compression.c 40.4 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
C
Chris Mason 已提交
20 21 22 23 24 25 26 27 28 29
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
	}

	return NULL;
}

45
static int btrfs_decompress_bio(struct compressed_bio *cb);
46

47
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
48 49
				      unsigned long disk_size)
{
50
	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
51

52
	return sizeof(struct compressed_bio) +
53
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
54 55
}

56
static int check_compressed_csum(struct btrfs_inode *inode,
57 58 59 60 61 62 63 64 65 66
				 struct compressed_bio *cb,
				 u64 disk_start)
{
	int ret;
	struct page *page;
	unsigned long i;
	char *kaddr;
	u32 csum;
	u32 *cb_sum = &cb->sums;

67
	if (inode->flags & BTRFS_INODE_NODATASUM)
68 69 70 71 72 73
		return 0;

	for (i = 0; i < cb->nr_pages; i++) {
		page = cb->compressed_pages[i];
		csum = ~(u32)0;

74
		kaddr = kmap_atomic(page);
75
		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
76
		btrfs_csum_final(csum, (u8 *)&csum);
77
		kunmap_atomic(kaddr);
78 79

		if (csum != *cb_sum) {
80
			btrfs_print_data_csum_error(inode, disk_start, csum,
81
					*cb_sum, cb->mirror_num);
82 83 84 85 86 87 88 89 90 91 92
			ret = -EIO;
			goto fail;
		}
		cb_sum++;

	}
	ret = 0;
fail:
	return ret;
}

C
Chris Mason 已提交
93 94 95 96 97 98 99 100 101 102
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
103
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
104 105 106 107 108
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;
109
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
110
	int ret = 0;
C
Chris Mason 已提交
111

112
	if (bio->bi_status)
C
Chris Mason 已提交
113 114 115 116 117
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
118
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
119 120
		goto out;

121 122 123 124 125 126 127 128
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	ASSERT(btrfs_io_bio(cb->orig_bio));
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

129 130 131 132 133 134 135
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

136
	inode = cb->inode;
137
	ret = check_compressed_csum(BTRFS_I(inode), cb,
138
				    (u64)bio->bi_iter.bi_sector << 9);
139 140 141
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
142 143 144
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
145 146
	ret = btrfs_decompress_bio(cb);

147
csum_failed:
C
Chris Mason 已提交
148 149 150 151 152 153 154 155
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
156
		put_page(page);
C
Chris Mason 已提交
157 158 159
	}

	/* do io completion on the original bio */
160
	if (cb->errors) {
C
Chris Mason 已提交
161
		bio_io_error(cb->orig_bio);
162
	} else {
163 164
		int i;
		struct bio_vec *bvec;
165 166 167 168 169

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
170
		ASSERT(!bio_flagged(bio, BIO_CLONED));
171
		bio_for_each_segment_all(bvec, cb->orig_bio, i)
172
			SetPageChecked(bvec->bv_page);
173

174
		bio_endio(cb->orig_bio);
175
	}
C
Chris Mason 已提交
176 177 178 179 180 181 182 183 184 185 186 187

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
188 189
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
190
{
191 192
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
193 194 195 196 197
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

198 199 200
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
201
	while (nr_pages > 0) {
C
Chris Mason 已提交
202
		ret = find_get_pages_contig(inode->i_mapping, index,
203 204
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
205 206 207 208 209 210
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
211 212
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
213
			end_page_writeback(pages[i]);
214
			put_page(pages[i]);
C
Chris Mason 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
230
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
231 232 233 234 235 236
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
	unsigned long index;

237
	if (bio->bi_status)
C
Chris Mason 已提交
238 239 240 241 242
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
243
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
244 245 246 247 248 249
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
C
Chris Mason 已提交
250
	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
251
	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
252
			cb->start, cb->start + cb->len - 1,
253
			bio->bi_status ? BLK_STS_OK : BLK_STS_NOTSUPP);
C
Chris Mason 已提交
254
	cb->compressed_pages[0]->mapping = NULL;
C
Chris Mason 已提交
255

256
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
257 258 259 260 261 262 263 264 265 266
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
267
		put_page(page);
C
Chris Mason 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
286
blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
C
Chris Mason 已提交
287 288 289
				 unsigned long len, u64 disk_start,
				 unsigned long compressed_len,
				 struct page **compressed_pages,
290 291
				 unsigned long nr_pages,
				 unsigned int write_flags)
C
Chris Mason 已提交
292
{
293
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
294 295 296
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
297
	int pg_index = 0;
C
Chris Mason 已提交
298 299 300
	struct page *page;
	u64 first_byte = disk_start;
	struct block_device *bdev;
301
	blk_status_t ret;
302
	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
C
Chris Mason 已提交
303

304
	WARN_ON(start & ((u64)PAGE_SIZE - 1));
305
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
306
	if (!cb)
307
		return BLK_STS_RESOURCE;
308
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
309 310 311 312
	cb->errors = 0;
	cb->inode = inode;
	cb->start = start;
	cb->len = len;
313
	cb->mirror_num = 0;
C
Chris Mason 已提交
314 315 316 317 318
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

319
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
320

321
	bio = btrfs_bio_alloc(bdev, first_byte);
322
	bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
323 324
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
325
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
326 327 328

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
329
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
330 331
		int submit = 0;

332
		page = compressed_pages[pg_index];
C
Chris Mason 已提交
333
		page->mapping = inode->i_mapping;
334
		if (bio->bi_iter.bi_size)
335 336
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
337

C
Chris Mason 已提交
338
		page->mapping = NULL;
339
		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
340
		    PAGE_SIZE) {
341 342 343 344 345 346
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
347
			refcount_inc(&cb->pending_bios);
348 349
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
350
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
351

352
			if (!skip_sum) {
353
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
354
				BUG_ON(ret); /* -ENOMEM */
355
			}
356

357
			ret = btrfs_map_bio(fs_info, bio, 0, 1);
358
			if (ret) {
359
				bio->bi_status = ret;
360 361
				bio_endio(bio);
			}
C
Chris Mason 已提交
362

363
			bio = btrfs_bio_alloc(bdev, first_byte);
364
			bio->bi_opf = REQ_OP_WRITE | write_flags;
C
Chris Mason 已提交
365 366
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
367
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
368
		}
369
		if (bytes_left < PAGE_SIZE) {
370
			btrfs_info(fs_info,
371
					"bytes left %lu compress len %lu nr %lu",
372 373
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
374 375
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
376
		cond_resched();
C
Chris Mason 已提交
377 378
	}

379
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
380
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
381

382
	if (!skip_sum) {
383
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
384
		BUG_ON(ret); /* -ENOMEM */
385
	}
386

387
	ret = btrfs_map_bio(fs_info, bio, 0, 1);
388
	if (ret) {
389
		bio->bi_status = ret;
390 391
		bio_endio(bio);
	}
C
Chris Mason 已提交
392 393 394 395

	return 0;
}

396 397
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
398
	struct bio_vec *last = bio_last_bvec_all(bio);
399 400 401 402

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

403 404 405 406 407
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
408
	unsigned long pg_index;
409 410 411 412 413 414 415 416 417 418 419 420
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

421
	last_offset = bio_end_offset(cb->orig_bio);
422 423 424 425 426 427
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

428
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
429

C
Chris Mason 已提交
430
	while (last_offset < compressed_end) {
431
		pg_index = last_offset >> PAGE_SHIFT;
432

433
		if (pg_index > end_index)
434 435
			break;

436
		page = xa_load(&mapping->i_pages, pg_index);
437
		if (page && !xa_is_value(page)) {
438 439 440 441 442 443
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

444 445
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
446 447 448
		if (!page)
			break;

449
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
450
			put_page(page);
451 452 453
			goto next;
		}

454
		end = last_offset + PAGE_SIZE - 1;
455 456 457 458 459 460
		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
		set_page_extent_mapped(page);
461
		lock_extent(tree, last_offset, end);
462
		read_lock(&em_tree->lock);
463
		em = lookup_extent_mapping(em_tree, last_offset,
464
					   PAGE_SIZE);
465
		read_unlock(&em_tree->lock);
466 467

		if (!em || last_offset < em->start ||
468
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
469
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
470
			free_extent_map(em);
471
			unlock_extent(tree, last_offset, end);
472
			unlock_page(page);
473
			put_page(page);
474 475 476 477 478 479
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
			char *userpage;
480
			size_t zero_offset = offset_in_page(isize);
481 482 483

			if (zero_offset) {
				int zeros;
484
				zeros = PAGE_SIZE - zero_offset;
485
				userpage = kmap_atomic(page);
486 487
				memset(userpage + zero_offset, 0, zeros);
				flush_dcache_page(page);
488
				kunmap_atomic(userpage);
489 490 491 492
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
493
				   PAGE_SIZE, 0);
494

495
		if (ret == PAGE_SIZE) {
496
			nr_pages++;
497
			put_page(page);
498
		} else {
499
			unlock_extent(tree, last_offset, end);
500
			unlock_page(page);
501
			put_page(page);
502 503 504
			break;
		}
next:
505
		last_offset += PAGE_SIZE;
506 507 508 509
	}
	return 0;
}

C
Chris Mason 已提交
510 511 512 513 514
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
515
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
516 517 518 519 520
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
521
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
522 523
				 int mirror_num, unsigned long bio_flags)
{
524
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
525 526 527 528
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
	unsigned long compressed_len;
	unsigned long nr_pages;
529
	unsigned long pg_index;
C
Chris Mason 已提交
530 531 532
	struct page *page;
	struct block_device *bdev;
	struct bio *comp_bio;
533
	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
534 535
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
536
	struct extent_map *em;
537
	blk_status_t ret = BLK_STS_RESOURCE;
538
	int faili = 0;
539
	u32 *sums;
C
Chris Mason 已提交
540 541 542 543

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
544
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
545
	em = lookup_extent_mapping(em_tree,
546
				   page_offset(bio_first_page_all(bio)),
547
				   PAGE_SIZE);
548
	read_unlock(&em_tree->lock);
549
	if (!em)
550
		return BLK_STS_IOERR;
C
Chris Mason 已提交
551

552
	compressed_len = em->block_len;
553
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
554 555 556
	if (!cb)
		goto out;

557
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
558 559
	cb->errors = 0;
	cb->inode = inode;
560 561
	cb->mirror_num = mirror_num;
	sums = &cb->sums;
C
Chris Mason 已提交
562

563
	cb->start = em->orig_start;
564 565
	em_len = em->len;
	em_start = em->start;
566

C
Chris Mason 已提交
567
	free_extent_map(em);
568
	em = NULL;
C
Chris Mason 已提交
569

C
Christoph Hellwig 已提交
570
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
571
	cb->compressed_len = compressed_len;
572
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
573 574
	cb->orig_bio = bio;

575
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
576
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
577
				       GFP_NOFS);
578 579 580
	if (!cb->compressed_pages)
		goto fail1;

581
	bdev = fs_info->fs_devices->latest_bdev;
C
Chris Mason 已提交
582

583 584
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
C
Chris Mason 已提交
585
							      __GFP_HIGHMEM);
586 587
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
588
			ret = BLK_STS_RESOURCE;
589
			goto fail2;
590
		}
C
Chris Mason 已提交
591
	}
592
	faili = nr_pages - 1;
C
Chris Mason 已提交
593 594
	cb->nr_pages = nr_pages;

595
	add_ra_bio_pages(inode, em_start + em_len, cb);
596 597

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
598
	cb->len = bio->bi_iter.bi_size;
599

600
	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
601
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
602 603
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
604
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
605

606
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
607 608
		int submit = 0;

609
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
610
		page->mapping = inode->i_mapping;
611
		page->index = em_start >> PAGE_SHIFT;
612

613
		if (comp_bio->bi_iter.bi_size)
614 615
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
							  comp_bio, 0);
C
Chris Mason 已提交
616

C
Chris Mason 已提交
617
		page->mapping = NULL;
618
		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
619
		    PAGE_SIZE) {
620 621
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
622
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
623

624 625 626 627 628 629
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
630
			refcount_inc(&cb->pending_bios);
631

632
			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
633 634
				ret = btrfs_lookup_bio_sums(inode, comp_bio,
							    sums);
635
				BUG_ON(ret); /* -ENOMEM */
636
			}
637
			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
638
					     fs_info->sectorsize);
639

640
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
641
			if (ret) {
642
				comp_bio->bi_status = ret;
643 644
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
645

646
			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
D
David Sterba 已提交
647
			comp_bio->bi_opf = REQ_OP_READ;
648 649 650
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

651
			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
652
		}
653
		cur_disk_byte += PAGE_SIZE;
C
Chris Mason 已提交
654 655
	}

656
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
657
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
658

659
	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
660
		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
661
		BUG_ON(ret); /* -ENOMEM */
662
	}
663

664
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
665
	if (ret) {
666
		comp_bio->bi_status = ret;
667 668
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
669 670

	return 0;
671 672

fail2:
673 674 675 676
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
677 678 679 680 681 682 683

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
684
}
685

686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
721 722

struct heuristic_ws {
723 724
	/* Partial copy of input data */
	u8 *sample;
725
	u32 sample_size;
726 727
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
728 729
	/* Sorting buffer */
	struct bucket_item *bucket_b;
730 731 732 733 734 735 736 737 738
	struct list_head list;
};

static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

739 740
	kvfree(workspace->sample);
	kfree(workspace->bucket);
741
	kfree(workspace->bucket_b);
742 743 744 745 746 747 748 749 750 751 752
	kfree(workspace);
}

static struct list_head *alloc_heuristic_ws(void)
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

753 754 755 756 757 758 759
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
760

761 762 763 764
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

765
	INIT_LIST_HEAD(&ws->list);
766
	return &ws->list;
767 768 769
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
770 771 772
}

struct workspaces_list {
773 774
	struct list_head idle_ws;
	spinlock_t ws_lock;
775 776 777 778 779
	/* Number of free workspaces */
	int free_ws;
	/* Total number of allocated workspaces */
	atomic_t total_ws;
	/* Waiters for a free workspace */
780
	wait_queue_head_t ws_wait;
781 782 783 784 785
};

static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];

static struct workspaces_list btrfs_heuristic_ws;
786

787
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
788
	&btrfs_zlib_compress,
L
Li Zefan 已提交
789
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
790
	&btrfs_zstd_compress,
791 792
};

793
void __init btrfs_init_compress(void)
794
{
795
	struct list_head *workspace;
796 797
	int i;

798 799 800 801
	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
802

803 804 805 806 807 808 809 810 811 812 813
	workspace = alloc_heuristic_ws();
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
	} else {
		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
		btrfs_heuristic_ws.free_ws = 1;
		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
	}

	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
814 815
		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
816
		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
817
		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
818 819 820 821 822 823 824

		/*
		 * Preallocate one workspace for each compression type so
		 * we can guarantee forward progress in the worst case
		 */
		workspace = btrfs_compress_op[i]->alloc_workspace();
		if (IS_ERR(workspace)) {
825
			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
826 827 828 829 830
		} else {
			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
			btrfs_comp_ws[i].free_ws = 1;
			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
		}
831 832 833 834
	}
}

/*
835 836 837 838
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
839
 */
840
static struct list_head *__find_workspace(int type, bool heuristic)
841 842 843 844
{
	struct list_head *workspace;
	int cpus = num_online_cpus();
	int idx = type - 1;
845
	unsigned nofs_flag;
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
865 866

again:
867 868 869
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
870
		list_del(workspace);
871
		(*free_ws)--;
872
		spin_unlock(ws_lock);
873 874 875
		return workspace;

	}
876
	if (atomic_read(total_ws) > cpus) {
877 878
		DEFINE_WAIT(wait);

879 880
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
881
		if (atomic_read(total_ws) > cpus && !*free_ws)
882
			schedule();
883
		finish_wait(ws_wait, &wait);
884 885
		goto again;
	}
886
	atomic_inc(total_ws);
887
	spin_unlock(ws_lock);
888

889 890 891 892 893 894
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
895 896 897 898
	if (heuristic)
		workspace = alloc_heuristic_ws();
	else
		workspace = btrfs_compress_op[idx]->alloc_workspace();
899 900
	memalloc_nofs_restore(nofs_flag);

901
	if (IS_ERR(workspace)) {
902
		atomic_dec(total_ws);
903
		wake_up(ws_wait);
904 905 906 907 908 909

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
910 911 912 913
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
914
		 */
915 916 917 918 919 920
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
921
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
922 923
			}
		}
924
		goto again;
925 926 927 928
	}
	return workspace;
}

929 930 931 932 933
static struct list_head *find_workspace(int type)
{
	return __find_workspace(type, false);
}

934 935 936 937
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
938 939
static void __free_workspace(int type, struct list_head *workspace,
			     bool heuristic)
940 941
{
	int idx = type - 1;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

	if (heuristic) {
		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
		total_ws = &btrfs_heuristic_ws.total_ws;
		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
		free_ws	 = &btrfs_heuristic_ws.free_ws;
	} else {
		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
		total_ws = &btrfs_comp_ws[idx].total_ws;
		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
		free_ws	 = &btrfs_comp_ws[idx].free_ws;
	}
961 962

	spin_lock(ws_lock);
963
	if (*free_ws <= num_online_cpus()) {
964
		list_add(workspace, idle_ws);
965
		(*free_ws)++;
966
		spin_unlock(ws_lock);
967 968
		goto wake;
	}
969
	spin_unlock(ws_lock);
970

971 972 973 974
	if (heuristic)
		free_heuristic_ws(workspace);
	else
		btrfs_compress_op[idx]->free_workspace(workspace);
975
	atomic_dec(total_ws);
976
wake:
977
	cond_wake_up(ws_wait);
978 979
}

980 981 982 983 984
static void free_workspace(int type, struct list_head *ws)
{
	return __free_workspace(type, ws, false);
}

985 986 987 988 989 990 991 992
/*
 * cleanup function for module exit
 */
static void free_workspaces(void)
{
	struct list_head *workspace;
	int i;

993 994 995 996 997 998 999
	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
		workspace = btrfs_heuristic_ws.idle_ws.next;
		list_del(workspace);
		free_heuristic_ws(workspace);
		atomic_dec(&btrfs_heuristic_ws.total_ws);
	}

1000
	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1001 1002
		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
			workspace = btrfs_comp_ws[i].idle_ws.next;
1003 1004
			list_del(workspace);
			btrfs_compress_op[i]->free_workspace(workspace);
1005
			atomic_dec(&btrfs_comp_ws[i].total_ws);
1006 1007 1008 1009 1010
		}
	}
}

/*
1011 1012
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1013
 *
1014 1015 1016 1017 1018
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1019 1020
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1021
 *
1022 1023
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1024 1025 1026
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1027 1028
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1029
 *
1030
 * @max_out tells us the max number of bytes that we're allowed to
1031 1032
 * stuff into pages
 */
1033
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1034
			 u64 start, struct page **pages,
1035 1036
			 unsigned long *out_pages,
			 unsigned long *total_in,
1037
			 unsigned long *total_out)
1038 1039 1040
{
	struct list_head *workspace;
	int ret;
1041
	int type = type_level & 0xF;
1042 1043 1044

	workspace = find_workspace(type);

1045
	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1046
	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1047
						      start, pages,
1048
						      out_pages,
1049
						      total_in, total_out);
1050 1051 1052 1053 1054 1055 1056 1057 1058
	free_workspace(type, workspace);
	return ret;
}

/*
 * pages_in is an array of pages with compressed data.
 *
 * disk_start is the starting logical offset of this array in the file
 *
1059
 * orig_bio contains the pages from the file that we want to decompress into
1060 1061 1062 1063 1064 1065 1066 1067
 *
 * srclen is the number of bytes in pages_in
 *
 * The basic idea is that we have a bio that was created by readpages.
 * The pages in the bio are for the uncompressed data, and they may not
 * be contiguous.  They all correspond to the range of bytes covered by
 * the compressed extent.
 */
1068
static int btrfs_decompress_bio(struct compressed_bio *cb)
1069 1070 1071
{
	struct list_head *workspace;
	int ret;
1072
	int type = cb->compress_type;
1073 1074

	workspace = find_workspace(type);
1075
	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1076
	free_workspace(type, workspace);
1077

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

	workspace = find_workspace(type);

	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
						  dest_page, start_byte,
						  srclen, destlen);

	free_workspace(type, workspace);
	return ret;
}

1102
void __cold btrfs_exit_compress(void)
1103 1104 1105
{
	free_workspaces();
}
1106 1107 1108 1109 1110 1111 1112 1113

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1114
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1115
			      unsigned long total_out, u64 disk_start,
1116
			      struct bio *bio)
1117 1118 1119 1120
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1121
	unsigned long prev_start_byte;
1122 1123 1124
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
	char *kaddr;
1125
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1126 1127 1128 1129 1130

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1131
	start_byte = page_offset(bvec.bv_page) - disk_start;
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1151 1152
		bytes = min_t(unsigned long, bvec.bv_len,
				PAGE_SIZE - buf_offset);
1153
		bytes = min(bytes, working_bytes);
1154 1155 1156

		kaddr = kmap_atomic(bvec.bv_page);
		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1157
		kunmap_atomic(kaddr);
1158
		flush_dcache_page(bvec.bv_page);
1159 1160 1161 1162 1163 1164

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1165 1166 1167 1168
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1169
		prev_start_byte = start_byte;
1170
		start_byte = page_offset(bvec.bv_page) - disk_start;
1171

1172
		/*
1173 1174 1175 1176
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1177
		 */
1178 1179 1180 1181 1182 1183 1184
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1185

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1197 1198 1199 1200 1201
		}
	}

	return 1;
}
1202

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
/*
 * Shannon Entropy calculation
 *
 * Pure byte distribution analysis fails to determine compressiability of data.
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
 * Use 16 u32 counters for calculating new possition in buf array
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1277
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1278
		       int num)
1279
{
1280 1281 1282 1283 1284 1285 1286 1287
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1288

1289 1290 1291 1292
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1293
	max_num = array[0].count;
1294
	for (i = 1; i < num; i++) {
1295
		buf_num = array[i].count;
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1308
			buf_num = array[i].count;
1309 1310 1311 1312 1313 1314 1315 1316
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1317
			buf_num = array[i].count;
1318 1319 1320
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1321
			array_buf[new_addr] = array[i];
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1335
			buf_num = array_buf[i].count;
1336 1337 1338 1339 1340 1341 1342 1343
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1344
			buf_num = array_buf[i].count;
1345 1346 1347
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1348
			array[new_addr] = array_buf[i];
1349 1350 1351 1352
		}

		shift += RADIX_BASE;
	}
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1382
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1438 1439 1440 1441 1442 1443 1444 1445
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
		in_data = kmap(page);
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
		kunmap(page);
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1515 1516
	struct list_head *ws_list = __find_workspace(0, true);
	struct heuristic_ws *ws;
1517 1518
	u32 i;
	u8 byte;
1519
	int ret = 0;
1520

1521 1522
	ws = list_entry(ws_list, struct heuristic_ws, list);

1523 1524
	heuristic_collect_sample(inode, start, end, ws);

1525 1526 1527 1528 1529
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1530 1531 1532 1533 1534
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1535 1536
	}

1537 1538 1539 1540 1541 1542
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1583
out:
1584
	__free_workspace(0, ws_list, true);
1585 1586
	return ret;
}
1587 1588 1589 1590 1591 1592

unsigned int btrfs_compress_str2level(const char *str)
{
	if (strncmp(str, "zlib", 4) != 0)
		return 0;

1593 1594 1595
	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
		return str[5] - '0';
1596

1597
	return BTRFS_ZLIB_DEFAULT_LEVEL;
1598
}