arm.c 35.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/cpu_pm.h>
20 21 22
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
23
#include <linux/list.h>
24 25 26 27 28
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
29
#include <linux/kvm.h>
30 31
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
32
#include <trace/events/kvm.h>
33
#include <kvm/arm_pmu.h>
34
#include <kvm/arm_psci.h>
35 36 37 38

#define CREATE_TRACE_POINTS
#include "trace.h"

39
#include <linux/uaccess.h>
40 41
#include <asm/ptrace.h>
#include <asm/mman.h>
42
#include <asm/tlbflush.h>
43
#include <asm/cacheflush.h>
44 45 46 47
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
48
#include <asm/kvm_emulate.h>
49
#include <asm/kvm_coproc.h>
50
#include <asm/sections.h>
51 52 53 54 55

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

56
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
57 58
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

59 60 61
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

62 63
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 65
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
66
static DEFINE_RWLOCK(kvm_vmid_lock);
67

68 69
static bool vgic_present;

70 71
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

72 73
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
74
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 76
}

77 78
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

79 80 81 82 83 84
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
85
	return __this_cpu_read(kvm_arm_running_vcpu);
86 87 88 89 90
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
91
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 93 94 95
{
	return &kvm_arm_running_vcpu;
}

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


112 113 114 115
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
116 117
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
118
	int ret, cpu;
119

120 121 122
	if (type)
		return -EINVAL;

123 124 125 126 127 128 129
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

130 131 132 133
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

134
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135 136 137
	if (ret)
		goto out_free_stage2_pgd;

138
	kvm_vgic_early_init(kvm);
139

140 141 142
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

143
	/* The maximum number of VCPUs is limited by the host's GIC model */
144 145
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146

147 148 149 150
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
151 152
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
153
	return ret;
154 155
}

156 157 158 159 160 161 162 163 164 165
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

166 167 168 169 170 171
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
	return VM_FAULT_SIGBUS;
}


172 173 174 175
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
176 177 178 179
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

180 181
	kvm_vgic_destroy(kvm);

182 183 184
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

185 186 187 188 189 190
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
191
	atomic_set(&kvm->online_vcpus, 0);
192 193
}

194
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 196 197
{
	int r;
	switch (ext) {
198
	case KVM_CAP_IRQCHIP:
199 200
		r = vgic_present;
		break;
201
	case KVM_CAP_IOEVENTFD:
202
	case KVM_CAP_DEVICE_CTRL:
203 204 205 206
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
207
	case KVM_CAP_ARM_PSCI:
208
	case KVM_CAP_ARM_PSCI_0_2:
209
	case KVM_CAP_READONLY_MEM:
210
	case KVM_CAP_MP_STATE:
211
	case KVM_CAP_IMMEDIATE_EXIT:
212 213
		r = 1;
		break;
214 215
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
216
		break;
217 218 219 220 221 222
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
223 224 225
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
226 227 228 229 230 231
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
232 233 234 235 236 237 238
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
239
	default:
240
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}


struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

258 259 260 261 262
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

263 264 265 266 267
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

268 269 270 271 272 273 274 275 276 277
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

278
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279 280 281
	if (err)
		goto vcpu_uninit;

282
	return vcpu;
283 284
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
285 286 287 288 289 290
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

291
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292
{
293
	kvm_vgic_vcpu_early_init(vcpu);
294 295 296 297
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
298 299 300
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

301
	kvm_mmu_free_memory_caches(vcpu);
302
	kvm_timer_vcpu_terminate(vcpu);
303
	kvm_pmu_vcpu_destroy(vcpu);
304
	kvm_vcpu_uninit(vcpu);
305
	kmem_cache_free(kvm_vcpu_cache, vcpu);
306 307 308 309 310 311 312 313 314
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
315
	return kvm_timer_is_pending(vcpu);
316 317
}

318 319 320
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
321
	kvm_vgic_v4_enable_doorbell(vcpu);
322 323 324 325 326
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
327
	kvm_vgic_v4_disable_doorbell(vcpu);
328 329
}

330 331
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
332 333
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
334
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
335

336 337 338
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

339 340
	kvm_arm_reset_debug_ptr(vcpu);

341
	return kvm_vgic_vcpu_init(vcpu);
342 343 344 345
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
346 347 348 349 350 351 352 353 354 355 356 357 358
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

359
	vcpu->cpu = cpu;
360
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
361

362
	kvm_arm_set_running_vcpu(vcpu);
363
	kvm_vgic_load(vcpu);
364
	kvm_timer_vcpu_load(vcpu);
365
	kvm_vcpu_load_sysregs(vcpu);
366
	kvm_arch_vcpu_load_fp(vcpu);
367 368 369 370
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
371
	kvm_arch_vcpu_put_fp(vcpu);
372
	kvm_vcpu_put_sysregs(vcpu);
373
	kvm_timer_vcpu_put(vcpu);
374 375
	kvm_vgic_put(vcpu);

376 377
	vcpu->cpu = -1;

378
	kvm_arm_set_running_vcpu(NULL);
379 380
}

A
Andrew Jones 已提交
381 382 383
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
384
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
385 386 387
	kvm_vcpu_kick(vcpu);
}

388 389 390
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
391
	if (vcpu->arch.power_off)
392 393 394 395 396
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
397 398 399 400 401
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
402 403
	int ret = 0;

404 405
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
406
		vcpu->arch.power_off = false;
407 408
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
409
		vcpu_power_off(vcpu);
410 411
		break;
	default:
412
		ret = -EINVAL;
413 414
	}

415
	return ret;
416 417
}

418 419 420 421 422 423 424
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
425 426
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
427 428
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
429
		&& !v->arch.power_off && !v->arch.pause);
430 431
}

432 433
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
434
	return vcpu_mode_priv(vcpu);
435 436
}

437 438 439 440 441 442 443
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
444
	preempt_disable();
445
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
446
	preempt_enable();
447 448 449 450
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
451
 * @kvm: The VM's VMID to check
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;
478
	bool new_gen;
479

480 481 482 483 484
	read_lock(&kvm_vmid_lock);
	new_gen = need_new_vmid_gen(kvm);
	read_unlock(&kvm_vmid_lock);

	if (!new_gen)
485 486
		return;

487
	write_lock(&kvm_vmid_lock);
488 489 490 491 492 493 494

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
495
		write_unlock(&kvm_vmid_lock);
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
521
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
522 523

	/* update vttbr to be used with the new vmid */
524
	pgd_phys = virt_to_phys(kvm->arch.pgd);
525
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
526
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
527
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
528

529
	write_unlock(&kvm_vmid_lock);
530 531 532 533
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
534
	struct kvm *kvm = vcpu->kvm;
535
	int ret = 0;
536

537 538 539 540
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
541

542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
558 559
	}

560
	ret = kvm_timer_enable(vcpu);
561 562 563 564
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
565

566
	return ret;
567 568
}

569 570 571 572 573
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

574
void kvm_arm_halt_guest(struct kvm *kvm)
575 576 577 578 579 580
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
581
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
582 583
}

584
void kvm_arm_resume_guest(struct kvm *kvm)
585 586 587 588
{
	int i;
	struct kvm_vcpu *vcpu;

589 590 591 592
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
		swake_up(kvm_arch_vcpu_wq(vcpu));
	}
593 594
}

595
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
596
{
597
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
598

599
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
600
				       (!vcpu->arch.pause)));
601

A
Andrew Jones 已提交
602
	if (vcpu->arch.power_off || vcpu->arch.pause) {
603
		/* Awaken to handle a signal, request we sleep again later. */
604
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
605
	}
606 607
}

608 609 610 611 612
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

613 614 615
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
616 617
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
618 619 620 621 622 623

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
624 625 626
	}
}

627 628 629 630 631 632 633 634 635 636 637
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
638 639
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
640 641
	int ret;

642
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
643 644 645 646
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
647
		return ret;
648

C
Christoffer Dall 已提交
649 650 651
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
652 653 654
			return ret;
		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
			return 0;
C
Christoffer Dall 已提交
655 656
	}

657 658 659 660
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
661

662
	kvm_sigset_activate(vcpu);
663 664 665 666 667 668 669 670 671 672 673

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

674 675
		check_vcpu_requests(vcpu);

676 677 678 679 680
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
681
		preempt_disable();
682

683 684 685
		/* Flush FP/SIMD state that can't survive guest entry/exit */
		kvm_fpsimd_flush_cpu_state();

686
		kvm_pmu_flush_hwstate(vcpu);
687

688 689
		local_irq_disable();

690 691
		kvm_vgic_flush_hwstate(vcpu);

692
		/*
693 694
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
695
		 */
696
		if (signal_pending(current)) {
697 698 699 700
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

716 717 718 719 720 721 722 723
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

724
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
725
		    kvm_request_pending(vcpu)) {
726
			vcpu->mode = OUTSIDE_GUEST_MODE;
727
			isb(); /* Ensure work in x_flush_hwstate is committed */
728
			kvm_pmu_sync_hwstate(vcpu);
729 730
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
731
			kvm_vgic_sync_hwstate(vcpu);
732
			local_irq_enable();
733
			preempt_enable();
734 735 736
			continue;
		}

737 738
		kvm_arm_setup_debug(vcpu);

739 740 741 742
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
743
		guest_enter_irqoff();
744

745 746 747
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
748
			kvm_arm_vhe_guest_exit();
749 750 751 752
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

753
		vcpu->mode = OUTSIDE_GUEST_MODE;
754
		vcpu->stat.exits++;
755 756 757 758
		/*
		 * Back from guest
		 *************************************************************/

759 760
		kvm_arm_clear_debug(vcpu);

761
		/*
762
		 * We must sync the PMU state before the vgic state so
763 764 765 766 767
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

768 769 770 771 772
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
773 774
		kvm_vgic_sync_hwstate(vcpu);

775 776 777 778 779
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
780 781
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
782

783 784
		kvm_arch_vcpu_ctxsync_fp(vcpu);

785 786 787 788 789 790 791 792 793 794 795 796 797
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
798
		 * We do local_irq_enable() before calling guest_exit() so
799 800
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
801
		 * preemption after calling guest_exit() so that if we get
802 803 804
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
805
		guest_exit();
806
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
807

808 809 810
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

811 812
		preempt_enable();

813 814 815
		ret = handle_exit(vcpu, run, ret);
	}

816
	/* Tell userspace about in-kernel device output levels */
817 818 819 820
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
821

822 823
	kvm_sigset_deactivate(vcpu);

824
	vcpu_put(vcpu);
825
	return ret;
826 827
}

828 829 830 831
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
832
	unsigned long *hcr;
833 834 835 836 837 838

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

839
	hcr = vcpu_hcr(vcpu);
840
	if (level)
841
		set = test_and_set_bit(bit_index, hcr);
842
	else
843
		set = test_and_clear_bit(bit_index, hcr);
844 845 846 847 848 849 850 851 852 853 854 855

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
856
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
857 858 859 860 861
	kvm_vcpu_kick(vcpu);

	return 0;
}

862 863
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
864 865 866 867 868 869 870 871 872 873 874 875 876
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

877 878 879 880
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
881

882 883
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
884

885 886 887
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
906

907
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
908 909 910 911
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

912
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
913 914
			return -EINVAL;

915
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
916 917 918
	}

	return -EINVAL;
919 920
}

921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


963 964 965 966 967 968 969 970 971
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

972 973 974 975 976 977 978
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

979 980
	vcpu_reset_hcr(vcpu);

981
	/*
982
	 * Handle the "start in power-off" case.
983
	 */
984
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
985
		vcpu_power_off(vcpu);
986
	else
987
		vcpu->arch.power_off = false;
988 989 990 991

	return 0;
}

992 993 994 995 996 997 998
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
999
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1013
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1027
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1028 1029 1030 1031 1032 1033
		break;
	}

	return ret;
}

1034 1035 1036 1037 1038
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1039
	struct kvm_device_attr attr;
1040 1041
	long r;

1042 1043 1044 1045
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1046
		r = -EFAULT;
1047
		if (copy_from_user(&init, argp, sizeof(init)))
1048
			break;
1049

1050 1051
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1052 1053 1054 1055
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1056

1057
		r = -ENOEXEC;
1058
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1059
			break;
1060

1061
		r = -EFAULT;
1062
		if (copy_from_user(&reg, argp, sizeof(reg)))
1063 1064
			break;

1065
		if (ioctl == KVM_SET_ONE_REG)
1066
			r = kvm_arm_set_reg(vcpu, &reg);
1067
		else
1068 1069
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1070 1071 1072 1073 1074 1075
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1076
		r = -ENOEXEC;
1077
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1078
			break;
1079

1080
		r = -EFAULT;
1081
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1082
			break;
1083 1084 1085
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1086 1087
			break;
		r = -E2BIG;
1088
		if (n < reg_list.n)
1089 1090 1091
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1092
	}
1093
	case KVM_SET_DEVICE_ATTR: {
1094
		r = -EFAULT;
1095
		if (copy_from_user(&attr, argp, sizeof(attr)))
1096 1097 1098
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1099 1100
	}
	case KVM_GET_DEVICE_ATTR: {
1101
		r = -EFAULT;
1102
		if (copy_from_user(&attr, argp, sizeof(attr)))
1103 1104 1105
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1106 1107
	}
	case KVM_HAS_DEVICE_ATTR: {
1108
		r = -EFAULT;
1109
		if (copy_from_user(&attr, argp, sizeof(attr)))
1110 1111 1112
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1113
	}
1114
	default:
1115
		r = -EINVAL;
1116
	}
1117 1118

	return r;
1119 1120
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1140 1141
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1154 1155
}

1156 1157 1158
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1159 1160 1161 1162 1163 1164 1165 1166 1167
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1168 1169
		if (!vgic_present)
			return -ENXIO;
1170
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1171 1172 1173
	default:
		return -ENODEV;
	}
1174 1175
}

1176 1177 1178
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1179 1180 1181 1182
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1183
	case KVM_CREATE_IRQCHIP: {
1184
		int ret;
1185 1186
		if (!vgic_present)
			return -ENXIO;
1187 1188 1189 1190
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1191
	}
1192 1193 1194 1195 1196 1197 1198
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1212 1213 1214
	default:
		return -EINVAL;
	}
1215 1216
}

1217
static void cpu_init_hyp_mode(void *dummy)
1218
{
1219
	phys_addr_t pgd_ptr;
1220 1221 1222 1223 1224
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1225
	__hyp_set_vectors(kvm_get_idmap_vector());
1226

1227
	pgd_ptr = kvm_mmu_get_httbr();
1228
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1229
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1230
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1231

M
Marc Zyngier 已提交
1232
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1233
	__cpu_init_stage2();
1234 1235

	kvm_arm_init_debug();
1236 1237
}

1238 1239 1240 1241 1242 1243
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1244 1245
static void cpu_hyp_reinit(void)
{
1246 1247
	cpu_hyp_reset();

1248 1249
	if (is_kernel_in_hyp_mode()) {
		/*
1250
		 * __cpu_init_stage2() is safe to call even if the PM
1251 1252
		 * event was cancelled before the CPU was reset.
		 */
1253
		__cpu_init_stage2();
1254
		kvm_timer_init_vhe();
1255
	} else {
1256
		cpu_init_hyp_mode(NULL);
1257
	}
1258 1259 1260

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1261 1262
}

1263 1264 1265
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1266
		cpu_hyp_reinit();
1267
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1268
	}
1269
}
1270

1271 1272 1273 1274
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1275 1276
}

1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1289

1290 1291 1292 1293 1294
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1310
		return NOTIFY_OK;
1311
	case CPU_PM_ENTER_FAILED:
1312 1313 1314 1315
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1316

1317 1318 1319 1320 1321
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1332 1333 1334 1335
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1336 1337 1338 1339
#else
static inline void hyp_cpu_pm_init(void)
{
}
1340 1341 1342
static inline void hyp_cpu_pm_exit(void)
{
}
1343 1344
#endif

1345 1346
static int init_common_resources(void)
{
1347 1348 1349 1350
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1351 1352 1353 1354 1355
	return 0;
}

static int init_subsystems(void)
{
1356
	int err = 0;
1357

1358
	/*
1359
	 * Enable hardware so that subsystem initialisation can access EL2.
1360
	 */
1361
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1362 1363 1364 1365 1366 1367

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1379
		err = 0;
1380 1381
		break;
	default:
1382
		goto out;
1383 1384 1385 1386 1387
	}

	/*
	 * Init HYP architected timer support
	 */
1388
	err = kvm_timer_hyp_init(vgic_present);
1389
	if (err)
1390
		goto out;
1391 1392 1393 1394

	kvm_perf_init();
	kvm_coproc_table_init();

1395 1396 1397 1398
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1399 1400 1401 1402 1403 1404 1405 1406 1407
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1408
	hyp_cpu_pm_exit();
1409 1410
}

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1435
			goto out_err;
1436 1437 1438 1439 1440 1441 1442 1443
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1444
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1445
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1446 1447
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1448
		goto out_err;
1449 1450
	}

1451
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1452
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1453 1454
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1455 1456 1457 1458 1459 1460 1461
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1462
		goto out_err;
1463 1464
	}

1465 1466 1467 1468 1469 1470
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1471 1472 1473 1474 1475
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1476 1477
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1478 1479 1480

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1481
			goto out_err;
1482 1483 1484 1485
		}
	}

	for_each_possible_cpu(cpu) {
1486
		kvm_cpu_context_t *cpu_ctxt;
1487

1488
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1489
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1490 1491

		if (err) {
1492
			kvm_err("Cannot map host CPU state: %d\n", err);
1493
			goto out_err;
1494 1495 1496 1497
		}
	}

	return 0;
1498

1499
out_err:
1500
	teardown_hyp_mode();
1501 1502 1503 1504
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1505 1506 1507 1508 1509
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1534 1535
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1536 1537 1538 1539 1540 1541 1542
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1543 1544
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1563 1564 1565
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1566 1567
int kvm_arch_init(void *opaque)
{
1568
	int err;
1569
	int ret, cpu;
1570
	bool in_hyp_mode;
1571 1572

	if (!is_hyp_mode_available()) {
1573
		kvm_info("HYP mode not available\n");
1574 1575 1576
		return -ENODEV;
	}

1577 1578 1579 1580 1581 1582
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1583 1584
	}

1585
	err = init_common_resources();
1586
	if (err)
1587
		return err;
1588

1589 1590 1591
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1592
		err = init_hyp_mode();
1593 1594 1595
		if (err)
			goto out_err;
	}
1596

1597 1598 1599
	err = init_subsystems();
	if (err)
		goto out_hyp;
1600

1601 1602 1603 1604 1605
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1606
	return 0;
1607 1608

out_hyp:
1609 1610
	if (!in_hyp_mode)
		teardown_hyp_mode();
1611 1612
out_err:
	return err;
1613 1614 1615 1616 1617
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1618
	kvm_perf_teardown();
1619 1620 1621 1622 1623 1624 1625 1626 1627
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);