arm.c 37.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67
static u32 kvm_next_vmid;
68
static DEFINE_SPINLOCK(kvm_vmid_lock);
69

70 71
static bool vgic_present;

72 73
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

74 75
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
76
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
77 78
}

79 80
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

81 82 83 84 85 86
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
87
	return __this_cpu_read(kvm_arm_running_vcpu);
88 89 90 91 92
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
93
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
94 95 96 97
{
	return &kvm_arm_running_vcpu;
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


114 115 116 117
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
118 119
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
120
	int ret, cpu;
121

122
	ret = kvm_arm_setup_stage2(kvm, type);
123 124
	if (ret)
		return ret;
125

126 127 128 129 130 131 132
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

133 134 135 136
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

137
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 139 140
	if (ret)
		goto out_free_stage2_pgd;

141
	kvm_vgic_early_init(kvm);
142

143
	/* Mark the initial VMID generation invalid */
144
	kvm->arch.vmid.vmid_gen = 0;
145

146
	/* The maximum number of VCPUs is limited by the host's GIC model */
147 148
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149

150 151 152 153
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
154 155
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
156
	return ret;
157 158
}

159 160 161 162 163 164 165 166 167 168
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

169
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 171 172 173 174
{
	return VM_FAULT_SIGBUS;
}


175 176 177 178
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
179 180 181 182
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

183 184
	kvm_vgic_destroy(kvm);

185 186 187
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

188 189 190 191 192 193
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
194
	atomic_set(&kvm->online_vcpus, 0);
195 196
}

197
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 199 200
{
	int r;
	switch (ext) {
201
	case KVM_CAP_IRQCHIP:
202 203
		r = vgic_present;
		break;
204
	case KVM_CAP_IOEVENTFD:
205
	case KVM_CAP_DEVICE_CTRL:
206 207 208 209
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
210
	case KVM_CAP_ARM_PSCI:
211
	case KVM_CAP_ARM_PSCI_0_2:
212
	case KVM_CAP_READONLY_MEM:
213
	case KVM_CAP_MP_STATE:
214
	case KVM_CAP_IMMEDIATE_EXIT:
215
	case KVM_CAP_VCPU_EVENTS:
216 217
		r = 1;
		break;
218 219
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
220
		break;
221 222 223 224 225 226
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
227 228 229
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
230 231 232 233 234 235
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
236 237 238 239 240 241 242
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
243
	default:
244
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
245 246 247 248 249 250 251 252 253 254 255
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
271 272 273 274 275 276

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

277 278 279 280 281
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

282 283 284 285 286
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

287 288 289 290 291 292 293 294 295 296
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

297
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
298 299 300
	if (err)
		goto vcpu_uninit;

301
	return vcpu;
302 303
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
304 305 306 307 308 309
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

310
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
311 312 313 314 315
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
316 317 318
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

319
	kvm_mmu_free_memory_caches(vcpu);
320
	kvm_timer_vcpu_terminate(vcpu);
321
	kvm_pmu_vcpu_destroy(vcpu);
322
	kvm_vcpu_uninit(vcpu);
323
	kmem_cache_free(kvm_vcpu_cache, vcpu);
324 325 326 327 328 329 330 331 332
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
333
	return kvm_timer_is_pending(vcpu);
334 335
}

336 337
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
338
	kvm_vgic_v4_enable_doorbell(vcpu);
339 340 341 342
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
343
	kvm_vgic_v4_disable_doorbell(vcpu);
344 345
}

346 347
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
348 349
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
350
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
351

352 353 354
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

355 356
	kvm_arm_reset_debug_ptr(vcpu);

357
	return kvm_vgic_vcpu_init(vcpu);
358 359 360 361
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
362 363 364 365 366 367 368 369 370 371 372 373 374
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

375
	vcpu->cpu = cpu;
376
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
377

378
	kvm_arm_set_running_vcpu(vcpu);
379
	kvm_vgic_load(vcpu);
380
	kvm_timer_vcpu_load(vcpu);
381
	kvm_vcpu_load_sysregs(vcpu);
382
	kvm_arch_vcpu_load_fp(vcpu);
383 384 385 386 387

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
388 389 390 391
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
392
	kvm_arch_vcpu_put_fp(vcpu);
393
	kvm_vcpu_put_sysregs(vcpu);
394
	kvm_timer_vcpu_put(vcpu);
395 396
	kvm_vgic_put(vcpu);

397 398
	vcpu->cpu = -1;

399
	kvm_arm_set_running_vcpu(NULL);
400 401
}

A
Andrew Jones 已提交
402 403 404
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
405
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
406 407 408
	kvm_vcpu_kick(vcpu);
}

409 410 411
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
412
	if (vcpu->arch.power_off)
413 414 415 416 417
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
418 419 420 421 422
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
423 424
	int ret = 0;

425 426
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
427
		vcpu->arch.power_off = false;
428 429
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
430
		vcpu_power_off(vcpu);
431 432
		break;
	default:
433
		ret = -EINVAL;
434 435
	}

436
	return ret;
437 438
}

439 440 441 442 443 444 445
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
446 447
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
448 449
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
450
		&& !v->arch.power_off && !v->arch.pause);
451 452
}

453 454
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
455
	return vcpu_mode_priv(vcpu);
456 457
}

458 459 460 461 462 463 464
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
465
	preempt_disable();
466
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
467
	preempt_enable();
468 469 470 471
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
472
 * @vmid: The VMID to check
473 474 475
 *
 * return true if there is a new generation of VMIDs being used
 *
476 477 478 479 480
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
481
 */
482
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
483
{
484 485
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
486
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
487 488 489
}

/**
490 491 492
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
493
 */
494
static void update_vmid(struct kvm_vmid *vmid)
495
{
496
	if (!need_new_vmid_gen(vmid))
497 498
		return;

499
	spin_lock(&kvm_vmid_lock);
500 501 502 503 504 505

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
506
	if (!need_new_vmid_gen(vmid)) {
507
		spin_unlock(&kvm_vmid_lock);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

530
	vmid->vmid = kvm_next_vmid;
531
	kvm_next_vmid++;
532
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
533

534
	smp_wmb();
535
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
536 537

	spin_unlock(&kvm_vmid_lock);
538 539 540 541
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
542
	struct kvm *kvm = vcpu->kvm;
543
	int ret = 0;
544

545 546 547 548
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
549

550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
566 567
	}

568
	ret = kvm_timer_enable(vcpu);
569 570 571 572
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
573

574
	return ret;
575 576
}

577 578 579 580 581
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

582
void kvm_arm_halt_guest(struct kvm *kvm)
583 584 585 586 587 588
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
589
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
590 591
}

592
void kvm_arm_resume_guest(struct kvm *kvm)
593 594 595 596
{
	int i;
	struct kvm_vcpu *vcpu;

597 598
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
599
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
600
	}
601 602
}

603
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
604
{
605
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
606

607
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
608
				       (!vcpu->arch.pause)));
609

A
Andrew Jones 已提交
610
	if (vcpu->arch.power_off || vcpu->arch.pause) {
611
		/* Awaken to handle a signal, request we sleep again later. */
612
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
613
	}
614 615 616 617 618 619 620

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
621 622
}

623 624 625 626 627
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

628 629 630
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
631 632
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
633

634 635 636
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

637 638 639 640 641
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
642 643 644
	}
}

645 646 647 648 649 650 651 652 653 654 655
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
656 657
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
658 659
	int ret;

660
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
661 662 663 664
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
665
		return ret;
666

C
Christoffer Dall 已提交
667 668 669
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
670
			return ret;
C
Christoffer Dall 已提交
671 672
	}

673 674 675 676
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
677

678
	kvm_sigset_activate(vcpu);
679 680 681 682 683 684 685 686 687

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

688
		update_vmid(&vcpu->kvm->arch.vmid);
689

690 691
		check_vcpu_requests(vcpu);

692 693 694 695 696
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
697
		preempt_disable();
698

699
		kvm_pmu_flush_hwstate(vcpu);
700

701 702
		local_irq_disable();

703 704
		kvm_vgic_flush_hwstate(vcpu);

705
		/*
706 707
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
708
		 */
709
		if (signal_pending(current)) {
710 711 712 713
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

729 730 731 732 733 734 735 736
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

737
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
738
		    kvm_request_pending(vcpu)) {
739
			vcpu->mode = OUTSIDE_GUEST_MODE;
740
			isb(); /* Ensure work in x_flush_hwstate is committed */
741
			kvm_pmu_sync_hwstate(vcpu);
742 743
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
744
			kvm_vgic_sync_hwstate(vcpu);
745
			local_irq_enable();
746
			preempt_enable();
747 748 749
			continue;
		}

750 751
		kvm_arm_setup_debug(vcpu);

752 753 754 755
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
756
		guest_enter_irqoff();
757

758 759 760
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
761
			kvm_arm_vhe_guest_exit();
762
		} else {
763
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
764 765
		}

766
		vcpu->mode = OUTSIDE_GUEST_MODE;
767
		vcpu->stat.exits++;
768 769 770 771
		/*
		 * Back from guest
		 *************************************************************/

772 773
		kvm_arm_clear_debug(vcpu);

774
		/*
775
		 * We must sync the PMU state before the vgic state so
776 777 778 779 780
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

781 782 783 784 785
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
786 787
		kvm_vgic_sync_hwstate(vcpu);

788 789 790 791 792
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
793 794
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
795

796 797
		kvm_arch_vcpu_ctxsync_fp(vcpu);

798 799 800 801 802 803 804 805 806 807 808 809 810
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
811
		 * We do local_irq_enable() before calling guest_exit() so
812 813
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
814
		 * preemption after calling guest_exit() so that if we get
815 816 817
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
818
		guest_exit();
819
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
820

821 822 823
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

824 825
		preempt_enable();

826 827 828
		ret = handle_exit(vcpu, run, ret);
	}

829
	/* Tell userspace about in-kernel device output levels */
830 831 832 833
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
834

835 836
	kvm_sigset_deactivate(vcpu);

837
	vcpu_put(vcpu);
838
	return ret;
839 840
}

841 842 843 844
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
845
	unsigned long *hcr;
846 847 848 849 850 851

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

852
	hcr = vcpu_hcr(vcpu);
853
	if (level)
854
		set = test_and_set_bit(bit_index, hcr);
855
	else
856
		set = test_and_clear_bit(bit_index, hcr);
857 858 859 860 861 862 863 864 865 866 867 868

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
869
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
870 871 872 873 874
	kvm_vcpu_kick(vcpu);

	return 0;
}

875 876
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
877 878 879 880 881 882 883 884 885 886 887 888 889
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

890 891 892 893
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
894

895 896
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
897

898 899 900
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
901

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
919

920
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
921 922 923 924
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

925
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
926 927
			return -EINVAL;

928
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
929 930 931
	}

	return -EINVAL;
932 933
}

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


976 977 978 979 980 981 982 983 984
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

985 986 987 988 989 990 991
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

992 993
	vcpu_reset_hcr(vcpu);

994
	/*
995
	 * Handle the "start in power-off" case.
996
	 */
997
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
998
		vcpu_power_off(vcpu);
999
	else
1000
		vcpu->arch.power_off = false;
1001 1002 1003 1004

	return 0;
}

1005 1006 1007 1008 1009 1010 1011
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1012
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1026
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1040
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1041 1042 1043 1044 1045 1046
		break;
	}

	return ret;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1073 1074 1075 1076 1077
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1078
	struct kvm_device_attr attr;
1079 1080
	long r;

1081 1082 1083 1084
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1085
		r = -EFAULT;
1086
		if (copy_from_user(&init, argp, sizeof(init)))
1087
			break;
1088

1089 1090
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1091 1092 1093 1094
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1095

1096
		r = -ENOEXEC;
1097
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1098
			break;
1099

1100
		r = -EFAULT;
1101
		if (copy_from_user(&reg, argp, sizeof(reg)))
1102 1103
			break;

1104
		if (ioctl == KVM_SET_ONE_REG)
1105
			r = kvm_arm_set_reg(vcpu, &reg);
1106
		else
1107 1108
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1109 1110 1111 1112 1113 1114
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1115
		r = -ENOEXEC;
1116
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1117
			break;
1118

1119
		r = -EFAULT;
1120
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1121
			break;
1122 1123 1124
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1125 1126
			break;
		r = -E2BIG;
1127
		if (n < reg_list.n)
1128 1129 1130
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1131
	}
1132
	case KVM_SET_DEVICE_ATTR: {
1133
		r = -EFAULT;
1134
		if (copy_from_user(&attr, argp, sizeof(attr)))
1135 1136 1137
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1138 1139
	}
	case KVM_GET_DEVICE_ATTR: {
1140
		r = -EFAULT;
1141
		if (copy_from_user(&attr, argp, sizeof(attr)))
1142 1143 1144
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1145 1146
	}
	case KVM_HAS_DEVICE_ATTR: {
1147
		r = -EFAULT;
1148
		if (copy_from_user(&attr, argp, sizeof(attr)))
1149 1150 1151
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1152
	}
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1172
	default:
1173
		r = -EINVAL;
1174
	}
1175 1176

	return r;
1177 1178
}

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1198 1199
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1200
	bool flush = false;
1201 1202 1203 1204
	int r;

	mutex_lock(&kvm->slots_lock);

1205
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1206

1207
	if (flush)
1208 1209 1210 1211
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1212 1213
}

1214 1215 1216
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1217 1218 1219 1220
	int r;

	mutex_lock(&kvm->slots_lock);

1221
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1222

1223
	if (flush)
1224 1225 1226 1227
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1228 1229
}

1230 1231 1232
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1233 1234 1235 1236 1237 1238 1239 1240 1241
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1242 1243
		if (!vgic_present)
			return -ENXIO;
1244
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1245 1246 1247
	default:
		return -ENODEV;
	}
1248 1249
}

1250 1251 1252
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1253 1254 1255 1256
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1257
	case KVM_CREATE_IRQCHIP: {
1258
		int ret;
1259 1260
		if (!vgic_present)
			return -ENXIO;
1261 1262 1263 1264
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1265
	}
1266 1267 1268 1269 1270 1271 1272
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1286 1287 1288
	default:
		return -EINVAL;
	}
1289 1290
}

1291
static void cpu_init_hyp_mode(void *dummy)
1292
{
1293
	phys_addr_t pgd_ptr;
1294 1295 1296 1297 1298
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1299
	__hyp_set_vectors(kvm_get_idmap_vector());
1300

1301
	pgd_ptr = kvm_mmu_get_httbr();
1302
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1303
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1304
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1305

M
Marc Zyngier 已提交
1306
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1307
	__cpu_init_stage2();
1308 1309
}

1310 1311 1312 1313 1314 1315
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1316 1317
static void cpu_hyp_reinit(void)
{
1318 1319
	cpu_hyp_reset();

1320
	if (is_kernel_in_hyp_mode())
1321
		kvm_timer_init_vhe();
1322
	else
1323
		cpu_init_hyp_mode(NULL);
1324

1325
	kvm_arm_init_debug();
1326 1327 1328

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1329 1330
}

1331 1332 1333
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1334
		cpu_hyp_reinit();
1335
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1336
	}
1337
}
1338

1339 1340 1341 1342
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1343 1344
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1357

1358 1359 1360 1361 1362
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1378
		return NOTIFY_OK;
1379
	case CPU_PM_ENTER_FAILED:
1380 1381 1382 1383
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1384

1385 1386 1387 1388 1389
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1400 1401 1402 1403
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1404 1405 1406 1407
#else
static inline void hyp_cpu_pm_init(void)
{
}
1408 1409 1410
static inline void hyp_cpu_pm_exit(void)
{
}
1411 1412
#endif

1413 1414
static int init_common_resources(void)
{
1415 1416
	kvm_set_ipa_limit();

1417 1418 1419 1420 1421
	return 0;
}

static int init_subsystems(void)
{
1422
	int err = 0;
1423

1424
	/*
1425
	 * Enable hardware so that subsystem initialisation can access EL2.
1426
	 */
1427
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1428 1429 1430 1431 1432 1433

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1445
		err = 0;
1446 1447
		break;
	default:
1448
		goto out;
1449 1450 1451 1452 1453
	}

	/*
	 * Init HYP architected timer support
	 */
1454
	err = kvm_timer_hyp_init(vgic_present);
1455
	if (err)
1456
		goto out;
1457 1458 1459 1460

	kvm_perf_init();
	kvm_coproc_table_init();

1461 1462 1463 1464
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1465 1466 1467 1468 1469 1470 1471 1472 1473
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1474
	hyp_cpu_pm_exit();
1475 1476
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1501
			goto out_err;
1502 1503 1504 1505 1506 1507 1508 1509
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1510
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1511
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1512 1513
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1514
		goto out_err;
1515 1516
	}

1517
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1518
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1519 1520
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1521 1522 1523 1524 1525 1526 1527
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1528
		goto out_err;
1529 1530
	}

1531 1532 1533 1534 1535 1536
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1537 1538 1539 1540 1541
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1542 1543
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1544 1545 1546

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1547
			goto out_err;
1548 1549 1550 1551
		}
	}

	for_each_possible_cpu(cpu) {
1552
		kvm_cpu_context_t *cpu_ctxt;
1553

1554
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1555
		kvm_init_host_cpu_context(cpu_ctxt, cpu);
1556
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1557 1558

		if (err) {
1559
			kvm_err("Cannot map host CPU state: %d\n", err);
1560
			goto out_err;
1561 1562 1563
		}
	}

1564 1565
	err = hyp_map_aux_data();
	if (err)
1566
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1567

1568
	return 0;
1569

1570
out_err:
1571
	teardown_hyp_mode();
1572 1573 1574 1575
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1576 1577 1578 1579 1580
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1605 1606
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1607 1608 1609 1610 1611 1612 1613
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1614 1615
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1634 1635 1636
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1637 1638
int kvm_arch_init(void *opaque)
{
1639
	int err;
1640
	int ret, cpu;
1641
	bool in_hyp_mode;
1642 1643

	if (!is_hyp_mode_available()) {
1644
		kvm_info("HYP mode not available\n");
1645 1646 1647
		return -ENODEV;
	}

1648 1649 1650 1651
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1652 1653 1654
		return -ENODEV;
	}

1655 1656 1657 1658 1659 1660
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1661 1662
	}

1663
	err = init_common_resources();
1664
	if (err)
1665
		return err;
1666

1667 1668 1669 1670
	err = kvm_arm_init_arch_resources();
	if (err)
		return err;

1671
	if (!in_hyp_mode) {
1672
		err = init_hyp_mode();
1673 1674 1675
		if (err)
			goto out_err;
	}
1676

1677 1678 1679
	err = init_subsystems();
	if (err)
		goto out_hyp;
1680

1681 1682 1683 1684 1685
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1686
	return 0;
1687 1688

out_hyp:
1689 1690
	if (!in_hyp_mode)
		teardown_hyp_mode();
1691 1692
out_err:
	return err;
1693 1694 1695 1696 1697
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1698
	kvm_perf_teardown();
1699 1700 1701 1702 1703 1704 1705 1706 1707
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);