init_hyp_mode(void *dummy)
1309
{
1310
	phys_addr_t pgd_ptr;
1311 1312 1313 1314 1315
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1316
	__hyp_set_vectors(kvm_get_idmap_vector());
1317

1318
	pgd_ptr = kvm_mmu_get_httbr();
1319
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1320
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1321
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1322

M
Marc Zyngier 已提交
1323
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1324
	__cpu_init_stage2();
1325 1326
}

1327 1328 1329 1330 1331 1332
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1333 1334
static void cpu_hyp_reinit(void)
{
1335 1336
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1337 1338
	cpu_hyp_reset();

1339
	if (is_kernel_in_hyp_mode())
1340
		kvm_timer_init_vhe();
1341
	else
1342
		cpu_init_hyp_mode(NULL);
1343

1344
	kvm_arm_init_debug();
1345 1346 1347

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1348 1349
}

1350 1351 1352
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1353
		cpu_hyp_reinit();
1354
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1355
	}
1356
}
1357

1358 1359 1360 1361
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1362 1363
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1376

1377 1378 1379 1380 1381
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1397
		return NOTIFY_OK;
1398
	case CPU_PM_ENTER_FAILED:
1399 1400 1401 1402
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1403

1404 1405 1406 1407 1408
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1419 1420 1421 1422
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1423 1424 1425 1426
#else
static inline void hyp_cpu_pm_init(void)
{
}
1427 1428 1429
static inline void hyp_cpu_pm_exit(void)
{
}
1430 1431
#endif

1432 1433
static int init_common_resources(void)
{
1434 1435
	kvm_set_ipa_limit();

1436 1437 1438 1439 1440
	return 0;
}

static int init_subsystems(void)
{
1441
	int err = 0;
1442

1443
	/*
1444
	 * Enable hardware so that subsystem initialisation can access EL2.
1445
	 */
1446
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1447 1448 1449 1450 1451 1452

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1464
		err = 0;
1465 1466
		break;
	default:
1467
		goto out;
1468 1469 1470 1471 1472
	}

	/*
	 * Init HYP architected timer support
	 */
1473
	err = kvm_timer_hyp_init(vgic_present);
1474
	if (err)
1475
		goto out;
1476 1477 1478 1479

	kvm_perf_init();
	kvm_coproc_table_init();

1480 1481 1482 1483
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1484 1485 1486 1487 1488 1489 1490 1491 1492
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1493
	hyp_cpu_pm_exit();
1494 1495
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1520
			goto out_err;
1521 1522 1523 1524 1525 1526 1527 1528
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1529
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1530
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1531 1532
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1533
		goto out_err;
1534 1535
	}

1536
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1537
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1538 1539
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1540 1541 1542 1543 1544 1545 1546
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1547
		goto out_err;
1548 1549
	}

1550 1551 1552 1553 1554 1555
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1556 1557 1558 1559 1560
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1561 1562
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1563 1564 1565

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1566
			goto out_err;
1567 1568 1569 1570
		}
	}

	for_each_possible_cpu(cpu) {
1571
		kvm_host_data_t *cpu_data;
1572

1573 1574
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1575 1576

		if (err) {
1577
			kvm_err("Cannot map host CPU state: %d\n", err);
1578
			goto out_err;
1579 1580 1581
		}
	}

1582 1583
	err = hyp_map_aux_data();
	if (err)
1584
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1585

1586
	return 0;
1587

1588
out_err:
1589
	teardown_hyp_mode();
1590 1591 1592 1593
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1594 1595 1596 1597 1598
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1623 1624
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1625 1626 1627 1628 1629 1630 1631
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1632 1633
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1652 1653 1654
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1655 1656
int kvm_arch_init(void *opaque)
{
1657
	int err;
1658
	int ret, cpu;
1659
	bool in_hyp_mode;
1660 1661

	if (!is_hyp_mode_available()) {
1662
		kvm_info("HYP mode not available\n");
1663 1664 1665
		return -ENODEV;
	}

1666 1667 1668 1669
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1670 1671 1672
		return -ENODEV;
	}

1673 1674 1675 1676 1677 1678
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1679 1680
	}

1681
	err = init_common_resources();
1682
	if (err)
1683
		return err;
1684

1685
	err = kvm_arm_init_sve();
1686 1687 1688
	if (err)
		return err;

1689
	if (!in_hyp_mode) {
1690
		err = init_hyp_mode();
1691 1692 1693
		if (err)
			goto out_err;
	}
1694

1695 1696 1697
	err = init_subsystems();
	if (err)
		goto out_hyp;
1698

1699 1700 1701 1702 1703
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1704
	return 0;
1705 1706

out_hyp:
1707 1708
	if (!in_hyp_mode)
		teardown_hyp_mode();
1709 1710
out_err:
	return err;
1711 1712 1713 1714 1715
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1716
	kvm_perf_teardown();
1717 1718 1719 1720 1721 1722 1723 1724 1725
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);