arm.c 37.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, version 2, as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 */

19
#include <linux/bug.h>
20
#include <linux/cpu_pm.h>
21 22 23
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
24
#include <linux/list.h>
25 26 27 28 29
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
30
#include <linux/kvm.h>
31 32
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
33
#include <linux/sched/stat.h>
34
#include <trace/events/kvm.h>
35
#include <kvm/arm_pmu.h>
36
#include <kvm/arm_psci.h>
37 38 39 40

#define CREATE_TRACE_POINTS
#include "trace.h"

41
#include <linux/uaccess.h>
42 43
#include <asm/ptrace.h>
#include <asm/mman.h>
44
#include <asm/tlbflush.h>
45
#include <asm/cacheflush.h>
46
#include <asm/cpufeature.h>
47 48 49 50
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
51
#include <asm/kvm_emulate.h>
52
#include <asm/kvm_coproc.h>
53
#include <asm/sections.h>
54 55 56 57 58

#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

59
DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 61
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

62 63 64
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

65 66
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 68
static u32 kvm_next_vmid;
static unsigned int kvm_vmid_bits __read_mostly;
69
static DEFINE_SPINLOCK(kvm_vmid_lock);
70

71 72
static bool vgic_present;

73 74
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

75 76
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
77
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 79
}

80 81
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

82 83 84 85 86 87
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
88
	return __this_cpu_read(kvm_arm_running_vcpu);
89 90 91 92 93
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
94
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 96 97 98
{
	return &kvm_arm_running_vcpu;
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

void kvm_arch_check_processor_compat(void *rtn)
{
	*(int *)rtn = 0;
}


115 116 117 118
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
119 120
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
121
	int ret, cpu;
122

123
	ret = kvm_arm_setup_stage2(kvm, type);
124 125
	if (ret)
		return ret;
126

127 128 129 130 131 132 133
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

134 135 136 137
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

138
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
139 140 141
	if (ret)
		goto out_free_stage2_pgd;

142
	kvm_vgic_early_init(kvm);
143

144 145 146
	/* Mark the initial VMID generation invalid */
	kvm->arch.vmid_gen = 0;

147
	/* The maximum number of VCPUs is limited by the host's GIC model */
148 149
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
150

151 152 153 154
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
155 156
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
157
	return ret;
158 159
}

160 161 162 163 164 165 166 167 168 169
bool kvm_arch_has_vcpu_debugfs(void)
{
	return false;
}

int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

170
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
171 172 173 174 175
{
	return VM_FAULT_SIGBUS;
}


176 177 178 179
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
180 181 182 183
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

184 185
	kvm_vgic_destroy(kvm);

186 187 188
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

189 190 191 192 193 194
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
			kvm_arch_vcpu_free(kvm->vcpus[i]);
			kvm->vcpus[i] = NULL;
		}
	}
195
	atomic_set(&kvm->online_vcpus, 0);
196 197
}

198
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
199 200 201
{
	int r;
	switch (ext) {
202
	case KVM_CAP_IRQCHIP:
203 204
		r = vgic_present;
		break;
205
	case KVM_CAP_IOEVENTFD:
206
	case KVM_CAP_DEVICE_CTRL:
207 208 209 210
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
211
	case KVM_CAP_ARM_PSCI:
212
	case KVM_CAP_ARM_PSCI_0_2:
213
	case KVM_CAP_READONLY_MEM:
214
	case KVM_CAP_MP_STATE:
215
	case KVM_CAP_IMMEDIATE_EXIT:
216
	case KVM_CAP_VCPU_EVENTS:
217 218
		r = 1;
		break;
219 220
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
221
		break;
222 223 224 225 226 227
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
228 229 230
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
V
Vladimir Murzin 已提交
231 232 233 234 235 236
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
237 238 239 240 241 242 243
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
244
	default:
245
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
246 247 248 249 250 251 252 253 254 255 256
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
272 273 274 275 276 277

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

278 279 280 281 282
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

283 284 285 286 287
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

288 289 290 291 292 293 294 295 296 297
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

298
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
299 300 301
	if (err)
		goto vcpu_uninit;

302
	return vcpu;
303 304
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
305 306 307 308 309 310
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

311
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
312 313 314 315 316
{
}

void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
317 318 319
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

320
	kvm_mmu_free_memory_caches(vcpu);
321
	kvm_timer_vcpu_terminate(vcpu);
322
	kvm_pmu_vcpu_destroy(vcpu);
323
	kvm_vcpu_uninit(vcpu);
324
	kmem_cache_free(kvm_vcpu_cache, vcpu);
325 326 327 328 329 330 331 332 333
}

void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	kvm_arch_vcpu_free(vcpu);
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
334
	return kvm_timer_is_pending(vcpu);
335 336
}

337 338 339
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_schedule(vcpu);
340
	kvm_vgic_v4_enable_doorbell(vcpu);
341 342 343 344 345
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	kvm_timer_unschedule(vcpu);
346
	kvm_vgic_v4_disable_doorbell(vcpu);
347 348
}

349 350
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
351 352
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
353
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
354

355 356 357
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

358 359
	kvm_arm_reset_debug_ptr(vcpu);

360
	return kvm_vgic_vcpu_init(vcpu);
361 362 363 364
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
365 366 367 368 369 370 371 372 373 374 375 376 377
	int *last_ran;

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

378
	vcpu->cpu = cpu;
379
	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
380

381
	kvm_arm_set_running_vcpu(vcpu);
382
	kvm_vgic_load(vcpu);
383
	kvm_timer_vcpu_load(vcpu);
384
	kvm_vcpu_load_sysregs(vcpu);
385
	kvm_arch_vcpu_load_fp(vcpu);
386 387 388 389 390

	if (single_task_running())
		vcpu_clear_wfe_traps(vcpu);
	else
		vcpu_set_wfe_traps(vcpu);
391 392 393 394
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
395
	kvm_arch_vcpu_put_fp(vcpu);
396
	kvm_vcpu_put_sysregs(vcpu);
397
	kvm_timer_vcpu_put(vcpu);
398 399
	kvm_vgic_put(vcpu);

400 401
	vcpu->cpu = -1;

402
	kvm_arm_set_running_vcpu(NULL);
403 404
}

A
Andrew Jones 已提交
405 406 407
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
408
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
409 410 411
	kvm_vcpu_kick(vcpu);
}

412 413 414
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
415
	if (vcpu->arch.power_off)
416 417 418 419 420
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
421 422 423 424 425
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
426 427
	int ret = 0;

428 429
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
430
		vcpu->arch.power_off = false;
431 432
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
433
		vcpu_power_off(vcpu);
434 435
		break;
	default:
436
		ret = -EINVAL;
437 438
	}

439
	return ret;
440 441
}

442 443 444 445 446 447 448
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
449 450
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
451 452
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
453
		&& !v->arch.power_off && !v->arch.pause);
454 455
}

456 457
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
458
	return vcpu_mode_priv(vcpu);
459 460
}

461 462 463 464 465 466 467
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
468
	preempt_disable();
469
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
470
	preempt_enable();
471 472 473 474
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
A
Andrea Gelmini 已提交
475
 * @kvm: The VM's VMID to check
476 477 478 479 480 481 482 483 484 485 486
 *
 * return true if there is a new generation of VMIDs being used
 *
 * The hardware supports only 256 values with the value zero reserved for the
 * host, so we check if an assigned value belongs to a previous generation,
 * which which requires us to assign a new value. If we're the first to use a
 * VMID for the new generation, we must flush necessary caches and TLBs on all
 * CPUs.
 */
static bool need_new_vmid_gen(struct kvm *kvm)
{
487 488 489
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
	return unlikely(READ_ONCE(kvm->arch.vmid_gen) != current_vmid_gen);
490 491 492 493 494 495 496 497 498 499 500 501 502
}

/**
 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 * @kvm	The guest that we are about to run
 *
 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 * caches and TLBs.
 */
static void update_vttbr(struct kvm *kvm)
{
	phys_addr_t pgd_phys;
503
	u64 vmid, cnp = kvm_cpu_has_cnp() ? VTTBR_CNP_BIT : 0;
504

505
	if (!need_new_vmid_gen(kvm))
506 507
		return;

508
	spin_lock(&kvm_vmid_lock);
509 510 511 512 513 514 515

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
	if (!need_new_vmid_gen(kvm)) {
516
		spin_unlock(&kvm_vmid_lock);
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

	kvm->arch.vmid = kvm_next_vmid;
	kvm_next_vmid++;
541
	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
542 543

	/* update vttbr to be used with the new vmid */
544
	pgd_phys = virt_to_phys(kvm->arch.pgd);
545
	BUG_ON(pgd_phys & ~kvm_vttbr_baddr_mask(kvm));
546
	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
547
	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid | cnp;
548

549 550 551 552
	smp_wmb();
	WRITE_ONCE(kvm->arch.vmid_gen, atomic64_read(&kvm_vmid_gen));

	spin_unlock(&kvm_vmid_lock);
553 554 555 556
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
557
	struct kvm *kvm = vcpu->kvm;
558
	int ret = 0;
559

560 561 562 563
	if (likely(vcpu->arch.has_run_once))
		return 0;

	vcpu->arch.has_run_once = true;
564

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
581 582
	}

583
	ret = kvm_timer_enable(vcpu);
584 585 586 587
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
588

589
	return ret;
590 591
}

592 593 594 595 596
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

597
void kvm_arm_halt_guest(struct kvm *kvm)
598 599 600 601 602 603
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
604
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
605 606
}

607
void kvm_arm_resume_guest(struct kvm *kvm)
608 609 610 611
{
	int i;
	struct kvm_vcpu *vcpu;

612 613
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
614
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
615
	}
616 617
}

618
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
619
{
620
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
621

622
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
623
				       (!vcpu->arch.pause)));
624

A
Andrew Jones 已提交
625
	if (vcpu->arch.power_off || vcpu->arch.pause) {
626
		/* Awaken to handle a signal, request we sleep again later. */
627
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
628
	}
629 630
}

631 632 633 634 635
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

636 637 638
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
639 640
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
641 642 643 644 645 646

		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
647 648 649
	}
}

650 651 652 653 654 655 656 657 658 659 660
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
661 662
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
663 664
	int ret;

665
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
666 667 668 669
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
670
		return ret;
671

C
Christoffer Dall 已提交
672 673 674
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
675
			return ret;
C
Christoffer Dall 已提交
676 677
	}

678 679 680 681
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
682

683
	kvm_sigset_activate(vcpu);
684 685 686 687 688 689 690 691 692 693 694

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

		update_vttbr(vcpu->kvm);

695 696
		check_vcpu_requests(vcpu);

697 698 699 700 701
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
702
		preempt_disable();
703

704
		kvm_pmu_flush_hwstate(vcpu);
705

706 707
		local_irq_disable();

708 709
		kvm_vgic_flush_hwstate(vcpu);

710
		/*
711 712
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
713
		 */
714
		if (signal_pending(current)) {
715 716 717 718
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

734 735 736 737 738 739 740 741
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
		 * Documentation/virtual/kvm/vcpu-requests.rst
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

742
		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
A
Andrew Jones 已提交
743
		    kvm_request_pending(vcpu)) {
744
			vcpu->mode = OUTSIDE_GUEST_MODE;
745
			isb(); /* Ensure work in x_flush_hwstate is committed */
746
			kvm_pmu_sync_hwstate(vcpu);
747 748
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
749
			kvm_vgic_sync_hwstate(vcpu);
750
			local_irq_enable();
751
			preempt_enable();
752 753 754
			continue;
		}

755 756
		kvm_arm_setup_debug(vcpu);

757 758 759 760
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
761
		guest_enter_irqoff();
762

763 764 765
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
766
			kvm_arm_vhe_guest_exit();
767 768 769 770
		} else {
			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
		}

771
		vcpu->mode = OUTSIDE_GUEST_MODE;
772
		vcpu->stat.exits++;
773 774 775 776
		/*
		 * Back from guest
		 *************************************************************/

777 778
		kvm_arm_clear_debug(vcpu);

779
		/*
780
		 * We must sync the PMU state before the vgic state so
781 782 783 784 785
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

786 787 788 789 790
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
791 792
		kvm_vgic_sync_hwstate(vcpu);

793 794 795 796 797
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
798 799
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
800

801 802
		kvm_arch_vcpu_ctxsync_fp(vcpu);

803 804 805 806 807 808 809 810 811 812 813 814 815
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
816
		 * We do local_irq_enable() before calling guest_exit() so
817 818
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
819
		 * preemption after calling guest_exit() so that if we get
820 821 822
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
823
		guest_exit();
824
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
825

826 827 828
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

829 830
		preempt_enable();

831 832 833
		ret = handle_exit(vcpu, run, ret);
	}

834
	/* Tell userspace about in-kernel device output levels */
835 836 837 838
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
839

840 841
	kvm_sigset_deactivate(vcpu);

842
	vcpu_put(vcpu);
843
	return ret;
844 845
}

846 847 848 849
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
850
	unsigned long *hcr;
851 852 853 854 855 856

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

857
	hcr = vcpu_hcr(vcpu);
858
	if (level)
859
		set = test_and_set_bit(bit_index, hcr);
860
	else
861
		set = test_and_clear_bit(bit_index, hcr);
862 863 864 865 866 867 868 869 870 871 872 873

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
874
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
875 876 877 878 879
	kvm_vcpu_kick(vcpu);

	return 0;
}

880 881
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
882 883 884 885 886 887 888 889 890 891 892 893 894
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

895 896 897 898
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
899

900 901
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
902

903 904 905
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
906

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
924

925
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
926 927 928 929
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

930
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
931 932
			return -EINVAL;

933
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
934 935 936
	}

	return -EINVAL;
937 938
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
	unsigned int i;
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
	return kvm_reset_vcpu(vcpu);
}


981 982 983 984 985 986 987 988 989
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

990 991 992 993 994 995 996
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

997 998
	vcpu_reset_hcr(vcpu);

999
	/*
1000
	 * Handle the "start in power-off" case.
1001
	 */
1002
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1003
		vcpu_power_off(vcpu);
1004
	else
1005
		vcpu->arch.power_off = false;
1006 1007 1008 1009

	return 0;
}

1010 1011 1012 1013 1014 1015 1016
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1017
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1031
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1045
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1046 1047 1048 1049 1050 1051
		break;
	}

	return ret;
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1078 1079 1080 1081 1082
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1083
	struct kvm_device_attr attr;
1084 1085
	long r;

1086 1087 1088 1089
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1090
		r = -EFAULT;
1091
		if (copy_from_user(&init, argp, sizeof(init)))
1092
			break;
1093

1094 1095
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1096 1097 1098 1099
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1100

1101
		r = -ENOEXEC;
1102
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1103
			break;
1104

1105
		r = -EFAULT;
1106
		if (copy_from_user(&reg, argp, sizeof(reg)))
1107 1108
			break;

1109
		if (ioctl == KVM_SET_ONE_REG)
1110
			r = kvm_arm_set_reg(vcpu, &reg);
1111
		else
1112 1113
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1114 1115 1116 1117 1118 1119
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1120
		r = -ENOEXEC;
1121
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1122
			break;
1123

1124
		r = -EFAULT;
1125
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1126
			break;
1127 1128 1129
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1130 1131
			break;
		r = -E2BIG;
1132
		if (n < reg_list.n)
1133 1134 1135
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1136
	}
1137
	case KVM_SET_DEVICE_ATTR: {
1138
		r = -EFAULT;
1139
		if (copy_from_user(&attr, argp, sizeof(attr)))
1140 1141 1142
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1143 1144
	}
	case KVM_GET_DEVICE_ATTR: {
1145
		r = -EFAULT;
1146
		if (copy_from_user(&attr, argp, sizeof(attr)))
1147 1148 1149
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1150 1151
	}
	case KVM_HAS_DEVICE_ATTR: {
1152
		r = -EFAULT;
1153
		if (copy_from_user(&attr, argp, sizeof(attr)))
1154 1155 1156
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1157
	}
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1177
	default:
1178
		r = -EINVAL;
1179
	}
1180 1181

	return r;
1182 1183
}

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1203 1204
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1205
	bool flush = false;
1206 1207 1208 1209
	int r;

	mutex_lock(&kvm->slots_lock);

1210
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1211

1212
	if (flush)
1213 1214 1215 1216
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1217 1218
}

1219 1220 1221
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1222 1223 1224 1225
	int r;

	mutex_lock(&kvm->slots_lock);

1226
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1227

1228
	if (flush)
1229 1230 1231 1232
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1233 1234
}

1235 1236 1237
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1238 1239 1240 1241 1242 1243 1244 1245 1246
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1247 1248
		if (!vgic_present)
			return -ENXIO;
1249
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1250 1251 1252
	default:
		return -ENODEV;
	}
1253 1254
}

1255 1256 1257
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1258 1259 1260 1261
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1262
	case KVM_CREATE_IRQCHIP: {
1263
		int ret;
1264 1265
		if (!vgic_present)
			return -ENXIO;
1266 1267 1268 1269
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1270
	}
1271 1272 1273 1274 1275 1276 1277
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1291 1292 1293
	default:
		return -EINVAL;
	}
1294 1295
}

1296
static void cpu_init_hyp_mode(void *dummy)
1297
{
1298
	phys_addr_t pgd_ptr;
1299 1300 1301 1302 1303
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1304
	__hyp_set_vectors(kvm_get_idmap_vector());
1305

1306
	pgd_ptr = kvm_mmu_get_httbr();
1307
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1308
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1309
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1310

M
Marc Zyngier 已提交
1311
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1312
	__cpu_init_stage2();
1313 1314
}

1315 1316 1317 1318 1319 1320
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1321 1322
static void cpu_hyp_reinit(void)
{
1323 1324
	cpu_hyp_reset();

1325
	if (is_kernel_in_hyp_mode())
1326
		kvm_timer_init_vhe();
1327
	else
1328
		cpu_init_hyp_mode(NULL);
1329

1330
	kvm_arm_init_debug();
1331 1332 1333

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1334 1335
}

1336 1337 1338
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1339
		cpu_hyp_reinit();
1340
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1341
	}
1342
}
1343

1344 1345 1346 1347
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1348 1349
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1362

1363 1364 1365 1366 1367
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1383
		return NOTIFY_OK;
1384
	case CPU_PM_ENTER_FAILED:
1385 1386 1387 1388
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1389

1390 1391 1392 1393 1394
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1405 1406 1407 1408
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1409 1410 1411 1412
#else
static inline void hyp_cpu_pm_init(void)
{
}
1413 1414 1415
static inline void hyp_cpu_pm_exit(void)
{
}
1416 1417
#endif

1418 1419
static int init_common_resources(void)
{
1420 1421 1422 1423
	/* set size of VMID supported by CPU */
	kvm_vmid_bits = kvm_get_vmid_bits();
	kvm_info("%d-bit VMID\n", kvm_vmid_bits);

1424 1425
	kvm_set_ipa_limit();

1426 1427 1428 1429 1430
	return 0;
}

static int init_subsystems(void)
{
1431
	int err = 0;
1432

1433
	/*
1434
	 * Enable hardware so that subsystem initialisation can access EL2.
1435
	 */
1436
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1437 1438 1439 1440 1441 1442

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1454
		err = 0;
1455 1456
		break;
	default:
1457
		goto out;
1458 1459 1460 1461 1462
	}

	/*
	 * Init HYP architected timer support
	 */
1463
	err = kvm_timer_hyp_init(vgic_present);
1464
	if (err)
1465
		goto out;
1466 1467 1468 1469

	kvm_perf_init();
	kvm_coproc_table_init();

1470 1471 1472 1473
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1474 1475 1476 1477 1478 1479 1480 1481 1482
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1483
	hyp_cpu_pm_exit();
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1510
			goto out_err;
1511 1512 1513 1514 1515 1516 1517 1518
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1519
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1520
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1521 1522
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1523
		goto out_err;
1524 1525
	}

1526
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1527
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1528 1529
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1530 1531 1532 1533 1534 1535 1536
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1537
		goto out_err;
1538 1539
	}

1540 1541 1542 1543 1544 1545
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1546 1547 1548 1549 1550
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1551 1552
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1553 1554 1555

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1556
			goto out_err;
1557 1558 1559 1560
		}
	}

	for_each_possible_cpu(cpu) {
1561
		kvm_cpu_context_t *cpu_ctxt;
1562

1563
		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1564
		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1565 1566

		if (err) {
1567
			kvm_err("Cannot map host CPU state: %d\n", err);
1568
			goto out_err;
1569 1570 1571
		}
	}

1572 1573 1574 1575
	err = hyp_map_aux_data();
	if (err)
		kvm_err("Cannot map host auxilary data: %d\n", err);

1576
	return 0;
1577

1578
out_err:
1579
	teardown_hyp_mode();
1580 1581 1582 1583
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1584 1585 1586 1587 1588
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1613 1614
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1615 1616 1617 1618 1619 1620 1621
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1622 1623
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1642 1643 1644
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1645 1646
int kvm_arch_init(void *opaque)
{
1647
	int err;
1648
	int ret, cpu;
1649
	bool in_hyp_mode;
1650 1651

	if (!is_hyp_mode_available()) {
1652
		kvm_info("HYP mode not available\n");
1653 1654 1655
		return -ENODEV;
	}

1656 1657 1658 1659
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1660 1661 1662
		return -ENODEV;
	}

1663 1664 1665 1666 1667 1668
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1669 1670
	}

1671
	err = init_common_resources();
1672
	if (err)
1673
		return err;
1674

1675
	if (!in_hyp_mode) {
1676
		err = init_hyp_mode();
1677 1678 1679
		if (err)
			goto out_err;
	}
1680

1681 1682 1683
	err = init_subsystems();
	if (err)
		goto out_hyp;
1684

1685 1686 1687 1688 1689
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1690
	return 0;
1691 1692

out_hyp:
1693 1694
	if (!in_hyp_mode)
		teardown_hyp_mode();
1695 1696
out_err:
	return err;
1697 1698 1699 1700 1701
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1702
	kvm_perf_teardown();
1703 1704 1705 1706 1707 1708 1709 1710 1711
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);