arm.c 35.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <trace/events/kvm.h>
34
#include <kvm/arm_pmu.h>
35
#include <kvm/arm_psci.h>
36 37 38 39

#define CREATE_TRACE_POINTS
#include "trace.h"

40
#include <linux/uaccess.h>
41 42
#include <asm/ptrace.h>
#include <asm/mman.h>
43
#include <asm/tlbflush.h>
44
#include <asm/cacheflush.h>
45
#include <asm/cpufeature.h>
46 47 48 49
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
50
#include <asm/kvm_emulate.h>
51
#include <asm/kvm_coproc.h>
52
#include <asm/sections.h>
53 54 55 56 57

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

58
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
59 60
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

61 62 63
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

64 65
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
66 67
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
68
static DEFINE_RWLOCK(kvm_vmid_lock);
69

70 71
static bool vgic_present;

72 73
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

74 75
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
76
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 78
}

79 80
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

81 82 83 84 85 86
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
87
	return __this_cpu_read(kvm_arm_running_vcpu);
88 89 90 91 92
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
93
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
94 95 96 97
{
	return &kvm_arm_running_vcpu;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


114 115 116 117
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
118 119
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
120
	int ret, cpu;
121

122 123 124
	if (type)
		return -EINVAL;

125 126 127 128 129 130 131
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

132 133 134 135
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

136
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
137 138 139
	if (ret)
		goto out_free_stage2_pgd;

140
	kvm_vgic_early_init(kvm);
141

142 143 144
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

145
	/* The maximum number of VCPUs is limited by the host's GIC model */
146 147
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
148

149 150 151 152
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
153 154
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
155
	return ret;
156 157
}

158 159 160 161 162 163 164 165 166 167
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

168
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
169 170 171 172 173
{
	return VM_FAULT_SIGBUS;
}


174 175 176 177
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
178 179 180 181
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

182 183
	kvm_vgic_destroy(kvm);

184 185 186
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

187 188 189 190 191 192
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
193
	atomic_set(&kvm->online_vcpus, 0);
194 195
}

196
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
197 198 199
{
	int r;
	switch (ext) {
200
	case KVM_CAP_IRQCHIP:
201 202
		r = vgic_present;
		break;
203
	case KVM_CAP_IOEVENTFD:
204
	case KVM_CAP_DEVICE_CTRL:
205 206 207 208
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
209
	case KVM_CAP_ARM_PSCI:
210
	case KVM_CAP_ARM_PSCI_0_2:
211
	case KVM_CAP_READONLY_MEM:
212
	case KVM_CAP_MP_STATE:
213
	case KVM_CAP_IMMEDIATE_EXIT:
214 215
		r = 1;
		break;
216 217
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
218
		break;
219 220 221 222 223 224
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
225 226 227
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
228 229 230 231 232 233
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
234 235 236 237 238 239 240
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
241
	default:
242
		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
243 244 245 246 247 248 249 250 251 252 253
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
269 270 271 272 273 274

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

275 276 277 278 279
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

280 281 282 283 284
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

285 286 287 288 289 290 291 292 293 294
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

295
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
296 297 298
	if (err)
		goto vcpu_uninit;

299
	return vcpu;
300 301
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
302 303 304 305 306 307
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

308
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
309 310 311 312 313
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
314 315 316
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

317
	kvm_mmu_free_memory_caches(vcpu);
318
	kvm_timer_vcpu_terminate(vcpu);
319
	kvm_pmu_vcpu_destroy(vcpu);
320
	kvm_vcpu_uninit(vcpu);
321
	kmem_cache_free(kvm_vcpu_cache, vcpu);
322 323 324 325 326 327 328 329 330
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
331
	return kvm_timer_is_pending(vcpu);
332 333
}

334 335 336
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
337
	kvm_vgic_v4_enable_doorbell(vcpu);
338 339 340 341 342
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
343
	kvm_vgic_v4_disable_doorbell(vcpu);
344 345
}

346 347
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
348 349
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
350
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
351

352 353 354
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

355 356
	kvm_arm_reset_debug_ptr(vcpu);

357
	return kvm_vgic_vcpu_init(vcpu);
358 359 360 361
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
362 363 364 365 366 367 368 369 370 371 372 373 374
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

375
	vcpu->cpu = cpu;
376
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
377

378
	kvm_arm_set_running_vcpu(vcpu);
379
	kvm_vgic_load(vcpu);
380
	kvm_timer_vcpu_load(vcpu);
381
	kvm_vcpu_load_sysregs(vcpu);
382
	kvm_arch_vcpu_load_fp(vcpu);
383 384 385 386
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
387
	kvm_arch_vcpu_put_fp(vcpu);
388
	kvm_vcpu_put_sysregs(vcpu);
389
	kvm_timer_vcpu_put(vcpu);
390 391
	kvm_vgic_put(vcpu);

392 393
	vcpu->cpu = -1;

394
	kvm_arm_set_running_vcpu(NULL);
395 396
}

A
Andrew Jones 已提交
397 398 399
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
400
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
401 402 403
	kvm_vcpu_kick(vcpu);
}

404 405 406
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
407
	if (vcpu->arch.power_off)
408 409 410 411 412
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
413 414 415 416 417
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
418 419
	int ret = 0;

420 421
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
422
		vcpu->arch.power_off = false;
423 424
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
425
		vcpu_power_off(vcpu);
426 427
		break;
	default:
428
		ret = -EINVAL;
429 430
	}

431
	return ret;
432 433
}

434 435 436 437 438 439 440
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
441 442
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
443 444
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
445
		&& !v->arch.power_off && !v->arch.pause);
446 447
}

448 449
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
450
	return vcpu_mode_priv(vcpu);
451 452
}

453 454 455 456 457 458 459
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
460
	preempt_disable();
461
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
462
	preempt_enable();
463 464 465 466
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
467
 * @kvm: The VM's VMID to check
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
	u64 vmid;
494
	bool new_gen;
495

496 497 498 499 500
	read_lock(&kvm_vmid_lock);
	new_gen = need_new_vmid_gen(kvm);
	read_unlock(&kvm_vmid_lock);

	if (!new_gen)
501 502
		return;

503
	write_lock(&kvm_vmid_lock);
504 505 506 507 508 509 510

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
511
		write_unlock(&kvm_vmid_lock);
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
537
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
538 539

	/* update vttbr to be used with the new vmid */
540
	pgd_phys = virt_to_phys(kvm->arch.pgd);
541
	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
542
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
543
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
544

545
	write_unlock(&kvm_vmid_lock);
546 547 548 549
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
550
	struct kvm *kvm = vcpu->kvm;
551
	int ret = 0;
552

553 554 555 556
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
574 575
	}

576
	ret = kvm_timer_enable(vcpu);
577 578 579 580
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
581

582
	return ret;
583 584
}

585 586 587 588 589
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

590
void kvm_arm_halt_guest(struct kvm *kvm)
591 592 593 594 595 596
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
597
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
598 599
}

600
void kvm_arm_resume_guest(struct kvm *kvm)
601 602 603 604
{
	int i;
	struct kvm_vcpu *vcpu;

605 606 607 608
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
		swake_up(kvm_arch_vcpu_wq(vcpu));
	}
609 610
}

611
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
612
{
613
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
614

615
	swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
616
				       (!vcpu->arch.pause)));
617

A
Andrew Jones 已提交
618
	if (vcpu->arch.power_off || vcpu->arch.pause) {
619
		/* Awaken to handle a signal, request we sleep again later. */
620
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
621
	}
622 623
}

624 625 626 627 628
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

629 630 631
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
632 633
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
634 635 636 637 638 639

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
640 641 642
	}
}

643 644 645 646 647 648 649 650 651 652 653
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
654 655
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
656 657
	int ret;

658
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
659 660 661 662
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
663
		return ret;
664

C
Christoffer Dall 已提交
665 666 667
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
668 669 670
			return ret;
		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
			return 0;
C
Christoffer Dall 已提交
671 672
	}

673 674 675 676
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
677

678
	kvm_sigset_activate(vcpu);
679 680 681 682 683 684 685 686 687 688 689

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

690 691
		check_vcpu_requests(vcpu);

692 693 694 695 696
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
697
		preempt_disable();
698

699
		kvm_pmu_flush_hwstate(vcpu);
700

701 702
		local_irq_disable();

703 704
		kvm_vgic_flush_hwstate(vcpu);

705
		/*
706 707
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
708
		 */
709
		if (signal_pending(current)) {
710 711 712 713
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

729 730 731 732 733 734 735 736
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

737
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
738
		    kvm_request_pending(vcpu)) {
739
			vcpu->mode = OUTSIDE_GUEST_MODE;
740
			isb(); /* Ensure work in x_flush_hwstate is committed */
741
			kvm_pmu_sync_hwstate(vcpu);
742 743
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
744
			kvm_vgic_sync_hwstate(vcpu);
745
			local_irq_enable();
746
			preempt_enable();
747 748 749
			continue;
		}

750 751
		kvm_arm_setup_debug(vcpu);

752 753 754 755
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
756
		guest_enter_irqoff();
757

758 759 760
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
761
			kvm_arm_vhe_guest_exit();
762 763 764 765
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

766
		vcpu->mode = OUTSIDE_GUEST_MODE;
767
		vcpu->stat.exits++;
768 769 770 771
		/*
		 * Back from guest
		 *************************************************************/

772 773
		kvm_arm_clear_debug(vcpu);

774
		/*
775
		 * We must sync the PMU state before the vgic state so
776 777 778 779 780
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

781 782 783 784 785
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
786 787
		kvm_vgic_sync_hwstate(vcpu);

788 789 790 791 792
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
793 794
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
795

796 797
		kvm_arch_vcpu_ctxsync_fp(vcpu);

798 799 800 801 802 803 804 805 806 807 808 809 810
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
811
		 * We do local_irq_enable() before calling guest_exit() so
812 813
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
814
		 * preemption after calling guest_exit() so that if we get
815 816 817
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
818
		guest_exit();
819
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
820

821 822 823
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

824 825
		preempt_enable();

826 827 828
		ret = handle_exit(vcpu, run, ret);
	}

829
	/* Tell userspace about in-kernel device output levels */
830 831 832 833
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
834

835 836
	kvm_sigset_deactivate(vcpu);

837
	vcpu_put(vcpu);
838
	return ret;
839 840
}

841 842 843 844
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
845
	unsigned long *hcr;
846 847 848 849 850 851

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

852
	hcr = vcpu_hcr(vcpu);
853
	if (level)
854
		set = test_and_set_bit(bit_index, hcr);
855
	else
856
		set = test_and_clear_bit(bit_index, hcr);
857 858 859 860 861 862 863 864 865 866 867 868

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
869
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
870 871 872 873 874
	kvm_vcpu_kick(vcpu);

	return 0;
}

875 876
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
877 878 879 880 881 882 883 884 885 886 887 888 889
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

890 891 892 893
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
894

895 896
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
897

898 899 900
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
919

920
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
921 922 923 924
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

925
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
926 927
			return -EINVAL;

928
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
929 930 931
	}

	return -EINVAL;
932 933
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


976 977 978 979 980 981 982 983 984
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

985 986 987 988 989 990 991
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

992 993
	vcpu_reset_hcr(vcpu);

994
	/*
995
	 * Handle the "start in power-off" case.
996
	 */
997
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
998
		vcpu_power_off(vcpu);
999
	else
1000
		vcpu->arch.power_off = false;
1001 1002 1003 1004

	return 0;
}

1005 1006 1007 1008 1009 1010 1011
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1012
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1026
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1040
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1041 1042 1043 1044 1045 1046
		break;
	}

	return ret;
}

1047 1048 1049 1050 1051
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1052
	struct kvm_device_attr attr;
1053 1054
	long r;

1055 1056 1057 1058
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1059
		r = -EFAULT;
1060
		if (copy_from_user(&init, argp, sizeof(init)))
1061
			break;
1062

1063 1064
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1065 1066 1067 1068
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1069

1070
		r = -ENOEXEC;
1071
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1072
			break;
1073

1074
		r = -EFAULT;
1075
		if (copy_from_user(&reg, argp, sizeof(reg)))
1076 1077
			break;

1078
		if (ioctl == KVM_SET_ONE_REG)
1079
			r = kvm_arm_set_reg(vcpu, &reg);
1080
		else
1081 1082
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1083 1084 1085 1086 1087 1088
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1089
		r = -ENOEXEC;
1090
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1091
			break;
1092

1093
		r = -EFAULT;
1094
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1095
			break;
1096 1097 1098
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1099 1100
			break;
		r = -E2BIG;
1101
		if (n < reg_list.n)
1102 1103 1104
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1105
	}
1106
	case KVM_SET_DEVICE_ATTR: {
1107
		r = -EFAULT;
1108
		if (copy_from_user(&attr, argp, sizeof(attr)))
1109 1110 1111
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1112 1113
	}
	case KVM_GET_DEVICE_ATTR: {
1114
		r = -EFAULT;
1115
		if (copy_from_user(&attr, argp, sizeof(attr)))
1116 1117 1118
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1119 1120
	}
	case KVM_HAS_DEVICE_ATTR: {
1121
		r = -EFAULT;
1122
		if (copy_from_user(&attr, argp, sizeof(attr)))
1123 1124 1125
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1126
	}
1127
	default:
1128
		r = -EINVAL;
1129
	}
1130 1131

	return r;
1132 1133
}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1153 1154
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	bool is_dirty = false;
	int r;

	mutex_lock(&kvm->slots_lock);

	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);

	if (is_dirty)
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1167 1168
}

1169 1170 1171
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1172 1173 1174 1175 1176 1177 1178 1179 1180
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1181 1182
		if (!vgic_present)
			return -ENXIO;
1183
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1184 1185 1186
	default:
		return -ENODEV;
	}
1187 1188
}

1189 1190 1191
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1192 1193 1194 1195
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1196
	case KVM_CREATE_IRQCHIP: {
1197
		int ret;
1198 1199
		if (!vgic_present)
			return -ENXIO;
1200 1201 1202 1203
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1204
	}
1205 1206 1207 1208 1209 1210 1211
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1225 1226 1227
	default:
		return -EINVAL;
	}
1228 1229
}

1230
static void cpu_init_hyp_mode(void *dummy)
1231
{
1232
	phys_addr_t pgd_ptr;
1233 1234 1235 1236 1237
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1238
	__hyp_set_vectors(kvm_get_idmap_vector());
1239

1240
	pgd_ptr = kvm_mmu_get_httbr();
1241
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1242
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1243
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1244

M
Marc Zyngier 已提交
1245
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1246
	__cpu_init_stage2();
1247 1248

	kvm_arm_init_debug();
1249 1250
}

1251 1252 1253 1254 1255 1256
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1257 1258
static void cpu_hyp_reinit(void)
{
1259 1260
	cpu_hyp_reset();

1261 1262
	if (is_kernel_in_hyp_mode()) {
		/*
1263
		 * __cpu_init_stage2() is safe to call even if the PM
1264 1265
		 * event was cancelled before the CPU was reset.
		 */
1266
		__cpu_init_stage2();
1267
		kvm_timer_init_vhe();
1268
	} else {
1269
		cpu_init_hyp_mode(NULL);
1270
	}
1271 1272 1273

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1274 1275
}

1276 1277 1278
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1279
		cpu_hyp_reinit();
1280
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1281
	}
1282
}
1283

1284 1285 1286 1287
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1288 1289
}

1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1302

1303 1304 1305 1306 1307
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1323
		return NOTIFY_OK;
1324
	case CPU_PM_ENTER_FAILED:
1325 1326 1327 1328
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1329

1330 1331 1332 1333 1334
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1345 1346 1347 1348
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1349 1350 1351 1352
#else
static inline void hyp_cpu_pm_init(void)
{
}
1353 1354 1355
static inline void hyp_cpu_pm_exit(void)
{
}
1356 1357
#endif

1358 1359
static int init_common_resources(void)
{
1360 1361 1362 1363
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1364 1365 1366 1367 1368
	return 0;
}

static int init_subsystems(void)
{
1369
	int err = 0;
1370

1371
	/*
1372
	 * Enable hardware so that subsystem initialisation can access EL2.
1373
	 */
1374
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1375 1376 1377 1378 1379 1380

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1392
		err = 0;
1393 1394
		break;
	default:
1395
		goto out;
1396 1397 1398 1399 1400
	}

	/*
	 * Init HYP architected timer support
	 */
1401
	err = kvm_timer_hyp_init(vgic_present);
1402
	if (err)
1403
		goto out;
1404 1405 1406 1407

	kvm_perf_init();
	kvm_coproc_table_init();

1408 1409 1410 1411
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1412 1413 1414 1415 1416 1417 1418 1419 1420
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1421
	hyp_cpu_pm_exit();
1422 1423
}

1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1448
			goto out_err;
1449 1450 1451 1452 1453 1454 1455 1456
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1457
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1458
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1459 1460
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1461
		goto out_err;
1462 1463
	}

1464
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1465
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1466 1467
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1468 1469 1470 1471 1472 1473 1474
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1475
		goto out_err;
1476 1477
	}

1478 1479 1480 1481 1482 1483
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1484 1485 1486 1487 1488
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1489 1490
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1491 1492 1493

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1494
			goto out_err;
1495 1496 1497 1498
		}
	}

	for_each_possible_cpu(cpu) {
1499
		kvm_cpu_context_t *cpu_ctxt;
1500

1501
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1502
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1503 1504

		if (err) {
1505
			kvm_err("Cannot map host CPU state: %d\n", err);
1506
			goto out_err;
1507 1508 1509
		}
	}

1510 1511 1512 1513
	err = hyp_map_aux_data();
	if (err)
		kvm_err("Cannot map host auxilary data: %d\n", err);

1514
	return 0;
1515

1516
out_err:
1517
	teardown_hyp_mode();
1518 1519 1520 1521
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1522 1523 1524 1525 1526
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1551 1552
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1553 1554 1555 1556 1557 1558 1559
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1560 1561
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1580 1581 1582
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1583 1584
int kvm_arch_init(void *opaque)
{
1585
	int err;
1586
	int ret, cpu;
1587
	bool in_hyp_mode;
1588 1589

	if (!is_hyp_mode_available()) {
1590
		kvm_info("HYP mode not available\n");
1591 1592 1593
		return -ENODEV;
	}

1594 1595 1596 1597 1598
	if (!kvm_arch_check_sve_has_vhe()) {
		kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
		return -ENODEV;
	}

1599 1600 1601 1602 1603 1604
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1605 1606
	}

1607
	err = init_common_resources();
1608
	if (err)
1609
		return err;
1610

1611 1612 1613
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode) {
1614
		err = init_hyp_mode();
1615 1616 1617
		if (err)
			goto out_err;
	}
1618

1619 1620 1621
	err = init_subsystems();
	if (err)
		goto out_hyp;
1622

1623 1624 1625 1626 1627
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1628
	return 0;
1629 1630

out_hyp:
1631 1632
	if (!in_hyp_mode)
		teardown_hyp_mode();
1633 1634
out_err:
	return err;
1635 1636 1637 1638 1639
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1640
	kvm_perf_teardown();
1641 1642 1643 1644 1645 1646 1647 1648 1649
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);