arm.c 38.3 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <trace/events/kvm.h>
23
#include <kvm/arm_pmu.h>
24
#include <kvm/arm_psci.h>
25 26 27 28

#define CREATE_TRACE_POINTS
#include "trace.h"

29
#include <linux/uaccess.h>
30 31
#include <asm/ptrace.h>
#include <asm/mman.h>
32
#include <asm/tlbflush.h>
33
#include <asm/cacheflush.h>
34
#include <asm/cpufeature.h>
35 36 37 38
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
39
#include <asm/kvm_emulate.h>
40
#include <asm/kvm_coproc.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47 48 49 50
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

51
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
52 53
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

54 55 56
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

57 58
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
59
static u32 kvm_next_vmid;
60
static DEFINE_SPINLOCK(kvm_vmid_lock);
61

62 63
static bool vgic_present;

64 65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

66 67
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
68
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
69 70
}

71 72
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

73 74 75 76 77 78
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
79
	return __this_cpu_read(kvm_arm_running_vcpu);
80 81 82 83 84
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
85
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 87 88 89
{
	return &kvm_arm_running_vcpu;
}

90 91 92 93 94 95 96 97 98 99
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

100
int kvm_arch_check_processor_compat(void)
101
{
102
	return 0;
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
125

126 127 128 129
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
130 131
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
132
	int ret, cpu;
133

134
	ret = kvm_arm_setup_stage2(kvm, type);
135 136
	if (ret)
		return ret;
137

138 139 140 141 142 143 144
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

145 146 147 148
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

149
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* Mark the initial VMID generation invalid */
156
	kvm->arch.vmid.vmid_gen = 0;
157

158
	/* The maximum number of VCPUs is limited by the host's GIC model */
159 160
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
161

162 163 164 165
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
166 167
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
168
	return ret;
169 170
}

171 172 173 174 175
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

176
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
177 178 179 180 181
{
	return VM_FAULT_SIGBUS;
}


182 183 184 185
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
186 187 188 189
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

190 191
	kvm_vgic_destroy(kvm);

192 193 194
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

195 196 197 198 199 200
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
201
	atomic_set(&kvm->online_vcpus, 0);
202 203
}

204
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
205 206 207
{
	int r;
	switch (ext) {
208
	case KVM_CAP_IRQCHIP:
209 210
		r = vgic_present;
		break;
211
	case KVM_CAP_IOEVENTFD:
212
	case KVM_CAP_DEVICE_CTRL:
213 214 215 216
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
217
	case KVM_CAP_ARM_PSCI:
218
	case KVM_CAP_ARM_PSCI_0_2:
219
	case KVM_CAP_READONLY_MEM:
220
	case KVM_CAP_MP_STATE:
221
	case KVM_CAP_IMMEDIATE_EXIT:
222
	case KVM_CAP_VCPU_EVENTS:
223
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
224
	case KVM_CAP_ARM_NISV_TO_USER:
225
	case KVM_CAP_ARM_INJECT_EXT_DABT:
226 227
		r = 1;
		break;
228 229
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
230
		break;
231 232 233 234 235 236
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
237 238 239
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
V
Vladimir Murzin 已提交
240 241 242 243 244 245
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
246 247 248 249 250 251 252
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
253
	default:
254
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
255 256 257 258 259 260 261 262 263 264 265
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
281 282 283 284 285 286

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

287 288 289 290 291
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

292 293 294 295 296
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

297 298 299 300 301 302 303 304 305 306
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

307
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
308 309 310
	if (err)
		goto vcpu_uninit;

311
	return vcpu;
312 313
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
314 315 316 317 318 319
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

320
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
321 322 323 324 325
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
326 327 328
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

329
	kvm_mmu_free_memory_caches(vcpu);
330
	kvm_timer_vcpu_terminate(vcpu);
331
	kvm_pmu_vcpu_destroy(vcpu);
332
	kvm_vcpu_uninit(vcpu);
333
	kmem_cache_free(kvm_vcpu_cache, vcpu);
334 335 336 337 338 339 340 341 342
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
343
	return kvm_timer_is_pending(vcpu);
344 345
}

346 347
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
348 349 350
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
351
	 * so that we have the latest PMR and group enables. This ensures
352 353
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
354 355 356
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
357 358 359
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
360
	vgic_v4_put(vcpu, true);
361
	preempt_enable();
362 363 364 365
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
366 367 368
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
369 370
}

371 372
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
373 374
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
375
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
376

377 378 379
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

380 381
	kvm_pmu_vcpu_init(vcpu);

382 383
	kvm_arm_reset_debug_ptr(vcpu);

384 385
	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

386
	return kvm_vgic_vcpu_init(vcpu);
387 388 389 390
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
391
	int *last_ran;
392
	kvm_host_data_t *cpu_data;
393 394

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
395
	cpu_data = this_cpu_ptr(&kvm_host_data);
396 397 398 399 400 401 402 403 404 405

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

406
	vcpu->cpu = cpu;
407
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
408

409
	kvm_arm_set_running_vcpu(vcpu);
410
	kvm_vgic_load(vcpu);
411
	kvm_timer_vcpu_load(vcpu);
412
	kvm_vcpu_load_sysregs(vcpu);
413
	kvm_arch_vcpu_load_fp(vcpu);
414
	kvm_vcpu_pmu_restore_guest(vcpu);
415 416
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
417 418

	if (single_task_running())
419
		vcpu_clear_wfx_traps(vcpu);
420
	else
421
		vcpu_set_wfx_traps(vcpu);
422 423

	vcpu_ptrauth_setup_lazy(vcpu);
424 425 426 427
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
428
	kvm_arch_vcpu_put_fp(vcpu);
429
	kvm_vcpu_put_sysregs(vcpu);
430
	kvm_timer_vcpu_put(vcpu);
431
	kvm_vgic_put(vcpu);
432
	kvm_vcpu_pmu_restore_host(vcpu);
433

434 435
	vcpu->cpu = -1;

436
	kvm_arm_set_running_vcpu(NULL);
437 438
}

A
Andrew Jones 已提交
439 440 441
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
442
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
443 444 445
	kvm_vcpu_kick(vcpu);
}

446 447 448
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
449
	if (vcpu->arch.power_off)
450 451 452 453 454
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
455 456 457 458 459
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
460 461
	int ret = 0;

462 463
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
464
		vcpu->arch.power_off = false;
465 466
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
467
		vcpu_power_off(vcpu);
468 469
		break;
	default:
470
		ret = -EINVAL;
471 472
	}

473
	return ret;
474 475
}

476 477 478 479 480 481 482
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
483 484
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
485 486
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
487
		&& !v->arch.power_off && !v->arch.pause);
488 489
}

490 491
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
492
	return vcpu_mode_priv(vcpu);
493 494
}

495 496 497 498 499 500 501
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
502
	preempt_disable();
503
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
504
	preempt_enable();
505 506 507 508
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
509
 * @vmid: The VMID to check
510 511 512
 *
 * return true if there is a new generation of VMIDs being used
 *
513 514 515 516 517
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
518
 */
519
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
520
{
521 522
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
523
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
524 525 526
}

/**
527 528 529
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
530
 */
531
static void update_vmid(struct kvm_vmid *vmid)
532
{
533
	if (!need_new_vmid_gen(vmid))
534 535
		return;

536
	spin_lock(&kvm_vmid_lock);
537 538 539 540 541 542

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
543
	if (!need_new_vmid_gen(vmid)) {
544
		spin_unlock(&kvm_vmid_lock);
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

567
	vmid->vmid = kvm_next_vmid;
568
	kvm_next_vmid++;
569
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
570

571
	smp_wmb();
572
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
573 574

	spin_unlock(&kvm_vmid_lock);
575 576 577 578
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
579
	struct kvm *kvm = vcpu->kvm;
580
	int ret = 0;
581

582 583 584
	if (likely(vcpu->arch.has_run_once))
		return 0;

585 586 587
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

588
	vcpu->arch.has_run_once = true;
589

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
606 607
	}

608
	ret = kvm_timer_enable(vcpu);
609 610 611 612
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
613

614
	return ret;
615 616
}

617 618 619 620 621
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

622
void kvm_arm_halt_guest(struct kvm *kvm)
623 624 625 626 627 628
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
629
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
630 631
}

632
void kvm_arm_resume_guest(struct kvm *kvm)
633 634 635 636
{
	int i;
	struct kvm_vcpu *vcpu;

637 638
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
639
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
640
	}
641 642
}

643
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
644
{
645
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
646

647
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
648
				       (!vcpu->arch.pause)));
649

A
Andrew Jones 已提交
650
	if (vcpu->arch.power_off || vcpu->arch.pause) {
651
		/* Awaken to handle a signal, request we sleep again later. */
652
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
653
	}
654 655 656 657 658 659 660

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
661 662
}

663 664 665 666 667
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

668 669 670
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
671 672
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
673

674 675 676
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

677 678 679 680 681
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
682 683 684

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
685 686 687
	}
}

688 689 690 691 692 693 694 695 696 697 698
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
699 700
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
701 702
	int ret;

703
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
704 705 706 707
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
708
		return ret;
709

C
Christoffer Dall 已提交
710 711 712
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
713
			return ret;
C
Christoffer Dall 已提交
714 715
	}

716 717 718 719
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
720

721
	kvm_sigset_activate(vcpu);
722 723 724 725 726 727 728 729 730

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

731
		update_vmid(&vcpu->kvm->arch.vmid);
732

733 734
		check_vcpu_requests(vcpu);

735 736 737 738 739
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
740
		preempt_disable();
741

742
		kvm_pmu_flush_hwstate(vcpu);
743

744 745
		local_irq_disable();

746 747
		kvm_vgic_flush_hwstate(vcpu);

748
		/*
749 750
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
751
		 */
752
		if (signal_pending(current)) {
753 754 755 756
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

772 773 774 775
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
776
		 * Documentation/virt/kvm/vcpu-requests.rst
777 778 779
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

780
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
781
		    kvm_request_pending(vcpu)) {
782
			vcpu->mode = OUTSIDE_GUEST_MODE;
783
			isb(); /* Ensure work in x_flush_hwstate is committed */
784
			kvm_pmu_sync_hwstate(vcpu);
785 786
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
787
			kvm_vgic_sync_hwstate(vcpu);
788
			local_irq_enable();
789
			preempt_enable();
790 791 792
			continue;
		}

793 794
		kvm_arm_setup_debug(vcpu);

795 796 797 798
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
799
		guest_enter_irqoff();
800

801 802 803
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
804
			kvm_arm_vhe_guest_exit();
805
		} else {
806
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
807 808
		}

809
		vcpu->mode = OUTSIDE_GUEST_MODE;
810
		vcpu->stat.exits++;
811 812 813 814
		/*
		 * Back from guest
		 *************************************************************/

815 816
		kvm_arm_clear_debug(vcpu);

817
		/*
818
		 * We must sync the PMU state before the vgic state so
819 820 821 822 823
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

824 825 826 827 828
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
829 830
		kvm_vgic_sync_hwstate(vcpu);

831 832 833 834 835
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
836 837
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
838

839 840
		kvm_arch_vcpu_ctxsync_fp(vcpu);

841 842 843 844 845 846 847 848 849 850 851 852 853
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
854
		 * We do local_irq_enable() before calling guest_exit() so
855 856
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
857
		 * preemption after calling guest_exit() so that if we get
858 859 860
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
861
		guest_exit();
862
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
863

864 865 866
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

867 868
		preempt_enable();

869 870 871
		ret = handle_exit(vcpu, run, ret);
	}

872
	/* Tell userspace about in-kernel device output levels */
873 874 875 876
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
877

878 879
	kvm_sigset_deactivate(vcpu);

880
	vcpu_put(vcpu);
881
	return ret;
882 883
}

884 885 886 887
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
888
	unsigned long *hcr;
889 890 891 892 893 894

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

895
	hcr = vcpu_hcr(vcpu);
896
	if (level)
897
		set = test_and_set_bit(bit_index, hcr);
898
	else
899
		set = test_and_clear_bit(bit_index, hcr);
900 901 902 903 904 905 906 907 908 909 910 911

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
912
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
913 914 915 916 917
	kvm_vcpu_kick(vcpu);

	return 0;
}

918 919
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
920 921 922 923 924 925 926 927 928
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
929
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
930 931 932 933
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

934 935 936 937
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
938

939 940
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
941

942 943 944
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
963

964
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
965 966 967 968
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

969
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
970 971
			return -EINVAL;

972
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
973 974 975
	}

	return -EINVAL;
976 977
}

978 979 980
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
981
	unsigned int i, ret;
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1016 1017 1018 1019 1020
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1021

1022 1023
	return ret;
}
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1034 1035 1036 1037 1038 1039 1040
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1041 1042
	vcpu_reset_hcr(vcpu);

1043
	/*
1044
	 * Handle the "start in power-off" case.
1045
	 */
1046
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1047
		vcpu_power_off(vcpu);
1048
	else
1049
		vcpu->arch.power_off = false;
1050 1051 1052 1053

	return 0;
}

1054 1055 1056 1057 1058 1059 1060
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1061
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1075
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1089
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1090 1091 1092 1093 1094 1095
		break;
	}

	return ret;
}

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1122 1123 1124 1125 1126
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1127
	struct kvm_device_attr attr;
1128 1129
	long r;

1130 1131 1132 1133
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1134
		r = -EFAULT;
1135
		if (copy_from_user(&init, argp, sizeof(init)))
1136
			break;
1137

1138 1139
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1140 1141 1142 1143
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1144

1145
		r = -ENOEXEC;
1146
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1147
			break;
1148

1149
		r = -EFAULT;
1150
		if (copy_from_user(&reg, argp, sizeof(reg)))
1151 1152
			break;

1153
		if (ioctl == KVM_SET_ONE_REG)
1154
			r = kvm_arm_set_reg(vcpu, &reg);
1155
		else
1156 1157
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1158 1159 1160 1161 1162 1163
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1164
		r = -ENOEXEC;
1165
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1166
			break;
1167

1168 1169 1170 1171
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1172
		r = -EFAULT;
1173
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1174
			break;
1175 1176 1177
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1178 1179
			break;
		r = -E2BIG;
1180
		if (n < reg_list.n)
1181 1182 1183
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1184
	}
1185
	case KVM_SET_DEVICE_ATTR: {
1186
		r = -EFAULT;
1187
		if (copy_from_user(&attr, argp, sizeof(attr)))
1188 1189 1190
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1191 1192
	}
	case KVM_GET_DEVICE_ATTR: {
1193
		r = -EFAULT;
1194
		if (copy_from_user(&attr, argp, sizeof(attr)))
1195 1196 1197
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1198 1199
	}
	case KVM_HAS_DEVICE_ATTR: {
1200
		r = -EFAULT;
1201
		if (copy_from_user(&attr, argp, sizeof(attr)))
1202 1203 1204
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1205
	}
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1236
	default:
1237
		r = -EINVAL;
1238
	}
1239 1240

	return r;
1241 1242
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1262 1263
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1264
	bool flush = false;
1265 1266 1267 1268
	int r;

	mutex_lock(&kvm->slots_lock);

1269
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1270

1271
	if (flush)
1272 1273 1274 1275
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1276 1277
}

1278 1279 1280
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1281 1282 1283 1284
	int r;

	mutex_lock(&kvm->slots_lock);

1285
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1286

1287
	if (flush)
1288 1289 1290 1291
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1292 1293
}

1294 1295 1296
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1297 1298 1299 1300 1301 1302 1303 1304 1305
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1306 1307
		if (!vgic_present)
			return -ENXIO;
1308
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1309 1310 1311
	default:
		return -ENODEV;
	}
1312 1313
}

1314 1315 1316
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1317 1318 1319 1320
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1321
	case KVM_CREATE_IRQCHIP: {
1322
		int ret;
1323 1324
		if (!vgic_present)
			return -ENXIO;
1325 1326 1327 1328
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1329
	}
1330 1331 1332 1333 1334 1335 1336
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1350 1351 1352
	default:
		return -EINVAL;
	}
1353 1354
}

1355
static void cpu_init_hyp_mode(void)
1356
{
1357
	phys_addr_t pgd_ptr;
1358 1359 1360 1361 1362
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1363
	__hyp_set_vectors(kvm_get_idmap_vector());
1364

1365
	pgd_ptr = kvm_mmu_get_httbr();
1366
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1367
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1368
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1369

M
Marc Zyngier 已提交
1370
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1371
	__cpu_init_stage2();
1372 1373
}

1374 1375 1376 1377 1378 1379
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1380 1381
static void cpu_hyp_reinit(void)
{
1382 1383
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1384 1385
	cpu_hyp_reset();

1386
	if (is_kernel_in_hyp_mode())
1387
		kvm_timer_init_vhe();
1388
	else
1389
		cpu_init_hyp_mode();
1390

1391
	kvm_arm_init_debug();
1392 1393 1394

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1395 1396
}

1397 1398 1399
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1400
		cpu_hyp_reinit();
1401
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1402
	}
1403
}
1404

1405 1406 1407 1408
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1409 1410
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1423

1424 1425 1426 1427 1428
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1444
		return NOTIFY_OK;
1445
	case CPU_PM_ENTER_FAILED:
1446 1447 1448 1449
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1450

1451 1452 1453 1454 1455
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1466 1467 1468 1469
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1470 1471 1472 1473
#else
static inline void hyp_cpu_pm_init(void)
{
}
1474 1475 1476
static inline void hyp_cpu_pm_exit(void)
{
}
1477 1478
#endif

1479 1480
static int init_common_resources(void)
{
1481 1482
	kvm_set_ipa_limit();

1483 1484 1485 1486 1487
	return 0;
}

static int init_subsystems(void)
{
1488
	int err = 0;
1489

1490
	/*
1491
	 * Enable hardware so that subsystem initialisation can access EL2.
1492
	 */
1493
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1494 1495 1496 1497 1498 1499

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1511
		err = 0;
1512 1513
		break;
	default:
1514
		goto out;
1515 1516 1517 1518 1519
	}

	/*
	 * Init HYP architected timer support
	 */
1520
	err = kvm_timer_hyp_init(vgic_present);
1521
	if (err)
1522
		goto out;
1523 1524 1525 1526

	kvm_perf_init();
	kvm_coproc_table_init();

1527 1528 1529 1530
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1531 1532 1533 1534 1535 1536 1537 1538 1539
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1540
	hyp_cpu_pm_exit();
1541 1542
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1567
			goto out_err;
1568 1569 1570 1571 1572 1573 1574 1575
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1576
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1577
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1578 1579
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1580
		goto out_err;
1581 1582
	}

1583
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1584
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1585 1586
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1587 1588 1589 1590 1591 1592 1593
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1594
		goto out_err;
1595 1596
	}

1597 1598 1599 1600 1601 1602
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1603 1604 1605 1606 1607
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1608 1609
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1610 1611 1612

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1613
			goto out_err;
1614 1615 1616 1617
		}
	}

	for_each_possible_cpu(cpu) {
1618
		kvm_host_data_t *cpu_data;
1619

1620 1621
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1622 1623

		if (err) {
1624
			kvm_err("Cannot map host CPU state: %d\n", err);
1625
			goto out_err;
1626 1627 1628
		}
	}

1629 1630
	err = hyp_map_aux_data();
	if (err)
1631
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1632

1633
	return 0;
1634

1635
out_err:
1636
	teardown_hyp_mode();
1637 1638 1639 1640
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1641 1642 1643 1644 1645
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1670 1671
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1672 1673 1674 1675 1676 1677 1678
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1679 1680
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1699 1700 1701
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1702 1703
int kvm_arch_init(void *opaque)
{
1704
	int err;
1705
	int ret, cpu;
1706
	bool in_hyp_mode;
1707 1708

	if (!is_hyp_mode_available()) {
1709
		kvm_info("HYP mode not available\n");
1710 1711 1712
		return -ENODEV;
	}

1713 1714 1715 1716
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1717 1718 1719
		return -ENODEV;
	}

1720 1721 1722 1723 1724 1725
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1726 1727
	}

1728
	err = init_common_resources();
1729
	if (err)
1730
		return err;
1731

1732
	err = kvm_arm_init_sve();
1733 1734 1735
	if (err)
		return err;

1736
	if (!in_hyp_mode) {
1737
		err = init_hyp_mode();
1738 1739 1740
		if (err)
			goto out_err;
	}
1741

1742 1743 1744
	err = init_subsystems();
	if (err)
		goto out_hyp;
1745

1746 1747 1748 1749 1750
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1751
	return 0;
1752 1753

out_hyp:
1754 1755
	if (!in_hyp_mode)
		teardown_hyp_mode();
1756 1757
out_err:
	return err;
1758 1759 1760 1761 1762
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1763
	kvm_perf_teardown();
1764 1765 1766 1767 1768 1769 1770 1771 1772
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);