arm.c 37.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67
static u32 kvm_next_vmid;
68
static DEFINE_SPINLOCK(kvm_vmid_lock);
69

70 71
static bool vgic_present;

72 73
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

74 75
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
76
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 78
}

79 80
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

81 82 83 84 85 86
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
87
	return __this_cpu_read(kvm_arm_running_vcpu);
88 89 90 91 92
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
93
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
94 95 96 97
{
	return &kvm_arm_running_vcpu;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


114 115 116 117
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
118 119
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
120
	int ret, cpu;
121

122
	ret = kvm_arm_setup_stage2(kvm, type);
123 124
	if (ret)
		return ret;
125

126 127 128 129 130 131 132
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

133 134 135 136
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

137
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 139 140
	if (ret)
		goto out_free_stage2_pgd;

141
	kvm_vgic_early_init(kvm);
142

143
	/* Mark the initial VMID generation invalid */
144
	kvm->arch.vmid.vmid_gen = 0;
145

146
	/* The maximum number of VCPUs is limited by the host's GIC model */
147 148
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149

150 151 152 153
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
154 155
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
156
	return ret;
157 158
}

159 160 161 162 163 164 165 166 167 168
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

169
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 171 172 173 174
{
	return VM_FAULT_SIGBUS;
}


175 176 177 178
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
179 180 181 182
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

183 184
	kvm_vgic_destroy(kvm);

185 186 187
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

188 189 190 191 192 193
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
194
	atomic_set(&kvm->online_vcpus, 0);
195 196
}

197
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 199 200
{
	int r;
	switch (ext) {
201
	case KVM_CAP_IRQCHIP:
202 203
		r = vgic_present;
		break;
204
	case KVM_CAP_IOEVENTFD:
205
	case KVM_CAP_DEVICE_CTRL:
206 207 208 209
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
210
	case KVM_CAP_ARM_PSCI:
211
	case KVM_CAP_ARM_PSCI_0_2:
212
	case KVM_CAP_READONLY_MEM:
213
	case KVM_CAP_MP_STATE:
214
	case KVM_CAP_IMMEDIATE_EXIT:
215
	case KVM_CAP_VCPU_EVENTS:
216 217
		r = 1;
		break;
218 219
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
220
		break;
221 222 223 224 225 226
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
V
Vladimir Murzin 已提交
227 228 229 230 231 232
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
233 234 235 236 237 238 239
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
240
	default:
241
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
242 243 244 245 246 247 248 249 250 251 252
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
268 269 270 271 272 273

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

274 275 276 277 278
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

279 280 281 282 283
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

284 285 286 287 288 289 290 291 292 293
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

294
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
295 296 297
	if (err)
		goto vcpu_uninit;

298
	return vcpu;
299 300
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
301 302 303 304 305 306
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

307
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
308 309 310 311 312
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
313 314 315
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

316
	kvm_mmu_free_memory_caches(vcpu);
317
	kvm_timer_vcpu_terminate(vcpu);
318
	kvm_pmu_vcpu_destroy(vcpu);
319
	kvm_vcpu_uninit(vcpu);
320
	kmem_cache_free(kvm_vcpu_cache, vcpu);
321 322 323 324 325 326 327 328 329
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
330
	return kvm_timer_is_pending(vcpu);
331 332
}

333 334
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
335
	kvm_vgic_v4_enable_doorbell(vcpu);
336 337 338 339
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
340
	kvm_vgic_v4_disable_doorbell(vcpu);
341 342
}

343 344
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
345 346
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
347
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
348

349 350 351
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

352 353
	kvm_arm_reset_debug_ptr(vcpu);

354
	return kvm_vgic_vcpu_init(vcpu);
355 356 357 358
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
359
	int *last_ran;
360
	kvm_host_data_t *cpu_data;
361 362

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
363
	cpu_data = this_cpu_ptr(&kvm_host_data);
364 365 366 367 368 369 370 371 372 373

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

374
	vcpu->cpu = cpu;
375
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
376

377
	kvm_arm_set_running_vcpu(vcpu);
378
	kvm_vgic_load(vcpu);
379
	kvm_timer_vcpu_load(vcpu);
380
	kvm_vcpu_load_sysregs(vcpu);
381
	kvm_arch_vcpu_load_fp(vcpu);
382
	kvm_vcpu_pmu_restore_guest(vcpu);
383 384 385 386 387

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
388 389

	vcpu_ptrauth_setup_lazy(vcpu);
390 391 392 393
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
394
	kvm_arch_vcpu_put_fp(vcpu);
395
	kvm_vcpu_put_sysregs(vcpu);
396
	kvm_timer_vcpu_put(vcpu);
397
	kvm_vgic_put(vcpu);
398
	kvm_vcpu_pmu_restore_host(vcpu);
399

400 401
	vcpu->cpu = -1;

402
	kvm_arm_set_running_vcpu(NULL);
403 404
}

A
Andrew Jones 已提交
405 406 407
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
408
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
409 410 411
	kvm_vcpu_kick(vcpu);
}

412 413 414
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
415
	if (vcpu->arch.power_off)
416 417 418 419 420
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
421 422 423 424 425
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
426 427
	int ret = 0;

428 429
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
430
		vcpu->arch.power_off = false;
431 432
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
433
		vcpu_power_off(vcpu);
434 435
		break;
	default:
436
		ret = -EINVAL;
437 438
	}

439
	return ret;
440 441
}

442 443 444 445 446 447 448
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
449 450
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
451 452
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453
		&& !v->arch.power_off && !v->arch.pause);
454 455
}

456 457
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
458
	return vcpu_mode_priv(vcpu);
459 460
}

461 462 463 464 465 466 467
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
468
	preempt_disable();
469
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
470
	preempt_enable();
471 472 473 474
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
475
 * @vmid: The VMID to check
476 477 478
 *
 * return true if there is a new generation of VMIDs being used
 *
479 480 481 482 483
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
484
 */
485
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
486
{
487 488
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
489
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
490 491 492
}

/**
493 494 495
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
496
 */
497
static void update_vmid(struct kvm_vmid *vmid)
498
{
499
	if (!need_new_vmid_gen(vmid))
500 501
		return;

502
	spin_lock(&kvm_vmid_lock);
503 504 505 506 507 508

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
509
	if (!need_new_vmid_gen(vmid)) {
510
		spin_unlock(&kvm_vmid_lock);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

533
	vmid->vmid = kvm_next_vmid;
534
	kvm_next_vmid++;
535
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
536

537
	smp_wmb();
538
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
539 540

	spin_unlock(&kvm_vmid_lock);
541 542 543 544
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
545
	struct kvm *kvm = vcpu->kvm;
546
	int ret = 0;
547

548 549 550
	if (likely(vcpu->arch.has_run_once))
		return 0;

551 552 553
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

554
	vcpu->arch.has_run_once = true;
555

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
572 573
	}

574
	ret = kvm_timer_enable(vcpu);
575 576 577 578
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
579

580
	return ret;
581 582
}

583 584 585 586 587
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

588
void kvm_arm_halt_guest(struct kvm *kvm)
589 590 591 592 593 594
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
595
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
596 597
}

598
void kvm_arm_resume_guest(struct kvm *kvm)
599 600 601 602
{
	int i;
	struct kvm_vcpu *vcpu;

603 604
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
605
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
606
	}
607 608
}

609
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
610
{
611
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
612

613
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
614
				       (!vcpu->arch.pause)));
615

A
Andrew Jones 已提交
616
	if (vcpu->arch.power_off || vcpu->arch.pause) {
617
		/* Awaken to handle a signal, request we sleep again later. */
618
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
619
	}
620 621 622 623 624 625 626

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
627 628
}

629 630 631 632 633
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

634 635 636
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
637 638
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
639

640 641 642
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

643 644 645 646 647
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
648 649 650
	}
}

651 652 653 654 655 656 657 658 659 660 661
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
662 663
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
664 665
	int ret;

666
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
667 668 669 670
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
671
		return ret;
672

C
Christoffer Dall 已提交
673 674 675
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
676
			return ret;
C
Christoffer Dall 已提交
677 678
	}

679 680 681 682
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
683

684
	kvm_sigset_activate(vcpu);
685 686 687 688 689 690 691 692 693

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

694
		update_vmid(&vcpu->kvm->arch.vmid);
695

696 697
		check_vcpu_requests(vcpu);

698 699 700 701 702
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
703
		preempt_disable();
704

705
		kvm_pmu_flush_hwstate(vcpu);
706

707 708
		local_irq_disable();

709 710
		kvm_vgic_flush_hwstate(vcpu);

711
		/*
712 713
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
714
		 */
715
		if (signal_pending(current)) {
716 717 718 719
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

735 736 737 738 739 740 741 742
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

743
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
744
		    kvm_request_pending(vcpu)) {
745
			vcpu->mode = OUTSIDE_GUEST_MODE;
746
			isb(); /* Ensure work in x_flush_hwstate is committed */
747
			kvm_pmu_sync_hwstate(vcpu);
748 749
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
750
			kvm_vgic_sync_hwstate(vcpu);
751
			local_irq_enable();
752
			preempt_enable();
753 754 755
			continue;
		}

756 757
		kvm_arm_setup_debug(vcpu);

758 759 760 761
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
762
		guest_enter_irqoff();
763

764 765 766
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
767
			kvm_arm_vhe_guest_exit();
768
		} else {
769
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
770 771
		}

772
		vcpu->mode = OUTSIDE_GUEST_MODE;
773
		vcpu->stat.exits++;
774 775 776 777
		/*
		 * Back from guest
		 *************************************************************/

778 779
		kvm_arm_clear_debug(vcpu);

780
		/*
781
		 * We must sync the PMU state before the vgic state so
782 783 784 785 786
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

787 788 789 790 791
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
792 793
		kvm_vgic_sync_hwstate(vcpu);

794 795 796 797 798
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
799 800
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
801

802 803
		kvm_arch_vcpu_ctxsync_fp(vcpu);

804 805 806 807 808 809 810 811 812 813 814 815 816
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
817
		 * We do local_irq_enable() before calling guest_exit() so
818 819
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
820
		 * preemption after calling guest_exit() so that if we get
821 822 823
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
824
		guest_exit();
825
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
826

827 828 829
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

830 831
		preempt_enable();

832 833 834
		ret = handle_exit(vcpu, run, ret);
	}

835
	/* Tell userspace about in-kernel device output levels */
836 837 838 839
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
840

841 842
	kvm_sigset_deactivate(vcpu);

843
	vcpu_put(vcpu);
844
	return ret;
845 846
}

847 848 849 850
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
851
	unsigned long *hcr;
852 853 854 855 856 857

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

858
	hcr = vcpu_hcr(vcpu);
859
	if (level)
860
		set = test_and_set_bit(bit_index, hcr);
861
	else
862
		set = test_and_clear_bit(bit_index, hcr);
863 864 865 866 867 868 869 870 871 872 873 874

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
875
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
876 877 878 879 880
	kvm_vcpu_kick(vcpu);

	return 0;
}

881 882
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
883 884 885 886 887 888 889 890 891 892 893 894 895
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

896 897 898 899
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
900

901 902
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
903

904 905 906
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
907

908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
925

926
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
927 928 929 930
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

931
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
932 933
			return -EINVAL;

934
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
935 936 937
	}

	return -EINVAL;
938 939
}

940 941 942
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
943
	unsigned int i, ret;
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
978 979 980 981 982
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
983

984 985
	return ret;
}
986

987 988 989 990 991 992 993 994 995
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

996 997 998 999 1000 1001 1002
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1003 1004
	vcpu_reset_hcr(vcpu);

1005
	/*
1006
	 * Handle the "start in power-off" case.
1007
	 */
1008
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1009
		vcpu_power_off(vcpu);
1010
	else
1011
		vcpu->arch.power_off = false;
1012 1013 1014 1015

	return 0;
}

1016 1017 1018 1019 1020 1021 1022
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1023
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1037
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1051
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1052 1053 1054 1055 1056 1057
		break;
	}

	return ret;
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1084 1085 1086 1087 1088
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1089
	struct kvm_device_attr attr;
1090 1091
	long r;

1092 1093 1094 1095
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1096
		r = -EFAULT;
1097
		if (copy_from_user(&init, argp, sizeof(init)))
1098
			break;
1099

1100 1101
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1102 1103 1104 1105
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1106

1107
		r = -ENOEXEC;
1108
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1109
			break;
1110

1111
		r = -EFAULT;
1112
		if (copy_from_user(&reg, argp, sizeof(reg)))
1113 1114
			break;

1115
		if (ioctl == KVM_SET_ONE_REG)
1116
			r = kvm_arm_set_reg(vcpu, &reg);
1117
		else
1118 1119
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1120 1121 1122 1123 1124 1125
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1126
		r = -ENOEXEC;
1127
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1128
			break;
1129

1130 1131 1132 1133
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1134
		r = -EFAULT;
1135
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1136
			break;
1137 1138 1139
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1140 1141
			break;
		r = -E2BIG;
1142
		if (n < reg_list.n)
1143 1144 1145
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1146
	}
1147
	case KVM_SET_DEVICE_ATTR: {
1148
		r = -EFAULT;
1149
		if (copy_from_user(&attr, argp, sizeof(attr)))
1150 1151 1152
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1153 1154
	}
	case KVM_GET_DEVICE_ATTR: {
1155
		r = -EFAULT;
1156
		if (copy_from_user(&attr, argp, sizeof(attr)))
1157 1158 1159
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1160 1161
	}
	case KVM_HAS_DEVICE_ATTR: {
1162
		r = -EFAULT;
1163
		if (copy_from_user(&attr, argp, sizeof(attr)))
1164 1165 1166
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1167
	}
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1198
	default:
1199
		r = -EINVAL;
1200
	}
1201 1202

	return r;
1203 1204
}

1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1224 1225
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1226
	bool flush = false;
1227 1228 1229 1230
	int r;

	mutex_lock(&kvm->slots_lock);

1231
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1232

1233
	if (flush)
1234 1235 1236 1237
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1238 1239
}

1240 1241 1242
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1243 1244 1245 1246
	int r;

	mutex_lock(&kvm->slots_lock);

1247
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1248

1249
	if (flush)
1250 1251 1252 1253
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1254 1255
}

1256 1257 1258
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1259 1260 1261 1262 1263 1264 1265 1266 1267
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1268 1269
		if (!vgic_present)
			return -ENXIO;
1270
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1271 1272 1273
	default:
		return -ENODEV;
	}
1274 1275
}

1276 1277 1278
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1279 1280 1281 1282
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1283
	case KVM_CREATE_IRQCHIP: {
1284
		int ret;
1285 1286
		if (!vgic_present)
			return -ENXIO;
1287 1288 1289 1290
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1291
	}
1292 1293 1294 1295 1296 1297 1298
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1312 1313 1314
	default:
		return -EINVAL;
	}
1315 1316
}

1317
static void cpu_init_hyp_mode(void *dummy)
1318
{
1319
	phys_addr_t pgd_ptr;
1320 1321 1322 1323 1324
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1325
	__hyp_set_vectors(kvm_get_idmap_vector());
1326

1327
	pgd_ptr = kvm_mmu_get_httbr();
1328
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1329
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1330
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1331

M
Marc Zyngier 已提交
1332
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1333
	__cpu_init_stage2();
1334 1335
}

1336 1337 1338 1339 1340 1341
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1342 1343
static void cpu_hyp_reinit(void)
{
1344 1345
	cpu_hyp_reset();

1346
	if (is_kernel_in_hyp_mode())
1347
		kvm_timer_init_vhe();
1348
	else
1349
		cpu_init_hyp_mode(NULL);
1350

1351
	kvm_arm_init_debug();
1352 1353 1354

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1355 1356
}

1357 1358 1359
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1360
		cpu_hyp_reinit();
1361
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1362
	}
1363
}
1364

1365 1366 1367 1368
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1369 1370
}

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1383

1384 1385 1386 1387 1388
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1404
		return NOTIFY_OK;
1405
	case CPU_PM_ENTER_FAILED:
1406 1407 1408 1409
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1410

1411 1412 1413 1414 1415
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1426 1427 1428 1429
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1430 1431 1432 1433
#else
static inline void hyp_cpu_pm_init(void)
{
}
1434 1435 1436
static inline void hyp_cpu_pm_exit(void)
{
}
1437 1438
#endif

1439 1440
static int init_common_resources(void)
{
1441 1442
	kvm_set_ipa_limit();

1443 1444 1445 1446 1447
	return 0;
}

static int init_subsystems(void)
{
1448
	int err = 0;
1449

1450
	/*
1451
	 * Enable hardware so that subsystem initialisation can access EL2.
1452
	 */
1453
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1454 1455 1456 1457 1458 1459

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1471
		err = 0;
1472 1473
		break;
	default:
1474
		goto out;
1475 1476 1477 1478 1479
	}

	/*
	 * Init HYP architected timer support
	 */
1480
	err = kvm_timer_hyp_init(vgic_present);
1481
	if (err)
1482
		goto out;
1483 1484 1485 1486

	kvm_perf_init();
	kvm_coproc_table_init();

1487 1488 1489 1490
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1491 1492 1493 1494 1495 1496 1497 1498 1499
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1500
	hyp_cpu_pm_exit();
1501 1502
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1527
			goto out_err;
1528 1529 1530 1531 1532 1533 1534 1535
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1536
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1537
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1538 1539
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1540
		goto out_err;
1541 1542
	}

1543
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1544
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1545 1546
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1547 1548 1549 1550 1551 1552 1553
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1554
		goto out_err;
1555 1556
	}

1557 1558 1559 1560 1561 1562
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1563 1564 1565 1566 1567
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1568 1569
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1570 1571 1572

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1573
			goto out_err;
1574 1575 1576 1577
		}
	}

	for_each_possible_cpu(cpu) {
1578
		kvm_host_data_t *cpu_data;
1579

1580 1581 1582
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		kvm_init_host_cpu_context(&cpu_data->host_ctxt, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1583 1584

		if (err) {
1585
			kvm_err("Cannot map host CPU state: %d\n", err);
1586
			goto out_err;
1587 1588 1589
		}
	}

1590 1591
	err = hyp_map_aux_data();
	if (err)
1592
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1593

1594
	return 0;
1595

1596
out_err:
1597
	teardown_hyp_mode();
1598 1599 1600 1601
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1602 1603 1604 1605 1606
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1631 1632
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1633 1634 1635 1636 1637 1638 1639
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1640 1641
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1660 1661 1662
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1663 1664
int kvm_arch_init(void *opaque)
{
1665
	int err;
1666
	int ret, cpu;
1667
	bool in_hyp_mode;
1668 1669

	if (!is_hyp_mode_available()) {
1670
		kvm_info("HYP mode not available\n");
1671 1672 1673
		return -ENODEV;
	}

1674 1675 1676 1677
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1678 1679 1680
		return -ENODEV;
	}

1681 1682 1683 1684 1685 1686
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1687 1688
	}

1689
	err = init_common_resources();
1690
	if (err)
1691
		return err;
1692

1693
	err = kvm_arm_init_sve();
1694 1695 1696
	if (err)
		return err;

1697
	if (!in_hyp_mode) {
1698
		err = init_hyp_mode();
1699 1700 1701
		if (err)
			goto out_err;
	}
1702

1703 1704 1705
	err = init_subsystems();
	if (err)
		goto out_hyp;
1706

1707 1708 1709 1710 1711
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1712
	return 0;
1713 1714

out_hyp:
1715 1716
	if (!in_hyp_mode)
		teardown_hyp_mode();
1717 1718
out_err:
	return err;
1719 1720 1721 1722 1723
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1724
	kvm_perf_teardown();
1725 1726 1727 1728 1729 1730 1731 1732 1733
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);