compression.c 44.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
31
#include "zoned.h"
C
Chris Mason 已提交
32

33 34 35 36 37 38 39 40 41 42
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
43 44
	default:
		break;
45 46 47 48 49
	}

	return NULL;
}

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
84 85 86 87 88 89 90
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
91
		 */
92
		*out_pages = 0;
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

135
static int btrfs_decompress_bio(struct compressed_bio *cb);
136

137
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
138 139 140
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
141
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
142 143
}

144
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
145 146
				 u64 disk_start)
{
147
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
148
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149
	const u32 csum_size = fs_info->csum_size;
150
	const u32 sectorsize = fs_info->sectorsize;
151
	struct page *page;
152
	unsigned int i;
153
	char *kaddr;
154
	u8 csum[BTRFS_CSUM_SIZE];
155
	struct compressed_bio *cb = bio->bi_private;
156
	u8 *cb_sum = cb->sums;
157

158
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
159 160
		return 0;

161 162
	shash->tfm = fs_info->csum_shash;

163
	for (i = 0; i < cb->nr_pages; i++) {
164 165
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
166 167
		page = cb->compressed_pages[i];

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
			kaddr = kmap_atomic(page);
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);
			kunmap_atomic(kaddr);

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
				if (btrfs_io_bio(bio)->device)
					btrfs_dev_stat_inc_and_print(
						btrfs_io_bio(bio)->device,
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
191 192
		}
	}
193
	return 0;
194 195
}

C
Chris Mason 已提交
196 197 198 199 200 201 202 203 204 205
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
206
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
207 208 209 210
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
211
	unsigned int index;
212
	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
213
	int ret = 0;
C
Chris Mason 已提交
214

215
	if (bio->bi_status)
C
Chris Mason 已提交
216 217 218 219 220
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
221
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
222 223
		goto out;

224 225 226 227 228 229 230
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
	cb->mirror_num = mirror;

231 232 233 234 235 236 237
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

238
	inode = cb->inode;
239
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
240
				    bio->bi_iter.bi_sector << 9);
241 242 243
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
244 245 246
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
247 248
	ret = btrfs_decompress_bio(cb);

249
csum_failed:
C
Chris Mason 已提交
250 251 252 253 254 255 256 257
	if (ret)
		cb->errors = 1;

	/* release the compressed pages */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
258
		put_page(page);
C
Chris Mason 已提交
259 260 261
	}

	/* do io completion on the original bio */
262
	if (cb->errors) {
C
Chris Mason 已提交
263
		bio_io_error(cb->orig_bio);
264
	} else {
265
		struct bio_vec *bvec;
266
		struct bvec_iter_all iter_all;
267 268 269 270 271

		/*
		 * we have verified the checksum already, set page
		 * checked so the end_io handlers know about it
		 */
272
		ASSERT(!bio_flagged(bio, BIO_CLONED));
273
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
274
			SetPageChecked(bvec->bv_page);
275

276
		bio_endio(cb->orig_bio);
277
	}
C
Chris Mason 已提交
278 279 280 281 282 283 284 285 286 287 288 289

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
290 291
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
292
{
293 294
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
295 296 297 298 299
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

300 301 302
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
303
	while (nr_pages > 0) {
C
Chris Mason 已提交
304
		ret = find_get_pages_contig(inode->i_mapping, index,
305 306
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
307 308 309 310 311 312
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
313 314
			if (cb->errors)
				SetPageError(pages[i]);
C
Chris Mason 已提交
315
			end_page_writeback(pages[i]);
316
			put_page(pages[i]);
C
Chris Mason 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

/*
 * do the cleanup once all the compressed pages hit the disk.
 * This will clear writeback on the file pages and free the compressed
 * pages.
 *
 * This also calls the writeback end hooks for the file pages so that
 * metadata and checksums can be updated in the file.
 */
332
static void end_compressed_bio_write(struct bio *bio)
C
Chris Mason 已提交
333 334 335 336
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
	struct page *page;
337
	unsigned int index;
C
Chris Mason 已提交
338

339
	if (bio->bi_status)
C
Chris Mason 已提交
340 341 342 343 344
		cb->errors = 1;

	/* if there are more bios still pending for this compressed
	 * extent, just exit
	 */
345
	if (!refcount_dec_and_test(&cb->pending_bios))
C
Chris Mason 已提交
346 347 348 349 350 351
		goto out;

	/* ok, we're the last bio for this extent, step one is to
	 * call back into the FS and do all the end_io operations
	 */
	inode = cb->inode;
352
	btrfs_record_physical_zoned(inode, cb->start, bio);
353
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
354
			cb->start, cb->start + cb->len - 1,
355
			!cb->errors);
C
Chris Mason 已提交
356

357
	end_compressed_writeback(inode, cb);
C
Chris Mason 已提交
358 359 360 361 362 363 364 365 366 367
	/* note, our inode could be gone now */

	/*
	 * release the compressed pages, these came from alloc_page and
	 * are not attached to the inode at all
	 */
	index = 0;
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
368
		put_page(page);
C
Chris Mason 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	}

	/* finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
out:
	bio_put(bio);
}

/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
387
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
388 389
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
390
				 struct page **compressed_pages,
391
				 unsigned int nr_pages,
392 393
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
394
{
395
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
396 397 398
	struct bio *bio = NULL;
	struct compressed_bio *cb;
	unsigned long bytes_left;
399
	int pg_index = 0;
C
Chris Mason 已提交
400 401
	struct page *page;
	u64 first_byte = disk_start;
402
	blk_status_t ret;
403
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
404 405
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
406

407
	WARN_ON(!PAGE_ALIGNED(start));
408
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
409
	if (!cb)
410
		return BLK_STS_RESOURCE;
411
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
412
	cb->errors = 0;
413
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
414 415
	cb->start = start;
	cb->len = len;
416
	cb->mirror_num = 0;
C
Chris Mason 已提交
417 418 419 420 421
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

422
	bio = btrfs_bio_alloc(first_byte);
423
	bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
424 425
	bio->bi_private = cb;
	bio->bi_end_io = end_compressed_bio_write;
426

427
	if (use_append) {
428
		struct btrfs_device *device;
429

430 431
		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
		if (IS_ERR(device)) {
432 433 434 435 436
			kfree(cb);
			bio_put(bio);
			return BLK_STS_NOTSUPP;
		}

437
		bio_set_dev(bio, device->bdev);
438 439
	}

440 441
	if (blkcg_css) {
		bio->bi_opf |= REQ_CGROUP_PUNT;
442
		kthread_associate_blkcg(blkcg_css);
443
	}
444
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
445 446 447

	/* create and submit bios for the compressed pages */
	bytes_left = compressed_len;
448
	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
449
		int submit = 0;
450
		int len = 0;
451

452
		page = compressed_pages[pg_index];
453
		page->mapping = inode->vfs_inode.i_mapping;
454
		if (bio->bi_iter.bi_size)
455 456
			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
							  0);
C
Chris Mason 已提交
457

458 459 460 461 462 463 464 465 466 467 468
		/*
		 * Page can only be added to bio if the current bio fits in
		 * stripe.
		 */
		if (!submit) {
			if (pg_index == 0 && use_append)
				len = bio_add_zone_append_page(bio, page,
							       PAGE_SIZE, 0);
			else
				len = bio_add_page(bio, page, PAGE_SIZE, 0);
		}
469

C
Chris Mason 已提交
470
		page->mapping = NULL;
471
		if (submit || len < PAGE_SIZE) {
472 473 474 475 476 477
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
478
			refcount_inc(&cb->pending_bios);
479 480
			ret = btrfs_bio_wq_end_io(fs_info, bio,
						  BTRFS_WQ_ENDIO_DATA);
481
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
482

483
			if (!skip_sum) {
484
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
485
				BUG_ON(ret); /* -ENOMEM */
486
			}
487

488
			ret = btrfs_map_bio(fs_info, bio, 0);
489
			if (ret) {
490
				bio->bi_status = ret;
491 492
				bio_endio(bio);
			}
C
Chris Mason 已提交
493

494
			bio = btrfs_bio_alloc(first_byte);
495
			bio->bi_opf = bio_op | write_flags;
C
Chris Mason 已提交
496 497
			bio->bi_private = cb;
			bio->bi_end_io = end_compressed_bio_write;
498
			if (blkcg_css)
499
				bio->bi_opf |= REQ_CGROUP_PUNT;
500 501 502 503
			/*
			 * Use bio_add_page() to ensure the bio has at least one
			 * page.
			 */
504
			bio_add_page(bio, page, PAGE_SIZE, 0);
C
Chris Mason 已提交
505
		}
506
		if (bytes_left < PAGE_SIZE) {
507
			btrfs_info(fs_info,
508
					"bytes left %lu compress len %u nr %u",
509 510
			       bytes_left, cb->compressed_len, cb->nr_pages);
		}
511 512
		bytes_left -= PAGE_SIZE;
		first_byte += PAGE_SIZE;
513
		cond_resched();
C
Chris Mason 已提交
514 515
	}

516
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
517
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
518

519
	if (!skip_sum) {
520
		ret = btrfs_csum_one_bio(inode, bio, start, 1);
521
		BUG_ON(ret); /* -ENOMEM */
522
	}
523

524
	ret = btrfs_map_bio(fs_info, bio, 0);
525
	if (ret) {
526
		bio->bi_status = ret;
527 528
		bio_endio(bio);
	}
C
Chris Mason 已提交
529

530 531 532
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
533 534 535
	return 0;
}

536 537
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
538
	struct bio_vec *last = bio_last_bvec_all(bio);
539 540 541 542

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

543 544 545 546 547
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
	unsigned long end_index;
548
	unsigned long pg_index;
549 550 551 552 553 554 555 556 557 558 559 560
	u64 last_offset;
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	unsigned long nr_pages = 0;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
	u64 end;
	int misses = 0;

561
	last_offset = bio_end_offset(cb->orig_bio);
562 563 564 565 566 567
	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

568
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
569

C
Chris Mason 已提交
570
	while (last_offset < compressed_end) {
571
		pg_index = last_offset >> PAGE_SHIFT;
572

573
		if (pg_index > end_index)
574 575
			break;

576
		page = xa_load(&mapping->i_pages, pg_index);
577
		if (page && !xa_is_value(page)) {
578 579 580 581 582 583
			misses++;
			if (misses > 4)
				break;
			goto next;
		}

584 585
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
586 587 588
		if (!page)
			break;

589
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
590
			put_page(page);
591 592 593 594 595 596 597 598
			goto next;
		}

		/*
		 * at this point, we have a locked page in the page cache
		 * for these bytes in the file.  But, we have to make
		 * sure they map to this compressed extent on disk.
		 */
599 600 601 602 603 604 605 606
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

		end = last_offset + PAGE_SIZE - 1;
607
		lock_extent(tree, last_offset, end);
608
		read_lock(&em_tree->lock);
609
		em = lookup_extent_mapping(em_tree, last_offset,
610
					   PAGE_SIZE);
611
		read_unlock(&em_tree->lock);
612 613

		if (!em || last_offset < em->start ||
614
		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
615
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
616
			free_extent_map(em);
617
			unlock_extent(tree, last_offset, end);
618
			unlock_page(page);
619
			put_page(page);
620 621 622 623 624
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
625
			size_t zero_offset = offset_in_page(isize);
626 627 628

			if (zero_offset) {
				int zeros;
629
				zeros = PAGE_SIZE - zero_offset;
630
				memzero_page(page, zero_offset, zeros);
631 632 633 634 635
				flush_dcache_page(page);
			}
		}

		ret = bio_add_page(cb->orig_bio, page,
636
				   PAGE_SIZE, 0);
637

638
		if (ret == PAGE_SIZE) {
639
			nr_pages++;
640
			put_page(page);
641
		} else {
642
			unlock_extent(tree, last_offset, end);
643
			unlock_page(page);
644
			put_page(page);
645 646 647
			break;
		}
next:
648
		last_offset += PAGE_SIZE;
649 650 651 652
	}
	return 0;
}

C
Chris Mason 已提交
653 654 655 656 657
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
658
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
659 660 661 662 663
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
664
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
665 666
				 int mirror_num, unsigned long bio_flags)
{
667
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
668 669
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
670 671 672
	unsigned int compressed_len;
	unsigned int nr_pages;
	unsigned int pg_index;
C
Chris Mason 已提交
673 674
	struct page *page;
	struct bio *comp_bio;
D
David Sterba 已提交
675
	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
676 677
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
678
	struct extent_map *em;
679
	blk_status_t ret = BLK_STS_RESOURCE;
680
	int faili = 0;
681
	u8 *sums;
C
Chris Mason 已提交
682 683 684 685

	em_tree = &BTRFS_I(inode)->extent_tree;

	/* we need the actual starting offset of this extent in the file */
686
	read_lock(&em_tree->lock);
C
Chris Mason 已提交
687
	em = lookup_extent_mapping(em_tree,
688
				   page_offset(bio_first_page_all(bio)),
689
				   fs_info->sectorsize);
690
	read_unlock(&em_tree->lock);
691
	if (!em)
692
		return BLK_STS_IOERR;
C
Chris Mason 已提交
693

694
	compressed_len = em->block_len;
695
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
696 697 698
	if (!cb)
		goto out;

699
	refcount_set(&cb->pending_bios, 0);
C
Chris Mason 已提交
700 701
	cb->errors = 0;
	cb->inode = inode;
702
	cb->mirror_num = mirror_num;
703
	sums = cb->sums;
C
Chris Mason 已提交
704

705
	cb->start = em->orig_start;
706 707
	em_len = em->len;
	em_start = em->start;
708

C
Chris Mason 已提交
709
	free_extent_map(em);
710
	em = NULL;
C
Chris Mason 已提交
711

C
Christoph Hellwig 已提交
712
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
713
	cb->compressed_len = compressed_len;
714
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
715 716
	cb->orig_bio = bio;

717
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
718
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
719
				       GFP_NOFS);
720 721 722
	if (!cb->compressed_pages)
		goto fail1;

723
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
724
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
725 726
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
727
			ret = BLK_STS_RESOURCE;
728
			goto fail2;
729
		}
C
Chris Mason 已提交
730
	}
731
	faili = nr_pages - 1;
C
Chris Mason 已提交
732 733
	cb->nr_pages = nr_pages;

734
	add_ra_bio_pages(inode, em_start + em_len, cb);
735 736

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
737
	cb->len = bio->bi_iter.bi_size;
738

739
	comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
740
	comp_bio->bi_opf = REQ_OP_READ;
C
Chris Mason 已提交
741 742
	comp_bio->bi_private = cb;
	comp_bio->bi_end_io = end_compressed_bio_read;
743
	refcount_set(&cb->pending_bios, 1);
C
Chris Mason 已提交
744

745
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
746
		u32 pg_len = PAGE_SIZE;
747 748
		int submit = 0;

749 750 751 752 753 754 755 756 757 758 759
		/*
		 * To handle subpage case, we need to make sure the bio only
		 * covers the range we need.
		 *
		 * If we're at the last page, truncate the length to only cover
		 * the remaining part.
		 */
		if (pg_index == nr_pages - 1)
			pg_len = min_t(u32, PAGE_SIZE,
					compressed_len - pg_index * PAGE_SIZE);

760
		page = cb->compressed_pages[pg_index];
C
Chris Mason 已提交
761
		page->mapping = inode->i_mapping;
762
		page->index = em_start >> PAGE_SHIFT;
763

764
		if (comp_bio->bi_iter.bi_size)
765
			submit = btrfs_bio_fits_in_stripe(page, pg_len,
766
							  comp_bio, 0);
C
Chris Mason 已提交
767

C
Chris Mason 已提交
768
		page->mapping = NULL;
769
		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
770 771
			unsigned int nr_sectors;

772 773
			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
						  BTRFS_WQ_ENDIO_DATA);
774
			BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
775

776 777 778 779 780 781
			/*
			 * inc the count before we submit the bio so
			 * we know the end IO handler won't happen before
			 * we inc the count.  Otherwise, the cb might get
			 * freed before we're done setting it up
			 */
782
			refcount_inc(&cb->pending_bios);
783

784
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
785
			BUG_ON(ret); /* -ENOMEM */
786 787 788

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
789
			sums += fs_info->csum_size * nr_sectors;
790

791
			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
792
			if (ret) {
793
				comp_bio->bi_status = ret;
794 795
				bio_endio(comp_bio);
			}
C
Chris Mason 已提交
796

797
			comp_bio = btrfs_bio_alloc(cur_disk_byte);
D
David Sterba 已提交
798
			comp_bio->bi_opf = REQ_OP_READ;
799 800 801
			comp_bio->bi_private = cb;
			comp_bio->bi_end_io = end_compressed_bio_read;

802
			bio_add_page(comp_bio, page, pg_len, 0);
C
Chris Mason 已提交
803
		}
804
		cur_disk_byte += pg_len;
C
Chris Mason 已提交
805 806
	}

807
	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
808
	BUG_ON(ret); /* -ENOMEM */
C
Chris Mason 已提交
809

810
	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
811
	BUG_ON(ret); /* -ENOMEM */
812

813
	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
814
	if (ret) {
815
		comp_bio->bi_status = ret;
816 817
		bio_endio(comp_bio);
	}
C
Chris Mason 已提交
818 819

	return 0;
820 821

fail2:
822 823 824 825
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
826 827 828 829 830 831 832

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
C
Chris Mason 已提交
833
}
834

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
870 871

struct heuristic_ws {
872 873
	/* Partial copy of input data */
	u8 *sample;
874
	u32 sample_size;
875 876
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
877 878
	/* Sorting buffer */
	struct bucket_item *bucket_b;
879 880 881
	struct list_head list;
};

882 883
static struct workspace_manager heuristic_wsm;

884 885 886 887 888 889
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

890 891
	kvfree(workspace->sample);
	kfree(workspace->bucket);
892
	kfree(workspace->bucket_b);
893 894 895
	kfree(workspace);
}

896
static struct list_head *alloc_heuristic_ws(unsigned int level)
897 898 899 900 901 902 903
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

904 905 906 907 908 909 910
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
911

912 913 914 915
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

916
	INIT_LIST_HEAD(&ws->list);
917
	return &ws->list;
918 919 920
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
921 922
}

923
const struct btrfs_compress_op btrfs_heuristic_compress = {
924
	.workspace_manager = &heuristic_wsm,
925 926
};

927
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
928 929
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
930
	&btrfs_zlib_compress,
L
Li Zefan 已提交
931
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
932
	&btrfs_zstd_compress,
933 934
};

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

967
static void btrfs_init_workspace_manager(int type)
968
{
969
	struct workspace_manager *wsm;
970
	struct list_head *workspace;
971

972
	wsm = btrfs_compress_op[type]->workspace_manager;
973 974 975 976
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
977

978 979 980 981
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
982
	workspace = alloc_workspace(type, 0);
983 984 985 986
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
987 988 989
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
990 991 992
	}
}

993
static void btrfs_cleanup_workspace_manager(int type)
994
{
995
	struct workspace_manager *wsman;
996 997
	struct list_head *ws;

998
	wsman = btrfs_compress_op[type]->workspace_manager;
999 1000 1001
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1002
		free_workspace(type, ws);
1003
		atomic_dec(&wsman->total_ws);
1004 1005 1006 1007
	}
}

/*
1008 1009 1010 1011
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1012
 */
1013
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1014
{
1015
	struct workspace_manager *wsm;
1016 1017
	struct list_head *workspace;
	int cpus = num_online_cpus();
1018
	unsigned nofs_flag;
1019 1020 1021 1022 1023 1024
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1025
	wsm = btrfs_compress_op[type]->workspace_manager;
1026 1027 1028 1029 1030
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1031 1032

again:
1033 1034 1035
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1036
		list_del(workspace);
1037
		(*free_ws)--;
1038
		spin_unlock(ws_lock);
1039 1040 1041
		return workspace;

	}
1042
	if (atomic_read(total_ws) > cpus) {
1043 1044
		DEFINE_WAIT(wait);

1045 1046
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1047
		if (atomic_read(total_ws) > cpus && !*free_ws)
1048
			schedule();
1049
		finish_wait(ws_wait, &wait);
1050 1051
		goto again;
	}
1052
	atomic_inc(total_ws);
1053
	spin_unlock(ws_lock);
1054

1055 1056 1057 1058 1059 1060
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1061
	workspace = alloc_workspace(type, level);
1062 1063
	memalloc_nofs_restore(nofs_flag);

1064
	if (IS_ERR(workspace)) {
1065
		atomic_dec(total_ws);
1066
		wake_up(ws_wait);
1067 1068 1069 1070 1071 1072

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1073 1074 1075 1076
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1077
		 */
1078 1079 1080 1081 1082 1083
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1084
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1085 1086
			}
		}
1087
		goto again;
1088 1089 1090 1091
	}
	return workspace;
}

1092
static struct list_head *get_workspace(int type, int level)
1093
{
1094
	switch (type) {
1095
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1096
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1097
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1098 1099 1100 1101 1102 1103 1104 1105
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1106 1107
}

1108 1109 1110 1111
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1112
void btrfs_put_workspace(int type, struct list_head *ws)
1113
{
1114
	struct workspace_manager *wsm;
1115 1116 1117 1118 1119 1120
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1121
	wsm = btrfs_compress_op[type]->workspace_manager;
1122 1123 1124 1125 1126
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1127 1128

	spin_lock(ws_lock);
1129
	if (*free_ws <= num_online_cpus()) {
1130
		list_add(ws, idle_ws);
1131
		(*free_ws)++;
1132
		spin_unlock(ws_lock);
1133 1134
		goto wake;
	}
1135
	spin_unlock(ws_lock);
1136

1137
	free_workspace(type, ws);
1138
	atomic_dec(total_ws);
1139
wake:
1140
	cond_wake_up(ws_wait);
1141 1142
}

1143 1144
static void put_workspace(int type, struct list_head *ws)
{
1145
	switch (type) {
1146 1147 1148
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1149 1150 1151 1152 1153 1154 1155 1156
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1157 1158
}

1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1175
/*
1176 1177
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1178
 *
1179 1180 1181 1182 1183
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1184 1185
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1186
 *
1187 1188
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1189 1190 1191
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1192 1193
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1194
 */
1195
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1196
			 u64 start, struct page **pages,
1197 1198
			 unsigned long *out_pages,
			 unsigned long *total_in,
1199
			 unsigned long *total_out)
1200
{
1201
	int type = btrfs_compress_type(type_level);
1202
	int level = btrfs_compress_level(type_level);
1203 1204 1205
	struct list_head *workspace;
	int ret;

1206
	level = btrfs_compress_set_level(type, level);
1207
	workspace = get_workspace(type, level);
1208 1209
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1210
	put_workspace(type, workspace);
1211 1212 1213
	return ret;
}

1214
static int btrfs_decompress_bio(struct compressed_bio *cb)
1215 1216 1217
{
	struct list_head *workspace;
	int ret;
1218
	int type = cb->compress_type;
1219

1220
	workspace = get_workspace(type, 0);
1221
	ret = compression_decompress_bio(type, workspace, cb);
1222
	put_workspace(type, workspace);
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1238
	workspace = get_workspace(type, 0);
1239 1240
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1241
	put_workspace(type, workspace);
1242

1243 1244 1245
	return ret;
}

1246 1247
void __init btrfs_init_compress(void)
{
1248 1249 1250 1251
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1252 1253
}

1254
void __cold btrfs_exit_compress(void)
1255
{
1256 1257 1258 1259
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1260
}
1261 1262 1263 1264 1265 1266 1267 1268

/*
 * Copy uncompressed data from working buffer to pages.
 *
 * buf_start is the byte offset we're of the start of our workspace buffer.
 *
 * total_out is the last byte of the buffer
 */
1269
int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1270
			      unsigned long total_out, u64 disk_start,
1271
			      struct bio *bio)
1272 1273 1274 1275
{
	unsigned long buf_offset;
	unsigned long current_buf_start;
	unsigned long start_byte;
1276
	unsigned long prev_start_byte;
1277 1278
	unsigned long working_bytes = total_out - buf_start;
	unsigned long bytes;
1279
	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1280 1281 1282 1283 1284

	/*
	 * start byte is the first byte of the page we're currently
	 * copying into relative to the start of the compressed data.
	 */
1285
	start_byte = page_offset(bvec.bv_page) - disk_start;
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

	/* we haven't yet hit data corresponding to this page */
	if (total_out <= start_byte)
		return 1;

	/*
	 * the start of the data we care about is offset into
	 * the middle of our working buffer
	 */
	if (total_out > start_byte && buf_start < start_byte) {
		buf_offset = start_byte - buf_start;
		working_bytes -= buf_offset;
	} else {
		buf_offset = 0;
	}
	current_buf_start = buf_start;

	/* copy bytes from the working buffer into the pages */
	while (working_bytes > 0) {
1305
		bytes = min_t(unsigned long, bvec.bv_len,
1306
				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1307
		bytes = min(bytes, working_bytes);
1308

1309 1310
		memcpy_to_page(bvec.bv_page, bvec.bv_offset, buf + buf_offset,
			       bytes);
1311
		flush_dcache_page(bvec.bv_page);
1312 1313 1314 1315 1316 1317

		buf_offset += bytes;
		working_bytes -= bytes;
		current_buf_start += bytes;

		/* check if we need to pick another page */
1318 1319 1320 1321
		bio_advance(bio, bytes);
		if (!bio->bi_iter.bi_size)
			return 0;
		bvec = bio_iter_iovec(bio, bio->bi_iter);
1322
		prev_start_byte = start_byte;
1323
		start_byte = page_offset(bvec.bv_page) - disk_start;
1324

1325
		/*
1326 1327 1328 1329
		 * We need to make sure we're only adjusting
		 * our offset into compression working buffer when
		 * we're switching pages.  Otherwise we can incorrectly
		 * keep copying when we were actually done.
1330
		 */
1331 1332 1333 1334 1335 1336 1337
		if (start_byte != prev_start_byte) {
			/*
			 * make sure our new page is covered by this
			 * working buffer
			 */
			if (total_out <= start_byte)
				return 1;
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
			/*
			 * the next page in the biovec might not be adjacent
			 * to the last page, but it might still be found
			 * inside this working buffer. bump our offset pointer
			 */
			if (total_out > start_byte &&
			    current_buf_start < start_byte) {
				buf_offset = start_byte - buf_start;
				working_bytes = total_out - start_byte;
				current_buf_start = buf_start + buf_offset;
			}
1350 1351 1352 1353 1354
		}
	}

	return 1;
}
1355

1356 1357 1358
/*
 * Shannon Entropy calculation
 *
1359
 * Pure byte distribution analysis fails to determine compressibility of data.
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1423
 * Use 16 u32 counters for calculating new position in buf array
1424 1425 1426 1427 1428 1429
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1430
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1431
		       int num)
1432
{
1433 1434 1435 1436 1437 1438 1439 1440
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1441

1442 1443 1444 1445
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1446
	max_num = array[0].count;
1447
	for (i = 1; i < num; i++) {
1448
		buf_num = array[i].count;
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1461
			buf_num = array[i].count;
1462 1463 1464 1465 1466 1467 1468 1469
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1470
			buf_num = array[i].count;
1471 1472 1473
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1474
			array_buf[new_addr] = array[i];
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1488
			buf_num = array_buf[i].count;
1489 1490 1491 1492 1493 1494 1495 1496
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1497
			buf_num = array_buf[i].count;
1498 1499 1500
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1501
			array[new_addr] = array_buf[i];
1502 1503 1504 1505
		}

		shift += RADIX_BASE;
	}
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1535
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1591 1592 1593 1594 1595 1596 1597 1598
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1629
		in_data = kmap_local_page(page);
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1642
		kunmap_local(in_data);
1643 1644 1645 1646 1647 1648 1649 1650
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1668
	struct list_head *ws_list = get_workspace(0, 0);
1669
	struct heuristic_ws *ws;
1670 1671
	u32 i;
	u8 byte;
1672
	int ret = 0;
1673

1674 1675
	ws = list_entry(ws_list, struct heuristic_ws, list);

1676 1677
	heuristic_collect_sample(inode, start, end, ws);

1678 1679 1680 1681 1682
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1683 1684 1685 1686 1687
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1688 1689
	}

1690 1691 1692 1693 1694 1695
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1736
out:
1737
	put_workspace(0, ws_list);
1738 1739
	return ret;
}
1740

1741 1742 1743 1744 1745
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1746
{
1747 1748 1749 1750
	unsigned int level = 0;
	int ret;

	if (!type)
1751 1752
		return 0;

1753 1754 1755 1756 1757 1758
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1759 1760 1761 1762
	level = btrfs_compress_set_level(type, level);

	return level;
}