arm.c 38.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2 3 4 5 6
/*
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
 */

7
#include <linux/bug.h>
8
#include <linux/cpu_pm.h>
9 10 11
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/kvm_host.h>
12
#include <linux/list.h>
13 14 15 16 17
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
18
#include <linux/kvm.h>
19 20
#include <linux/kvm_irqfd.h>
#include <linux/irqbypass.h>
21
#include <linux/sched/stat.h>
22
#include <trace/events/kvm.h>
23
#include <kvm/arm_pmu.h>
24
#include <kvm/arm_psci.h>
25 26 27 28

#define CREATE_TRACE_POINTS
#include "trace.h"

29
#include <linux/uaccess.h>
30 31
#include <asm/ptrace.h>
#include <asm/mman.h>
32
#include <asm/tlbflush.h>
33
#include <asm/cacheflush.h>
34
#include <asm/cpufeature.h>
35 36 37 38
#include <asm/virt.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_asm.h>
#include <asm/kvm_mmu.h>
39
#include <asm/kvm_emulate.h>
40
#include <asm/kvm_coproc.h>
41
#include <asm/sections.h>
42

43 44 45 46
#include <kvm/arm_hypercalls.h>
#include <kvm/arm_pmu.h>
#include <kvm/arm_psci.h>

47 48 49 50
#ifdef REQUIRES_VIRT
__asm__(".arch_extension	virt");
#endif

51
DEFINE_PER_CPU(kvm_host_data_t, kvm_host_data);
52 53
static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);

54 55 56
/* Per-CPU variable containing the currently running vcpu. */
static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);

57 58
/* The VMID used in the VTTBR */
static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
59
static u32 kvm_next_vmid;
60
static DEFINE_SPINLOCK(kvm_vmid_lock);
61

62 63
static bool vgic_present;

64 65
static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);

66 67
static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
{
68
	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
69 70
}

71 72
DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);

73 74 75 76 77 78
/**
 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
 * Must be called from non-preemptible context
 */
struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
{
79
	return __this_cpu_read(kvm_arm_running_vcpu);
80 81 82 83 84
}

/**
 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
 */
85
struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 87 88 89
{
	return &kvm_arm_running_vcpu;
}

90 91 92 93 94 95 96 97 98 99
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
}

int kvm_arch_hardware_setup(void)
{
	return 0;
}

100
int kvm_arch_check_processor_compat(void)
101
{
102
	return 0;
103 104
}

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
			    struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
	case KVM_CAP_ARM_NISV_TO_USER:
		r = 0;
		kvm->arch.return_nisv_io_abort_to_user = true;
		break;
	default:
		r = -EINVAL;
		break;
	}

	return r;
}
125

126 127 128 129
/**
 * kvm_arch_init_vm - initializes a VM data structure
 * @kvm:	pointer to the KVM struct
 */
130 131
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
132
	int ret, cpu;
133

134
	ret = kvm_arm_setup_stage2(kvm, type);
135 136
	if (ret)
		return ret;
137

138 139 140 141 142 143 144
	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
	if (!kvm->arch.last_vcpu_ran)
		return -ENOMEM;

	for_each_possible_cpu(cpu)
		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;

145 146 147 148
	ret = kvm_alloc_stage2_pgd(kvm);
	if (ret)
		goto out_fail_alloc;

149
	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
150 151 152
	if (ret)
		goto out_free_stage2_pgd;

153
	kvm_vgic_early_init(kvm);
154

155
	/* Mark the initial VMID generation invalid */
156
	kvm->arch.vmid.vmid_gen = 0;
157

158
	/* The maximum number of VCPUs is limited by the host's GIC model */
159 160
	kvm->arch.max_vcpus = vgic_present ?
				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
161

162 163 164 165
	return ret;
out_free_stage2_pgd:
	kvm_free_stage2_pgd(kvm);
out_fail_alloc:
166 167
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;
168
	return ret;
169 170
}

171 172 173 174 175
int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
{
	return 0;
}

176
vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
177 178 179 180 181
{
	return VM_FAULT_SIGBUS;
}


182 183 184 185
/**
 * kvm_arch_destroy_vm - destroy the VM data structure
 * @kvm:	pointer to the KVM struct
 */
186 187 188 189
void kvm_arch_destroy_vm(struct kvm *kvm)
{
	int i;

190 191
	kvm_vgic_destroy(kvm);

192 193 194
	free_percpu(kvm->arch.last_vcpu_ran);
	kvm->arch.last_vcpu_ran = NULL;

195 196
	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
		if (kvm->vcpus[i]) {
197
			kvm_arch_vcpu_destroy(kvm->vcpus[i]);
198 199 200
			kvm->vcpus[i] = NULL;
		}
	}
201
	atomic_set(&kvm->online_vcpus, 0);
202 203
}

204
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
205 206 207
{
	int r;
	switch (ext) {
208
	case KVM_CAP_IRQCHIP:
209 210
		r = vgic_present;
		break;
211
	case KVM_CAP_IOEVENTFD:
212
	case KVM_CAP_DEVICE_CTRL:
213 214 215 216
	case KVM_CAP_USER_MEMORY:
	case KVM_CAP_SYNC_MMU:
	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
	case KVM_CAP_ONE_REG:
217
	case KVM_CAP_ARM_PSCI:
218
	case KVM_CAP_ARM_PSCI_0_2:
219
	case KVM_CAP_READONLY_MEM:
220
	case KVM_CAP_MP_STATE:
221
	case KVM_CAP_IMMEDIATE_EXIT:
222
	case KVM_CAP_VCPU_EVENTS:
223
	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
224
	case KVM_CAP_ARM_NISV_TO_USER:
225
	case KVM_CAP_ARM_INJECT_EXT_DABT:
226 227
		r = 1;
		break;
228 229
	case KVM_CAP_ARM_SET_DEVICE_ADDR:
		r = 1;
230
		break;
231 232 233 234 235 236
	case KVM_CAP_NR_VCPUS:
		r = num_online_cpus();
		break;
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
237 238 239
	case KVM_CAP_MAX_VCPU_ID:
		r = KVM_MAX_VCPU_ID;
		break;
V
Vladimir Murzin 已提交
240 241 242 243 244 245
	case KVM_CAP_MSI_DEVID:
		if (!kvm)
			r = -EINVAL;
		else
			r = kvm->arch.vgic.msis_require_devid;
		break;
246 247 248 249 250 251 252
	case KVM_CAP_ARM_USER_IRQ:
		/*
		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
		 * (bump this number if adding more devices)
		 */
		r = 1;
		break;
253
	default:
254
		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
255 256 257 258 259 260 261 262 263 264 265
		break;
	}
	return r;
}

long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	return -EINVAL;
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
struct kvm *kvm_arch_alloc_vm(void)
{
	if (!has_vhe())
		return kzalloc(sizeof(struct kvm), GFP_KERNEL);

	return vzalloc(sizeof(struct kvm));
}

void kvm_arch_free_vm(struct kvm *kvm)
{
	if (!has_vhe())
		kfree(kvm);
	else
		vfree(kvm);
}
281 282 283 284 285 286

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
	int err;
	struct kvm_vcpu *vcpu;

287 288 289 290 291
	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
		err = -EBUSY;
		goto out;
	}

292 293 294 295 296
	if (id >= kvm->arch.max_vcpus) {
		err = -EINVAL;
		goto out;
	}

297 298 299 300 301 302 303 304 305 306
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
	if (!vcpu) {
		err = -ENOMEM;
		goto out;
	}

	err = kvm_vcpu_init(vcpu, kvm, id);
	if (err)
		goto free_vcpu;

307
	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
308 309 310
	if (err)
		goto vcpu_uninit;

311
	return vcpu;
312 313
vcpu_uninit:
	kvm_vcpu_uninit(vcpu);
314 315 316 317 318 319
free_vcpu:
	kmem_cache_free(kvm_vcpu_cache, vcpu);
out:
	return ERR_PTR(err);
}

320
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
321 322 323
{
}

324
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
325
{
326 327 328
	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
		static_branch_dec(&userspace_irqchip_in_use);

329
	kvm_mmu_free_memory_caches(vcpu);
330
	kvm_timer_vcpu_terminate(vcpu);
331
	kvm_pmu_vcpu_destroy(vcpu);
332
	kvm_vcpu_uninit(vcpu);
333
	kmem_cache_free(kvm_vcpu_cache, vcpu);
334 335 336 337
}

int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
338
	return kvm_timer_is_pending(vcpu);
339 340
}

341 342
void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
343 344 345
	/*
	 * If we're about to block (most likely because we've just hit a
	 * WFI), we need to sync back the state of the GIC CPU interface
346
	 * so that we have the latest PMR and group enables. This ensures
347 348
	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
	 * whether we have pending interrupts.
349 350 351
	 *
	 * For the same reason, we want to tell GICv4 that we need
	 * doorbells to be signalled, should an interrupt become pending.
352 353 354
	 */
	preempt_disable();
	kvm_vgic_vmcr_sync(vcpu);
355
	vgic_v4_put(vcpu, true);
356
	preempt_enable();
357 358 359 360
}

void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
361 362 363
	preempt_disable();
	vgic_v4_load(vcpu);
	preempt_enable();
364 365
}

366 367
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
368 369
	/* Force users to call KVM_ARM_VCPU_INIT */
	vcpu->arch.target = -1;
370
	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
371

372 373 374
	/* Set up the timer */
	kvm_timer_vcpu_init(vcpu);

375 376
	kvm_pmu_vcpu_init(vcpu);

377 378
	kvm_arm_reset_debug_ptr(vcpu);

379 380
	kvm_arm_pvtime_vcpu_init(&vcpu->arch);

381
	return kvm_vgic_vcpu_init(vcpu);
382 383 384 385
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
386
	int *last_ran;
387
	kvm_host_data_t *cpu_data;
388 389

	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
390
	cpu_data = this_cpu_ptr(&kvm_host_data);
391 392 393 394 395 396 397 398 399 400

	/*
	 * We might get preempted before the vCPU actually runs, but
	 * over-invalidation doesn't affect correctness.
	 */
	if (*last_ran != vcpu->vcpu_id) {
		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
		*last_ran = vcpu->vcpu_id;
	}

401
	vcpu->cpu = cpu;
402
	vcpu->arch.host_cpu_context = &cpu_data->host_ctxt;
403

404
	kvm_arm_set_running_vcpu(vcpu);
405
	kvm_vgic_load(vcpu);
406
	kvm_timer_vcpu_load(vcpu);
407
	kvm_vcpu_load_sysregs(vcpu);
408
	kvm_arch_vcpu_load_fp(vcpu);
409
	kvm_vcpu_pmu_restore_guest(vcpu);
410 411
	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
412 413

	if (single_task_running())
414
		vcpu_clear_wfx_traps(vcpu);
415
	else
416
		vcpu_set_wfx_traps(vcpu);
417 418

	vcpu_ptrauth_setup_lazy(vcpu);
419 420 421 422
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
423
	kvm_arch_vcpu_put_fp(vcpu);
424
	kvm_vcpu_put_sysregs(vcpu);
425
	kvm_timer_vcpu_put(vcpu);
426
	kvm_vgic_put(vcpu);
427
	kvm_vcpu_pmu_restore_host(vcpu);
428

429 430
	vcpu->cpu = -1;

431
	kvm_arm_set_running_vcpu(NULL);
432 433
}

A
Andrew Jones 已提交
434 435 436
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
	vcpu->arch.power_off = true;
437
	kvm_make_request(KVM_REQ_SLEEP, vcpu);
A
Andrew Jones 已提交
438 439 440
	kvm_vcpu_kick(vcpu);
}

441 442 443
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
444
	if (vcpu->arch.power_off)
445 446 447 448 449
		mp_state->mp_state = KVM_MP_STATE_STOPPED;
	else
		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;

	return 0;
450 451 452 453 454
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
455 456
	int ret = 0;

457 458
	switch (mp_state->mp_state) {
	case KVM_MP_STATE_RUNNABLE:
459
		vcpu->arch.power_off = false;
460 461
		break;
	case KVM_MP_STATE_STOPPED:
A
Andrew Jones 已提交
462
		vcpu_power_off(vcpu);
463 464
		break;
	default:
465
		ret = -EINVAL;
466 467
	}

468
	return ret;
469 470
}

471 472 473 474 475 476 477
/**
 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 * @v:		The VCPU pointer
 *
 * If the guest CPU is not waiting for interrupts or an interrupt line is
 * asserted, the CPU is by definition runnable.
 */
478 479
int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
{
480 481
	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
482
		&& !v->arch.power_off && !v->arch.pause);
483 484
}

485 486
bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
{
487
	return vcpu_mode_priv(vcpu);
488 489
}

490 491 492 493 494 495 496
/* Just ensure a guest exit from a particular CPU */
static void exit_vm_noop(void *info)
{
}

void force_vm_exit(const cpumask_t *mask)
{
497
	preempt_disable();
498
	smp_call_function_many(mask, exit_vm_noop, NULL, true);
499
	preempt_enable();
500 501 502 503
}

/**
 * need_new_vmid_gen - check that the VMID is still valid
504
 * @vmid: The VMID to check
505 506 507
 *
 * return true if there is a new generation of VMIDs being used
 *
508 509 510 511 512
 * The hardware supports a limited set of values with the value zero reserved
 * for the host, so we check if an assigned value belongs to a previous
 * generation, which which requires us to assign a new value. If we're the
 * first to use a VMID for the new generation, we must flush necessary caches
 * and TLBs on all CPUs.
513
 */
514
static bool need_new_vmid_gen(struct kvm_vmid *vmid)
515
{
516 517
	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
518
	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
519 520 521
}

/**
522 523 524
 * update_vmid - Update the vmid with a valid VMID for the current generation
 * @kvm: The guest that struct vmid belongs to
 * @vmid: The stage-2 VMID information struct
525
 */
526
static void update_vmid(struct kvm_vmid *vmid)
527
{
528
	if (!need_new_vmid_gen(vmid))
529 530
		return;

531
	spin_lock(&kvm_vmid_lock);
532 533 534 535 536 537

	/*
	 * We need to re-check the vmid_gen here to ensure that if another vcpu
	 * already allocated a valid vmid for this vm, then this vcpu should
	 * use the same vmid.
	 */
538
	if (!need_new_vmid_gen(vmid)) {
539
		spin_unlock(&kvm_vmid_lock);
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
		return;
	}

	/* First user of a new VMID generation? */
	if (unlikely(kvm_next_vmid == 0)) {
		atomic64_inc(&kvm_vmid_gen);
		kvm_next_vmid = 1;

		/*
		 * On SMP we know no other CPUs can use this CPU's or each
		 * other's VMID after force_vm_exit returns since the
		 * kvm_vmid_lock blocks them from reentry to the guest.
		 */
		force_vm_exit(cpu_all_mask);
		/*
		 * Now broadcast TLB + ICACHE invalidation over the inner
		 * shareable domain to make sure all data structures are
		 * clean.
		 */
		kvm_call_hyp(__kvm_flush_vm_context);
	}

562
	vmid->vmid = kvm_next_vmid;
563
	kvm_next_vmid++;
564
	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
565

566
	smp_wmb();
567
	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
568 569

	spin_unlock(&kvm_vmid_lock);
570 571 572 573
}

static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
{
574
	struct kvm *kvm = vcpu->kvm;
575
	int ret = 0;
576

577 578 579
	if (likely(vcpu->arch.has_run_once))
		return 0;

580 581 582
	if (!kvm_arm_vcpu_is_finalized(vcpu))
		return -EPERM;

583
	vcpu->arch.has_run_once = true;
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
	if (likely(irqchip_in_kernel(kvm))) {
		/*
		 * Map the VGIC hardware resources before running a vcpu the
		 * first time on this VM.
		 */
		if (unlikely(!vgic_ready(kvm))) {
			ret = kvm_vgic_map_resources(kvm);
			if (ret)
				return ret;
		}
	} else {
		/*
		 * Tell the rest of the code that there are userspace irqchip
		 * VMs in the wild.
		 */
		static_branch_inc(&userspace_irqchip_in_use);
601 602
	}

603
	ret = kvm_timer_enable(vcpu);
604 605 606 607
	if (ret)
		return ret;

	ret = kvm_arm_pmu_v3_enable(vcpu);
608

609
	return ret;
610 611
}

612 613 614 615 616
bool kvm_arch_intc_initialized(struct kvm *kvm)
{
	return vgic_initialized(kvm);
}

617
void kvm_arm_halt_guest(struct kvm *kvm)
618 619 620 621 622 623
{
	int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.pause = true;
624
	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
625 626
}

627
void kvm_arm_resume_guest(struct kvm *kvm)
628 629 630 631
{
	int i;
	struct kvm_vcpu *vcpu;

632 633
	kvm_for_each_vcpu(i, vcpu, kvm) {
		vcpu->arch.pause = false;
634
		swake_up_one(kvm_arch_vcpu_wq(vcpu));
635
	}
636 637
}

638
static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
639
{
640
	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
641

642
	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
643
				       (!vcpu->arch.pause)));
644

A
Andrew Jones 已提交
645
	if (vcpu->arch.power_off || vcpu->arch.pause) {
646
		/* Awaken to handle a signal, request we sleep again later. */
647
		kvm_make_request(KVM_REQ_SLEEP, vcpu);
648
	}
649 650 651 652 653 654 655

	/*
	 * Make sure we will observe a potential reset request if we've
	 * observed a change to the power state. Pairs with the smp_wmb() in
	 * kvm_psci_vcpu_on().
	 */
	smp_rmb();
656 657
}

658 659 660 661 662
static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.target >= 0;
}

663 664 665
static void check_vcpu_requests(struct kvm_vcpu *vcpu)
{
	if (kvm_request_pending(vcpu)) {
666 667
		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
			vcpu_req_sleep(vcpu);
668

669 670 671
		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
			kvm_reset_vcpu(vcpu);

672 673 674 675 676
		/*
		 * Clear IRQ_PENDING requests that were made to guarantee
		 * that a VCPU sees new virtual interrupts.
		 */
		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
677 678 679

		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
			kvm_update_stolen_time(vcpu);
680 681 682
	}
}

683 684 685 686 687 688 689 690 691 692 693
/**
 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 * @vcpu:	The VCPU pointer
 * @run:	The kvm_run structure pointer used for userspace state exchange
 *
 * This function is called through the VCPU_RUN ioctl called from user space. It
 * will execute VM code in a loop until the time slice for the process is used
 * or some emulation is needed from user space in which case the function will
 * return with return value 0 and with the kvm_run structure filled in with the
 * required data for the requested emulation.
 */
694 695
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
696 697
	int ret;

698
	if (unlikely(!kvm_vcpu_initialized(vcpu)))
699 700 701 702
		return -ENOEXEC;

	ret = kvm_vcpu_first_run_init(vcpu);
	if (ret)
703
		return ret;
704

C
Christoffer Dall 已提交
705 706 707
	if (run->exit_reason == KVM_EXIT_MMIO) {
		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
		if (ret)
708
			return ret;
C
Christoffer Dall 已提交
709 710
	}

711 712 713 714
	if (run->immediate_exit)
		return -EINTR;

	vcpu_load(vcpu);
715

716
	kvm_sigset_activate(vcpu);
717 718 719 720 721 722 723 724 725

	ret = 1;
	run->exit_reason = KVM_EXIT_UNKNOWN;
	while (ret > 0) {
		/*
		 * Check conditions before entering the guest
		 */
		cond_resched();

726
		update_vmid(&vcpu->kvm->arch.vmid);
727

728 729
		check_vcpu_requests(vcpu);

730 731 732 733 734
		/*
		 * Preparing the interrupts to be injected also
		 * involves poking the GIC, which must be done in a
		 * non-preemptible context.
		 */
735
		preempt_disable();
736

737
		kvm_pmu_flush_hwstate(vcpu);
738

739 740
		local_irq_disable();

741 742
		kvm_vgic_flush_hwstate(vcpu);

743
		/*
744 745
		 * Exit if we have a signal pending so that we can deliver the
		 * signal to user space.
746
		 */
747
		if (signal_pending(current)) {
748 749 750 751
			ret = -EINTR;
			run->exit_reason = KVM_EXIT_INTR;
		}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
		/*
		 * If we're using a userspace irqchip, then check if we need
		 * to tell a userspace irqchip about timer or PMU level
		 * changes and if so, exit to userspace (the actual level
		 * state gets updated in kvm_timer_update_run and
		 * kvm_pmu_update_run below).
		 */
		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
			if (kvm_timer_should_notify_user(vcpu) ||
			    kvm_pmu_should_notify_user(vcpu)) {
				ret = -EINTR;
				run->exit_reason = KVM_EXIT_INTR;
			}
		}

767 768 769 770
		/*
		 * Ensure we set mode to IN_GUEST_MODE after we disable
		 * interrupts and before the final VCPU requests check.
		 * See the comment in kvm_vcpu_exiting_guest_mode() and
771
		 * Documentation/virt/kvm/vcpu-requests.rst
772 773 774
		 */
		smp_store_mb(vcpu->mode, IN_GUEST_MODE);

775
		if (ret <= 0 || need_new_vmid_gen(&vcpu->kvm->arch.vmid) ||
A
Andrew Jones 已提交
776
		    kvm_request_pending(vcpu)) {
777
			vcpu->mode = OUTSIDE_GUEST_MODE;
778
			isb(); /* Ensure work in x_flush_hwstate is committed */
779
			kvm_pmu_sync_hwstate(vcpu);
780 781
			if (static_branch_unlikely(&userspace_irqchip_in_use))
				kvm_timer_sync_hwstate(vcpu);
782
			kvm_vgic_sync_hwstate(vcpu);
783
			local_irq_enable();
784
			preempt_enable();
785 786 787
			continue;
		}

788 789
		kvm_arm_setup_debug(vcpu);

790 791 792 793
		/**************************************************************
		 * Enter the guest
		 */
		trace_kvm_entry(*vcpu_pc(vcpu));
794
		guest_enter_irqoff();
795

796 797 798
		if (has_vhe()) {
			kvm_arm_vhe_guest_enter();
			ret = kvm_vcpu_run_vhe(vcpu);
799
			kvm_arm_vhe_guest_exit();
800
		} else {
801
			ret = kvm_call_hyp_ret(__kvm_vcpu_run_nvhe, vcpu);
802 803
		}

804
		vcpu->mode = OUTSIDE_GUEST_MODE;
805
		vcpu->stat.exits++;
806 807 808 809
		/*
		 * Back from guest
		 *************************************************************/

810 811
		kvm_arm_clear_debug(vcpu);

812
		/*
813
		 * We must sync the PMU state before the vgic state so
814 815 816 817 818
		 * that the vgic can properly sample the updated state of the
		 * interrupt line.
		 */
		kvm_pmu_sync_hwstate(vcpu);

819 820 821 822 823
		/*
		 * Sync the vgic state before syncing the timer state because
		 * the timer code needs to know if the virtual timer
		 * interrupts are active.
		 */
824 825
		kvm_vgic_sync_hwstate(vcpu);

826 827 828 829 830
		/*
		 * Sync the timer hardware state before enabling interrupts as
		 * we don't want vtimer interrupts to race with syncing the
		 * timer virtual interrupt state.
		 */
831 832
		if (static_branch_unlikely(&userspace_irqchip_in_use))
			kvm_timer_sync_hwstate(vcpu);
833

834 835
		kvm_arch_vcpu_ctxsync_fp(vcpu);

836 837 838 839 840 841 842 843 844 845 846 847 848
		/*
		 * We may have taken a host interrupt in HYP mode (ie
		 * while executing the guest). This interrupt is still
		 * pending, as we haven't serviced it yet!
		 *
		 * We're now back in SVC mode, with interrupts
		 * disabled.  Enabling the interrupts now will have
		 * the effect of taking the interrupt again, in SVC
		 * mode this time.
		 */
		local_irq_enable();

		/*
849
		 * We do local_irq_enable() before calling guest_exit() so
850 851
		 * that if a timer interrupt hits while running the guest we
		 * account that tick as being spent in the guest.  We enable
852
		 * preemption after calling guest_exit() so that if we get
853 854 855
		 * preempted we make sure ticks after that is not counted as
		 * guest time.
		 */
856
		guest_exit();
857
		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
858

859 860 861
		/* Exit types that need handling before we can be preempted */
		handle_exit_early(vcpu, run, ret);

862 863
		preempt_enable();

864 865 866
		ret = handle_exit(vcpu, run, ret);
	}

867
	/* Tell userspace about in-kernel device output levels */
868 869 870 871
	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
		kvm_timer_update_run(vcpu);
		kvm_pmu_update_run(vcpu);
	}
872

873 874
	kvm_sigset_deactivate(vcpu);

875
	vcpu_put(vcpu);
876
	return ret;
877 878
}

879 880 881 882
static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
{
	int bit_index;
	bool set;
883
	unsigned long *hcr;
884 885 886 887 888 889

	if (number == KVM_ARM_IRQ_CPU_IRQ)
		bit_index = __ffs(HCR_VI);
	else /* KVM_ARM_IRQ_CPU_FIQ */
		bit_index = __ffs(HCR_VF);

890
	hcr = vcpu_hcr(vcpu);
891
	if (level)
892
		set = test_and_set_bit(bit_index, hcr);
893
	else
894
		set = test_and_clear_bit(bit_index, hcr);
895 896 897 898 899 900 901 902 903 904 905 906

	/*
	 * If we didn't change anything, no need to wake up or kick other CPUs
	 */
	if (set == level)
		return 0;

	/*
	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
	 * trigger a world-switch round on the running physical CPU to set the
	 * virtual IRQ/FIQ fields in the HCR appropriately.
	 */
907
	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
908 909 910 911 912
	kvm_vcpu_kick(vcpu);

	return 0;
}

913 914
int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
			  bool line_status)
915 916 917 918 919 920 921 922 923
{
	u32 irq = irq_level->irq;
	unsigned int irq_type, vcpu_idx, irq_num;
	int nrcpus = atomic_read(&kvm->online_vcpus);
	struct kvm_vcpu *vcpu = NULL;
	bool level = irq_level->level;

	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
924
	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
925 926 927 928
	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;

	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);

929 930 931 932
	switch (irq_type) {
	case KVM_ARM_IRQ_TYPE_CPU:
		if (irqchip_in_kernel(kvm))
			return -ENXIO;
933

934 935
		if (vcpu_idx >= nrcpus)
			return -EINVAL;
936

937 938 939
		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;
940

941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
			return -EINVAL;

		return vcpu_interrupt_line(vcpu, irq_num, level);
	case KVM_ARM_IRQ_TYPE_PPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

		if (vcpu_idx >= nrcpus)
			return -EINVAL;

		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
		if (!vcpu)
			return -EINVAL;

		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
			return -EINVAL;
958

959
		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
960 961 962 963
	case KVM_ARM_IRQ_TYPE_SPI:
		if (!irqchip_in_kernel(kvm))
			return -ENXIO;

964
		if (irq_num < VGIC_NR_PRIVATE_IRQS)
965 966
			return -EINVAL;

967
		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
968 969 970
	}

	return -EINVAL;
971 972
}

973 974 975
static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
			       const struct kvm_vcpu_init *init)
{
976
	unsigned int i, ret;
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
	int phys_target = kvm_target_cpu();

	if (init->target != phys_target)
		return -EINVAL;

	/*
	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
	 * use the same target.
	 */
	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
		return -EINVAL;

	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
	for (i = 0; i < sizeof(init->features) * 8; i++) {
		bool set = (init->features[i / 32] & (1 << (i % 32)));

		if (set && i >= KVM_VCPU_MAX_FEATURES)
			return -ENOENT;

		/*
		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
		 * use the same feature set.
		 */
		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
		    test_bit(i, vcpu->arch.features) != set)
			return -EINVAL;

		if (set)
			set_bit(i, vcpu->arch.features);
	}

	vcpu->arch.target = phys_target;

	/* Now we know what it is, we can reset it. */
1011 1012 1013 1014 1015
	ret = kvm_reset_vcpu(vcpu);
	if (ret) {
		vcpu->arch.target = -1;
		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
	}
1016

1017 1018
	return ret;
}
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028
static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
					 struct kvm_vcpu_init *init)
{
	int ret;

	ret = kvm_vcpu_set_target(vcpu, init);
	if (ret)
		return ret;

1029 1030 1031 1032 1033 1034 1035
	/*
	 * Ensure a rebooted VM will fault in RAM pages and detect if the
	 * guest MMU is turned off and flush the caches as needed.
	 */
	if (vcpu->arch.has_run_once)
		stage2_unmap_vm(vcpu->kvm);

1036 1037
	vcpu_reset_hcr(vcpu);

1038
	/*
1039
	 * Handle the "start in power-off" case.
1040
	 */
1041
	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
A
Andrew Jones 已提交
1042
		vcpu_power_off(vcpu);
1043
	else
1044
		vcpu->arch.power_off = false;
1045 1046 1047 1048

	return 0;
}

1049 1050 1051 1052 1053 1054 1055
static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1056
		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1070
		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
		break;
	}

	return ret;
}

static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
				 struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->group) {
	default:
1084
		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1085 1086 1087 1088 1089 1090
		break;
	}

	return ret;
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	memset(events, 0, sizeof(*events));

	return __kvm_arm_vcpu_get_events(vcpu, events);
}

static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
				   struct kvm_vcpu_events *events)
{
	int i;

	/* check whether the reserved field is zero */
	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
		if (events->reserved[i])
			return -EINVAL;

	/* check whether the pad field is zero */
	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
		if (events->exception.pad[i])
			return -EINVAL;

	return __kvm_arm_vcpu_set_events(vcpu, events);
}

1117 1118 1119 1120 1121
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
1122
	struct kvm_device_attr attr;
1123 1124
	long r;

1125 1126 1127 1128
	switch (ioctl) {
	case KVM_ARM_VCPU_INIT: {
		struct kvm_vcpu_init init;

1129
		r = -EFAULT;
1130
		if (copy_from_user(&init, argp, sizeof(init)))
1131
			break;
1132

1133 1134
		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
		break;
1135 1136 1137 1138
	}
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
1139

1140
		r = -ENOEXEC;
1141
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1142
			break;
1143

1144
		r = -EFAULT;
1145
		if (copy_from_user(&reg, argp, sizeof(reg)))
1146 1147
			break;

1148
		if (ioctl == KVM_SET_ONE_REG)
1149
			r = kvm_arm_set_reg(vcpu, &reg);
1150
		else
1151 1152
			r = kvm_arm_get_reg(vcpu, &reg);
		break;
1153 1154 1155 1156 1157 1158
	}
	case KVM_GET_REG_LIST: {
		struct kvm_reg_list __user *user_list = argp;
		struct kvm_reg_list reg_list;
		unsigned n;

1159
		r = -ENOEXEC;
1160
		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1161
			break;
1162

1163 1164 1165 1166
		r = -EPERM;
		if (!kvm_arm_vcpu_is_finalized(vcpu))
			break;

1167
		r = -EFAULT;
1168
		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1169
			break;
1170 1171 1172
		n = reg_list.n;
		reg_list.n = kvm_arm_num_regs(vcpu);
		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1173 1174
			break;
		r = -E2BIG;
1175
		if (n < reg_list.n)
1176 1177 1178
			break;
		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
		break;
1179
	}
1180
	case KVM_SET_DEVICE_ATTR: {
1181
		r = -EFAULT;
1182
		if (copy_from_user(&attr, argp, sizeof(attr)))
1183 1184 1185
			break;
		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
		break;
1186 1187
	}
	case KVM_GET_DEVICE_ATTR: {
1188
		r = -EFAULT;
1189
		if (copy_from_user(&attr, argp, sizeof(attr)))
1190 1191 1192
			break;
		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
		break;
1193 1194
	}
	case KVM_HAS_DEVICE_ATTR: {
1195
		r = -EFAULT;
1196
		if (copy_from_user(&attr, argp, sizeof(attr)))
1197 1198 1199
			break;
		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
		break;
1200
	}
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
	case KVM_GET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (kvm_arm_vcpu_get_events(vcpu, &events))
			return -EINVAL;

		if (copy_to_user(argp, &events, sizeof(events)))
			return -EFAULT;

		return 0;
	}
	case KVM_SET_VCPU_EVENTS: {
		struct kvm_vcpu_events events;

		if (copy_from_user(&events, argp, sizeof(events)))
			return -EFAULT;

		return kvm_arm_vcpu_set_events(vcpu, &events);
	}
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
	case KVM_ARM_VCPU_FINALIZE: {
		int what;

		if (!kvm_vcpu_initialized(vcpu))
			return -ENOEXEC;

		if (get_user(what, (const int __user *)argp))
			return -EFAULT;

		return kvm_arm_vcpu_finalize(vcpu, what);
	}
1231
	default:
1232
		r = -EINVAL;
1233
	}
1234 1235

	return r;
1236 1237
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
/**
 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 * @kvm: kvm instance
 * @log: slot id and address to which we copy the log
 *
 * Steps 1-4 below provide general overview of dirty page logging. See
 * kvm_get_dirty_log_protect() function description for additional details.
 *
 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 * always flush the TLB (step 4) even if previous step failed  and the dirty
 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 * writes will be marked dirty for next log read.
 *
 *   1. Take a snapshot of the bit and clear it if needed.
 *   2. Write protect the corresponding page.
 *   3. Copy the snapshot to the userspace.
 *   4. Flush TLB's if needed.
 */
1257 1258
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
1259
	bool flush = false;
1260 1261 1262 1263
	int r;

	mutex_lock(&kvm->slots_lock);

1264
	r = kvm_get_dirty_log_protect(kvm, log, &flush);
1265

1266
	if (flush)
1267 1268 1269 1270
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1271 1272
}

1273 1274 1275
int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
{
	bool flush = false;
1276 1277 1278 1279
	int r;

	mutex_lock(&kvm->slots_lock);

1280
	r = kvm_clear_dirty_log_protect(kvm, log, &flush);
1281

1282
	if (flush)
1283 1284 1285 1286
		kvm_flush_remote_tlbs(kvm);

	mutex_unlock(&kvm->slots_lock);
	return r;
1287 1288
}

1289 1290 1291
static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
					struct kvm_arm_device_addr *dev_addr)
{
1292 1293 1294 1295 1296 1297 1298 1299 1300
	unsigned long dev_id, type;

	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
		KVM_ARM_DEVICE_ID_SHIFT;
	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
		KVM_ARM_DEVICE_TYPE_SHIFT;

	switch (dev_id) {
	case KVM_ARM_DEVICE_VGIC_V2:
1301 1302
		if (!vgic_present)
			return -ENXIO;
1303
		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1304 1305 1306
	default:
		return -ENODEV;
	}
1307 1308
}

1309 1310 1311
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
1312 1313 1314 1315
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;

	switch (ioctl) {
1316
	case KVM_CREATE_IRQCHIP: {
1317
		int ret;
1318 1319
		if (!vgic_present)
			return -ENXIO;
1320 1321 1322 1323
		mutex_lock(&kvm->lock);
		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
		mutex_unlock(&kvm->lock);
		return ret;
1324
	}
1325 1326 1327 1328 1329 1330 1331
	case KVM_ARM_SET_DEVICE_ADDR: {
		struct kvm_arm_device_addr dev_addr;

		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
			return -EFAULT;
		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
	}
1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
	case KVM_ARM_PREFERRED_TARGET: {
		int err;
		struct kvm_vcpu_init init;

		err = kvm_vcpu_preferred_target(&init);
		if (err)
			return err;

		if (copy_to_user(argp, &init, sizeof(init)))
			return -EFAULT;

		return 0;
	}
1345 1346 1347
	default:
		return -EINVAL;
	}
1348 1349
}

1350
static void cpu_init_hyp_mode(void)
1351
{
1352
	phys_addr_t pgd_ptr;
1353 1354 1355 1356 1357
	unsigned long hyp_stack_ptr;
	unsigned long stack_page;
	unsigned long vector_ptr;

	/* Switch from the HYP stub to our own HYP init vector */
1358
	__hyp_set_vectors(kvm_get_idmap_vector());
1359

1360
	pgd_ptr = kvm_mmu_get_httbr();
1361
	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1362
	hyp_stack_ptr = stack_page + PAGE_SIZE;
1363
	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1364

M
Marc Zyngier 已提交
1365
	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1366
	__cpu_init_stage2();
1367 1368
}

1369 1370 1371 1372 1373 1374
static void cpu_hyp_reset(void)
{
	if (!is_kernel_in_hyp_mode())
		__hyp_reset_vectors();
}

1375 1376
static void cpu_hyp_reinit(void)
{
1377 1378
	kvm_init_host_cpu_context(&this_cpu_ptr(&kvm_host_data)->host_ctxt);

1379 1380
	cpu_hyp_reset();

1381
	if (is_kernel_in_hyp_mode())
1382
		kvm_timer_init_vhe();
1383
	else
1384
		cpu_init_hyp_mode();
1385

1386
	kvm_arm_init_debug();
1387 1388 1389

	if (vgic_present)
		kvm_vgic_init_cpu_hardware();
1390 1391
}

1392 1393 1394
static void _kvm_arch_hardware_enable(void *discard)
{
	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1395
		cpu_hyp_reinit();
1396
		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1397
	}
1398
}
1399

1400 1401 1402 1403
int kvm_arch_hardware_enable(void)
{
	_kvm_arch_hardware_enable(NULL);
	return 0;
1404 1405
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
static void _kvm_arch_hardware_disable(void *discard)
{
	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
		cpu_hyp_reset();
		__this_cpu_write(kvm_arm_hardware_enabled, 0);
	}
}

void kvm_arch_hardware_disable(void)
{
	_kvm_arch_hardware_disable(NULL);
}
1418

1419 1420 1421 1422 1423
#ifdef CONFIG_CPU_PM
static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
				    unsigned long cmd,
				    void *v)
{
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
	/*
	 * kvm_arm_hardware_enabled is left with its old value over
	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
	 * re-enable hyp.
	 */
	switch (cmd) {
	case CPU_PM_ENTER:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/*
			 * don't update kvm_arm_hardware_enabled here
			 * so that the hardware will be re-enabled
			 * when we resume. See below.
			 */
			cpu_hyp_reset();

1439
		return NOTIFY_OK;
1440
	case CPU_PM_ENTER_FAILED:
1441 1442 1443 1444
	case CPU_PM_EXIT:
		if (__this_cpu_read(kvm_arm_hardware_enabled))
			/* The hardware was enabled before suspend. */
			cpu_hyp_reinit();
1445

1446 1447 1448 1449 1450
		return NOTIFY_OK;

	default:
		return NOTIFY_DONE;
	}
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
}

static struct notifier_block hyp_init_cpu_pm_nb = {
	.notifier_call = hyp_init_cpu_pm_notifier,
};

static void __init hyp_cpu_pm_init(void)
{
	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
}
1461 1462 1463 1464
static void __init hyp_cpu_pm_exit(void)
{
	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
}
1465 1466 1467 1468
#else
static inline void hyp_cpu_pm_init(void)
{
}
1469 1470 1471
static inline void hyp_cpu_pm_exit(void)
{
}
1472 1473
#endif

1474 1475
static int init_common_resources(void)
{
1476 1477
	kvm_set_ipa_limit();

1478 1479 1480 1481 1482
	return 0;
}

static int init_subsystems(void)
{
1483
	int err = 0;
1484

1485
	/*
1486
	 * Enable hardware so that subsystem initialisation can access EL2.
1487
	 */
1488
	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1489 1490 1491 1492 1493 1494

	/*
	 * Register CPU lower-power notifier
	 */
	hyp_cpu_pm_init();

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	/*
	 * Init HYP view of VGIC
	 */
	err = kvm_vgic_hyp_init();
	switch (err) {
	case 0:
		vgic_present = true;
		break;
	case -ENODEV:
	case -ENXIO:
		vgic_present = false;
1506
		err = 0;
1507 1508
		break;
	default:
1509
		goto out;
1510 1511 1512 1513 1514
	}

	/*
	 * Init HYP architected timer support
	 */
1515
	err = kvm_timer_hyp_init(vgic_present);
1516
	if (err)
1517
		goto out;
1518 1519 1520 1521

	kvm_perf_init();
	kvm_coproc_table_init();

1522 1523 1524 1525
out:
	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);

	return err;
1526 1527 1528 1529 1530 1531 1532 1533 1534
}

static void teardown_hyp_mode(void)
{
	int cpu;

	free_hyp_pgds();
	for_each_possible_cpu(cpu)
		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1535
	hyp_cpu_pm_exit();
1536 1537
}

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/**
 * Inits Hyp-mode on all online CPUs
 */
static int init_hyp_mode(void)
{
	int cpu;
	int err = 0;

	/*
	 * Allocate Hyp PGD and setup Hyp identity mapping
	 */
	err = kvm_mmu_init();
	if (err)
		goto out_err;

	/*
	 * Allocate stack pages for Hypervisor-mode
	 */
	for_each_possible_cpu(cpu) {
		unsigned long stack_page;

		stack_page = __get_free_page(GFP_KERNEL);
		if (!stack_page) {
			err = -ENOMEM;
1562
			goto out_err;
1563 1564 1565 1566 1567 1568 1569 1570
		}

		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
	}

	/*
	 * Map the Hyp-code called directly from the host
	 */
1571
	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1572
				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1573 1574
	if (err) {
		kvm_err("Cannot map world-switch code\n");
1575
		goto out_err;
1576 1577
	}

1578
	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1579
				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1580 1581
	if (err) {
		kvm_err("Cannot map rodata section\n");
M
Marc Zyngier 已提交
1582 1583 1584 1585 1586 1587 1588
		goto out_err;
	}

	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
	if (err) {
		kvm_err("Cannot map bss section\n");
1589
		goto out_err;
1590 1591
	}

1592 1593 1594 1595 1596 1597
	err = kvm_map_vectors();
	if (err) {
		kvm_err("Cannot map vectors\n");
		goto out_err;
	}

1598 1599 1600 1601 1602
	/*
	 * Map the Hyp stack pages
	 */
	for_each_possible_cpu(cpu) {
		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1603 1604
		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
					  PAGE_HYP);
1605 1606 1607

		if (err) {
			kvm_err("Cannot map hyp stack\n");
1608
			goto out_err;
1609 1610 1611 1612
		}
	}

	for_each_possible_cpu(cpu) {
1613
		kvm_host_data_t *cpu_data;
1614

1615 1616
		cpu_data = per_cpu_ptr(&kvm_host_data, cpu);
		err = create_hyp_mappings(cpu_data, cpu_data + 1, PAGE_HYP);
1617 1618

		if (err) {
1619
			kvm_err("Cannot map host CPU state: %d\n", err);
1620
			goto out_err;
1621 1622 1623
		}
	}

1624 1625
	err = hyp_map_aux_data();
	if (err)
1626
		kvm_err("Cannot map host auxiliary data: %d\n", err);
1627

1628
	return 0;
1629

1630
out_err:
1631
	teardown_hyp_mode();
1632 1633 1634 1635
	kvm_err("error initializing Hyp mode: %d\n", err);
	return err;
}

1636 1637 1638 1639 1640
static void check_kvm_target_cpu(void *ret)
{
	*(int *)ret = kvm_target_cpu();
}

1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
{
	struct kvm_vcpu *vcpu;
	int i;

	mpidr &= MPIDR_HWID_BITMASK;
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
			return vcpu;
	}
	return NULL;
}

1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
bool kvm_arch_has_irq_bypass(void)
{
	return true;
}

int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1665 1666
	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
					  &irqfd->irq_entry);
1667 1668 1669 1670 1671 1672 1673
}
void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
				      struct irq_bypass_producer *prod)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

1674 1675
	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
				     &irqfd->irq_entry);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
}

void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_halt_guest(irqfd->kvm);
}

void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
{
	struct kvm_kernel_irqfd *irqfd =
		container_of(cons, struct kvm_kernel_irqfd, consumer);

	kvm_arm_resume_guest(irqfd->kvm);
}

1694 1695 1696
/**
 * Initialize Hyp-mode and memory mappings on all CPUs.
 */
1697 1698
int kvm_arch_init(void *opaque)
{
1699
	int err;
1700
	int ret, cpu;
1701
	bool in_hyp_mode;
1702 1703

	if (!is_hyp_mode_available()) {
1704
		kvm_info("HYP mode not available\n");
1705 1706 1707
		return -ENODEV;
	}

1708 1709 1710 1711
	in_hyp_mode = is_kernel_in_hyp_mode();

	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1712 1713 1714
		return -ENODEV;
	}

1715 1716 1717 1718 1719 1720
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
		if (ret < 0) {
			kvm_err("Error, CPU %d not supported!\n", cpu);
			return -ENODEV;
		}
1721 1722
	}

1723
	err = init_common_resources();
1724
	if (err)
1725
		return err;
1726

1727
	err = kvm_arm_init_sve();
1728 1729 1730
	if (err)
		return err;

1731
	if (!in_hyp_mode) {
1732
		err = init_hyp_mode();
1733 1734 1735
		if (err)
			goto out_err;
	}
1736

1737 1738 1739
	err = init_subsystems();
	if (err)
		goto out_hyp;
1740

1741 1742 1743 1744 1745
	if (in_hyp_mode)
		kvm_info("VHE mode initialized successfully\n");
	else
		kvm_info("Hyp mode initialized successfully\n");

1746
	return 0;
1747 1748

out_hyp:
1749 1750
	if (!in_hyp_mode)
		teardown_hyp_mode();
1751 1752
out_err:
	return err;
1753 1754 1755 1756 1757
}

/* NOP: Compiling as a module not supported */
void kvm_arch_exit(void)
{
1758
	kvm_perf_teardown();
1759 1760 1761 1762 1763 1764 1765 1766 1767
}

static int arm_init(void)
{
	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
	return rc;
}

module_init(arm_init);