machine.c 54.6 KB
Newer Older
1
#include <dirent.h>
2
#include <errno.h>
3
#include <inttypes.h>
4
#include <regex.h>
5
#include "callchain.h"
6 7
#include "debug.h"
#include "event.h"
8 9
#include "evsel.h"
#include "hist.h"
10 11
#include "machine.h"
#include "map.h"
12
#include "sort.h"
13
#include "strlist.h"
14
#include "thread.h"
15
#include "vdso.h"
16
#include <stdbool.h>
17 18 19
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
20
#include "unwind.h"
21
#include "linux/hash.h"
22
#include "asm/bug.h"
23

24 25 26
#include "sane_ctype.h"
#include <symbol/kallsyms.h>

27 28
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);

29 30 31 32
static void dsos__init(struct dsos *dsos)
{
	INIT_LIST_HEAD(&dsos->head);
	dsos->root = RB_ROOT;
33
	init_rwsem(&dsos->lock);
34 35
}

36 37 38 39 40 41 42
static void machine__threads_init(struct machine *machine)
{
	int i;

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
		threads->entries = RB_ROOT;
43
		init_rwsem(&threads->lock);
44 45 46 47 48 49
		threads->nr = 0;
		INIT_LIST_HEAD(&threads->dead);
		threads->last_match = NULL;
	}
}

50 51
int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
{
52
	memset(machine, 0, sizeof(*machine));
53
	map_groups__init(&machine->kmaps, machine);
54
	RB_CLEAR_NODE(&machine->rb_node);
55
	dsos__init(&machine->dsos);
56

57
	machine__threads_init(machine);
58

59
	machine->vdso_info = NULL;
60
	machine->env = NULL;
61

62 63
	machine->pid = pid;

64
	machine->id_hdr_size = 0;
65
	machine->kptr_restrict_warned = false;
66
	machine->comm_exec = false;
67
	machine->kernel_start = 0;
68

69 70
	memset(machine->vmlinux_maps, 0, sizeof(machine->vmlinux_maps));

71 72 73 74 75
	machine->root_dir = strdup(root_dir);
	if (machine->root_dir == NULL)
		return -ENOMEM;

	if (pid != HOST_KERNEL_ID) {
76
		struct thread *thread = machine__findnew_thread(machine, -1,
77
								pid);
78 79 80 81 82 83
		char comm[64];

		if (thread == NULL)
			return -ENOMEM;

		snprintf(comm, sizeof(comm), "[guest/%d]", pid);
84
		thread__set_comm(thread, comm, 0);
85
		thread__put(thread);
86 87
	}

88 89
	machine->current_tid = NULL;

90 91 92
	return 0;
}

93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
struct machine *machine__new_host(void)
{
	struct machine *machine = malloc(sizeof(*machine));

	if (machine != NULL) {
		machine__init(machine, "", HOST_KERNEL_ID);

		if (machine__create_kernel_maps(machine) < 0)
			goto out_delete;
	}

	return machine;
out_delete:
	free(machine);
	return NULL;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
struct machine *machine__new_kallsyms(void)
{
	struct machine *machine = machine__new_host();
	/*
	 * FIXME:
	 * 1) MAP__FUNCTION will go away when we stop loading separate maps for
	 *    functions and data objects.
	 * 2) We should switch to machine__load_kallsyms(), i.e. not explicitely
	 *    ask for not using the kcore parsing code, once this one is fixed
	 *    to create a map per module.
	 */
	if (machine && __machine__load_kallsyms(machine, "/proc/kallsyms", MAP__FUNCTION, true) <= 0) {
		machine__delete(machine);
		machine = NULL;
	}

	return machine;
}

129
static void dsos__purge(struct dsos *dsos)
130 131 132
{
	struct dso *pos, *n;

133
	down_write(&dsos->lock);
134

135
	list_for_each_entry_safe(pos, n, &dsos->head, node) {
136
		RB_CLEAR_NODE(&pos->rb_node);
137
		pos->root = NULL;
138 139
		list_del_init(&pos->node);
		dso__put(pos);
140
	}
141

142
	up_write(&dsos->lock);
143
}
144

145 146 147
static void dsos__exit(struct dsos *dsos)
{
	dsos__purge(dsos);
148
	exit_rwsem(&dsos->lock);
149 150
}

151 152
void machine__delete_threads(struct machine *machine)
{
153
	struct rb_node *nd;
154
	int i;
155

156 157
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
158
		down_write(&threads->lock);
159 160 161
		nd = rb_first(&threads->entries);
		while (nd) {
			struct thread *t = rb_entry(nd, struct thread, rb_node);
162

163 164 165
			nd = rb_next(nd);
			__machine__remove_thread(machine, t, false);
		}
166
		up_write(&threads->lock);
167 168 169
	}
}

170 171
void machine__exit(struct machine *machine)
{
172 173
	int i;

174
	machine__destroy_kernel_maps(machine);
175
	map_groups__exit(&machine->kmaps);
176
	dsos__exit(&machine->dsos);
177
	machine__exit_vdso(machine);
178
	zfree(&machine->root_dir);
179
	zfree(&machine->current_tid);
180 181 182

	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
183
		exit_rwsem(&threads->lock);
184
	}
185 186 187 188
}

void machine__delete(struct machine *machine)
{
189 190 191 192
	if (machine) {
		machine__exit(machine);
		free(machine);
	}
193 194
}

195 196 197 198 199 200 201 202 203 204 205 206 207
void machines__init(struct machines *machines)
{
	machine__init(&machines->host, "", HOST_KERNEL_ID);
	machines->guests = RB_ROOT;
}

void machines__exit(struct machines *machines)
{
	machine__exit(&machines->host);
	/* XXX exit guest */
}

struct machine *machines__add(struct machines *machines, pid_t pid,
208 209
			      const char *root_dir)
{
210
	struct rb_node **p = &machines->guests.rb_node;
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
	struct rb_node *parent = NULL;
	struct machine *pos, *machine = malloc(sizeof(*machine));

	if (machine == NULL)
		return NULL;

	if (machine__init(machine, root_dir, pid) != 0) {
		free(machine);
		return NULL;
	}

	while (*p != NULL) {
		parent = *p;
		pos = rb_entry(parent, struct machine, rb_node);
		if (pid < pos->pid)
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	rb_link_node(&machine->rb_node, parent, p);
232
	rb_insert_color(&machine->rb_node, &machines->guests);
233 234 235 236

	return machine;
}

237 238 239 240 241 242 243 244 245 246 247 248 249
void machines__set_comm_exec(struct machines *machines, bool comm_exec)
{
	struct rb_node *nd;

	machines->host.comm_exec = comm_exec;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		machine->comm_exec = comm_exec;
	}
}

250
struct machine *machines__find(struct machines *machines, pid_t pid)
251
{
252
	struct rb_node **p = &machines->guests.rb_node;
253 254 255 256
	struct rb_node *parent = NULL;
	struct machine *machine;
	struct machine *default_machine = NULL;

257 258 259
	if (pid == HOST_KERNEL_ID)
		return &machines->host;

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
	while (*p != NULL) {
		parent = *p;
		machine = rb_entry(parent, struct machine, rb_node);
		if (pid < machine->pid)
			p = &(*p)->rb_left;
		else if (pid > machine->pid)
			p = &(*p)->rb_right;
		else
			return machine;
		if (!machine->pid)
			default_machine = machine;
	}

	return default_machine;
}

276
struct machine *machines__findnew(struct machines *machines, pid_t pid)
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
{
	char path[PATH_MAX];
	const char *root_dir = "";
	struct machine *machine = machines__find(machines, pid);

	if (machine && (machine->pid == pid))
		goto out;

	if ((pid != HOST_KERNEL_ID) &&
	    (pid != DEFAULT_GUEST_KERNEL_ID) &&
	    (symbol_conf.guestmount)) {
		sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
		if (access(path, R_OK)) {
			static struct strlist *seen;

			if (!seen)
293
				seen = strlist__new(NULL, NULL);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

			if (!strlist__has_entry(seen, path)) {
				pr_err("Can't access file %s\n", path);
				strlist__add(seen, path);
			}
			machine = NULL;
			goto out;
		}
		root_dir = path;
	}

	machine = machines__add(machines, pid, root_dir);
out:
	return machine;
}

310 311
void machines__process_guests(struct machines *machines,
			      machine__process_t process, void *data)
312 313 314
{
	struct rb_node *nd;

315
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		process(pos, data);
	}
}

char *machine__mmap_name(struct machine *machine, char *bf, size_t size)
{
	if (machine__is_host(machine))
		snprintf(bf, size, "[%s]", "kernel.kallsyms");
	else if (machine__is_default_guest(machine))
		snprintf(bf, size, "[%s]", "guest.kernel.kallsyms");
	else {
		snprintf(bf, size, "[%s.%d]", "guest.kernel.kallsyms",
			 machine->pid);
	}

	return bf;
}

335
void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
336 337 338 339
{
	struct rb_node *node;
	struct machine *machine;

340 341 342
	machines->host.id_hdr_size = id_hdr_size;

	for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
343 344 345 346 347 348 349
		machine = rb_entry(node, struct machine, rb_node);
		machine->id_hdr_size = id_hdr_size;
	}

	return;
}

350 351 352 353 354 355 356 357 358 359 360 361 362
static void machine__update_thread_pid(struct machine *machine,
				       struct thread *th, pid_t pid)
{
	struct thread *leader;

	if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
		return;

	th->pid_ = pid;

	if (th->pid_ == th->tid)
		return;

363
	leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
364 365 366 367
	if (!leader)
		goto out_err;

	if (!leader->mg)
368
		leader->mg = map_groups__new(machine);
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

	if (!leader->mg)
		goto out_err;

	if (th->mg == leader->mg)
		return;

	if (th->mg) {
		/*
		 * Maps are created from MMAP events which provide the pid and
		 * tid.  Consequently there never should be any maps on a thread
		 * with an unknown pid.  Just print an error if there are.
		 */
		if (!map_groups__empty(th->mg))
			pr_err("Discarding thread maps for %d:%d\n",
			       th->pid_, th->tid);
385
		map_groups__put(th->mg);
386 387 388
	}

	th->mg = map_groups__get(leader->mg);
389 390
out_put:
	thread__put(leader);
391 392 393
	return;
out_err:
	pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
394
	goto out_put;
395 396
}

397
/*
398
 * Caller must eventually drop thread->refcnt returned with a successful
399 400
 * lookup/new thread inserted.
 */
401
static struct thread *____machine__findnew_thread(struct machine *machine,
402
						  struct threads *threads,
403 404
						  pid_t pid, pid_t tid,
						  bool create)
405
{
406
	struct rb_node **p = &threads->entries.rb_node;
407 408 409 410
	struct rb_node *parent = NULL;
	struct thread *th;

	/*
411
	 * Front-end cache - TID lookups come in blocks,
412 413 414
	 * so most of the time we dont have to look up
	 * the full rbtree:
	 */
415
	th = threads->last_match;
416 417 418
	if (th != NULL) {
		if (th->tid == tid) {
			machine__update_thread_pid(machine, th, pid);
419
			return thread__get(th);
420 421
		}

422
		threads->last_match = NULL;
423
	}
424 425 426 427 428

	while (*p != NULL) {
		parent = *p;
		th = rb_entry(parent, struct thread, rb_node);

429
		if (th->tid == tid) {
430
			threads->last_match = th;
431
			machine__update_thread_pid(machine, th, pid);
432
			return thread__get(th);
433 434
		}

435
		if (tid < th->tid)
436 437 438 439 440 441 442 443
			p = &(*p)->rb_left;
		else
			p = &(*p)->rb_right;
	}

	if (!create)
		return NULL;

444
	th = thread__new(pid, tid);
445 446
	if (th != NULL) {
		rb_link_node(&th->rb_node, parent, p);
447
		rb_insert_color(&th->rb_node, &threads->entries);
448 449 450 451 452 453 454 455 456

		/*
		 * We have to initialize map_groups separately
		 * after rb tree is updated.
		 *
		 * The reason is that we call machine__findnew_thread
		 * within thread__init_map_groups to find the thread
		 * leader and that would screwed the rb tree.
		 */
457
		if (thread__init_map_groups(th, machine)) {
458
			rb_erase_init(&th->rb_node, &threads->entries);
459
			RB_CLEAR_NODE(&th->rb_node);
460
			thread__put(th);
461
			return NULL;
462
		}
463 464 465 466
		/*
		 * It is now in the rbtree, get a ref
		 */
		thread__get(th);
467 468
		threads->last_match = th;
		++threads->nr;
469 470 471 472 473
	}

	return th;
}

474 475
struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
{
476
	return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
477 478
}

479 480
struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
				       pid_t tid)
481
{
482
	struct threads *threads = machine__threads(machine, tid);
483 484
	struct thread *th;

485
	down_write(&threads->lock);
486
	th = __machine__findnew_thread(machine, pid, tid);
487
	up_write(&threads->lock);
488
	return th;
489 490
}

491 492
struct thread *machine__find_thread(struct machine *machine, pid_t pid,
				    pid_t tid)
493
{
494
	struct threads *threads = machine__threads(machine, tid);
495
	struct thread *th;
496

497
	down_read(&threads->lock);
498
	th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
499
	up_read(&threads->lock);
500
	return th;
501
}
502

503 504 505 506 507 508 509 510 511
struct comm *machine__thread_exec_comm(struct machine *machine,
				       struct thread *thread)
{
	if (machine->comm_exec)
		return thread__exec_comm(thread);
	else
		return thread__comm(thread);
}

512 513
int machine__process_comm_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
514
{
515 516 517
	struct thread *thread = machine__findnew_thread(machine,
							event->comm.pid,
							event->comm.tid);
518
	bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
519
	int err = 0;
520

521 522 523
	if (exec)
		machine->comm_exec = true;

524 525 526
	if (dump_trace)
		perf_event__fprintf_comm(event, stdout);

527 528
	if (thread == NULL ||
	    __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
529
		dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
530
		err = -1;
531 532
	}

533 534 535
	thread__put(thread);

	return err;
536 537
}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
int machine__process_namespaces_event(struct machine *machine __maybe_unused,
				      union perf_event *event,
				      struct perf_sample *sample __maybe_unused)
{
	struct thread *thread = machine__findnew_thread(machine,
							event->namespaces.pid,
							event->namespaces.tid);
	int err = 0;

	WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
		  "\nWARNING: kernel seems to support more namespaces than perf"
		  " tool.\nTry updating the perf tool..\n\n");

	WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
		  "\nWARNING: perf tool seems to support more namespaces than"
		  " the kernel.\nTry updating the kernel..\n\n");

	if (dump_trace)
		perf_event__fprintf_namespaces(event, stdout);

	if (thread == NULL ||
	    thread__set_namespaces(thread, sample->time, &event->namespaces)) {
		dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
		err = -1;
	}

	thread__put(thread);

	return err;
}

569
int machine__process_lost_event(struct machine *machine __maybe_unused,
570
				union perf_event *event, struct perf_sample *sample __maybe_unused)
571 572 573 574 575 576
{
	dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
		    event->lost.id, event->lost.lost);
	return 0;
}

577 578 579 580 581 582 583 584
int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
					union perf_event *event, struct perf_sample *sample)
{
	dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
		    sample->id, event->lost_samples.lost);
	return 0;
}

585 586 587
static struct dso *machine__findnew_module_dso(struct machine *machine,
					       struct kmod_path *m,
					       const char *filename)
588 589 590
{
	struct dso *dso;

591
	down_write(&machine->dsos.lock);
592 593

	dso = __dsos__find(&machine->dsos, m->name, true);
594
	if (!dso) {
595
		dso = __dsos__addnew(&machine->dsos, m->name);
596
		if (dso == NULL)
597
			goto out_unlock;
598

599
		dso__set_module_info(dso, m, machine);
600
		dso__set_long_name(dso, strdup(filename), true);
601 602
	}

603
	dso__get(dso);
604
out_unlock:
605
	up_write(&machine->dsos.lock);
606 607 608
	return dso;
}

609 610 611 612 613 614 615 616
int machine__process_aux_event(struct machine *machine __maybe_unused,
			       union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_aux(event, stdout);
	return 0;
}

617 618 619 620 621 622 623 624
int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
					union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_itrace_start(event, stdout);
	return 0;
}

625 626 627 628 629 630 631 632
int machine__process_switch_event(struct machine *machine __maybe_unused,
				  union perf_event *event)
{
	if (dump_trace)
		perf_event__fprintf_switch(event, stdout);
	return 0;
}

633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
{
	const char *dup_filename;

	if (!filename || !dso || !dso->long_name)
		return;
	if (dso->long_name[0] != '[')
		return;
	if (!strchr(filename, '/'))
		return;

	dup_filename = strdup(filename);
	if (!dup_filename)
		return;

648
	dso__set_long_name(dso, dup_filename, true);
649 650
}

651 652
struct map *machine__findnew_module_map(struct machine *machine, u64 start,
					const char *filename)
653
{
654
	struct map *map = NULL;
655
	struct dso *dso = NULL;
656
	struct kmod_path m;
657

658
	if (kmod_path__parse_name(&m, filename))
659 660
		return NULL;

661 662
	map = map_groups__find_by_name(&machine->kmaps, MAP__FUNCTION,
				       m.name);
663 664 665 666 667 668 669
	if (map) {
		/*
		 * If the map's dso is an offline module, give dso__load()
		 * a chance to find the file path of that module by fixing
		 * long_name.
		 */
		dso__adjust_kmod_long_name(map->dso, filename);
670
		goto out;
671
	}
672

673
	dso = machine__findnew_module_dso(machine, &m, filename);
674 675 676
	if (dso == NULL)
		goto out;

677 678
	map = map__new2(start, dso, MAP__FUNCTION);
	if (map == NULL)
679
		goto out;
680 681

	map_groups__insert(&machine->kmaps, map);
682

683 684
	/* Put the map here because map_groups__insert alread got it */
	map__put(map);
685
out:
686 687
	/* put the dso here, corresponding to  machine__findnew_module_dso */
	dso__put(dso);
688
	free(m.name);
689 690 691
	return map;
}

692
size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
693 694
{
	struct rb_node *nd;
695
	size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
696

697
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
698
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
699
		ret += __dsos__fprintf(&pos->dsos.head, fp);
700 701 702 703 704
	}

	return ret;
}

705
size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
706 707
				     bool (skip)(struct dso *dso, int parm), int parm)
{
708
	return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
709 710
}

711
size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
712 713 714
				     bool (skip)(struct dso *dso, int parm), int parm)
{
	struct rb_node *nd;
715
	size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
716

717
	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
718 719 720 721 722 723 724 725 726 727
		struct machine *pos = rb_entry(nd, struct machine, rb_node);
		ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
	}
	return ret;
}

size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
{
	int i;
	size_t printed = 0;
728
	struct dso *kdso = machine__kernel_map(machine)->dso;
729 730 731

	if (kdso->has_build_id) {
		char filename[PATH_MAX];
732 733
		if (dso__build_id_filename(kdso, filename, sizeof(filename),
					   false))
734 735 736 737 738 739 740 741 742 743 744 745 746
			printed += fprintf(fp, "[0] %s\n", filename);
	}

	for (i = 0; i < vmlinux_path__nr_entries; ++i)
		printed += fprintf(fp, "[%d] %s\n",
				   i + kdso->has_build_id, vmlinux_path[i]);

	return printed;
}

size_t machine__fprintf(struct machine *machine, FILE *fp)
{
	struct rb_node *nd;
747 748
	size_t ret;
	int i;
749

750 751
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		struct threads *threads = &machine->threads[i];
752 753

		down_read(&threads->lock);
754

755
		ret = fprintf(fp, "Threads: %u\n", threads->nr);
756

757 758
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			struct thread *pos = rb_entry(nd, struct thread, rb_node);
759

760 761
			ret += thread__fprintf(pos, fp);
		}
762

763
		up_read(&threads->lock);
764
	}
765 766 767 768 769 770 771 772 773 774 775
	return ret;
}

static struct dso *machine__get_kernel(struct machine *machine)
{
	const char *vmlinux_name = NULL;
	struct dso *kernel;

	if (machine__is_host(machine)) {
		vmlinux_name = symbol_conf.vmlinux_name;
		if (!vmlinux_name)
776
			vmlinux_name = DSO__NAME_KALLSYMS;
777

778 779
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[kernel]", DSO_TYPE_KERNEL);
780 781 782 783 784 785 786 787 788
	} else {
		char bf[PATH_MAX];

		if (machine__is_default_guest(machine))
			vmlinux_name = symbol_conf.default_guest_vmlinux_name;
		if (!vmlinux_name)
			vmlinux_name = machine__mmap_name(machine, bf,
							  sizeof(bf));

789 790 791
		kernel = machine__findnew_kernel(machine, vmlinux_name,
						 "[guest.kernel]",
						 DSO_TYPE_GUEST_KERNEL);
792 793 794 795 796 797 798 799 800 801 802 803
	}

	if (kernel != NULL && (!kernel->has_build_id))
		dso__read_running_kernel_build_id(kernel, machine);

	return kernel;
}

struct process_args {
	u64 start;
};

804 805 806 807 808 809 810 811 812
static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
					   size_t bufsz)
{
	if (machine__is_default_guest(machine))
		scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
	else
		scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
}

813 814 815 816 817 818
const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};

/* Figure out the start address of kernel map from /proc/kallsyms.
 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 * symbol_name if it's not that important.
 */
819 820
static int machine__get_running_kernel_start(struct machine *machine,
					     const char **symbol_name, u64 *start)
821
{
822
	char filename[PATH_MAX];
823
	int i, err = -1;
824 825
	const char *name;
	u64 addr = 0;
826

827
	machine__get_kallsyms_filename(machine, filename, PATH_MAX);
828 829 830 831

	if (symbol__restricted_filename(filename, "/proc/kallsyms"))
		return 0;

832
	for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
833 834
		err = kallsyms__get_function_start(filename, name, &addr);
		if (!err)
835 836 837
			break;
	}

838 839 840
	if (err)
		return -1;

841 842
	if (symbol_name)
		*symbol_name = name;
843

844 845
	*start = addr;
	return 0;
846 847 848 849
}

int __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
{
850
	int type;
851 852 853 854
	u64 start = 0;

	if (machine__get_running_kernel_start(machine, NULL, &start))
		return -1;
855

856 857 858
	/* In case of renewal the kernel map, destroy previous one */
	machine__destroy_kernel_maps(machine);

859 860
	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
861
		struct map *map;
862 863 864 865 866 867 868 869

		machine->vmlinux_maps[type] = map__new2(start, kernel, type);
		if (machine->vmlinux_maps[type] == NULL)
			return -1;

		machine->vmlinux_maps[type]->map_ip =
			machine->vmlinux_maps[type]->unmap_ip =
				identity__map_ip;
870
		map = __machine__kernel_map(machine, type);
871
		kmap = map__kmap(map);
872 873 874
		if (!kmap)
			return -1;

875
		kmap->kmaps = &machine->kmaps;
876
		map_groups__insert(&machine->kmaps, map);
877 878 879 880 881 882 883
	}

	return 0;
}

void machine__destroy_kernel_maps(struct machine *machine)
{
884
	int type;
885 886 887

	for (type = 0; type < MAP__NR_TYPES; ++type) {
		struct kmap *kmap;
888
		struct map *map = __machine__kernel_map(machine, type);
889

890
		if (map == NULL)
891 892
			continue;

893 894
		kmap = map__kmap(map);
		map_groups__remove(&machine->kmaps, map);
895
		if (kmap && kmap->ref_reloc_sym) {
896 897 898 899 900
			/*
			 * ref_reloc_sym is shared among all maps, so free just
			 * on one of them.
			 */
			if (type == MAP__FUNCTION) {
901 902 903 904
				zfree((char **)&kmap->ref_reloc_sym->name);
				zfree(&kmap->ref_reloc_sym);
			} else
				kmap->ref_reloc_sym = NULL;
905 906
		}

907
		map__put(machine->vmlinux_maps[type]);
908 909 910 911
		machine->vmlinux_maps[type] = NULL;
	}
}

912
int machines__create_guest_kernel_maps(struct machines *machines)
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
{
	int ret = 0;
	struct dirent **namelist = NULL;
	int i, items = 0;
	char path[PATH_MAX];
	pid_t pid;
	char *endp;

	if (symbol_conf.default_guest_vmlinux_name ||
	    symbol_conf.default_guest_modules ||
	    symbol_conf.default_guest_kallsyms) {
		machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
	}

	if (symbol_conf.guestmount) {
		items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
		if (items <= 0)
			return -ENOENT;
		for (i = 0; i < items; i++) {
			if (!isdigit(namelist[i]->d_name[0])) {
				/* Filter out . and .. */
				continue;
			}
			pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
			if ((*endp != '\0') ||
			    (endp == namelist[i]->d_name) ||
			    (errno == ERANGE)) {
				pr_debug("invalid directory (%s). Skipping.\n",
					 namelist[i]->d_name);
				continue;
			}
			sprintf(path, "%s/%s/proc/kallsyms",
				symbol_conf.guestmount,
				namelist[i]->d_name);
			ret = access(path, R_OK);
			if (ret) {
				pr_debug("Can't access file %s\n", path);
				goto failure;
			}
			machines__create_kernel_maps(machines, pid);
		}
failure:
		free(namelist);
	}

	return ret;
}

961
void machines__destroy_kernel_maps(struct machines *machines)
962
{
963 964 965
	struct rb_node *next = rb_first(&machines->guests);

	machine__destroy_kernel_maps(&machines->host);
966 967 968 969 970

	while (next) {
		struct machine *pos = rb_entry(next, struct machine, rb_node);

		next = rb_next(&pos->rb_node);
971
		rb_erase(&pos->rb_node, &machines->guests);
972 973 974 975
		machine__delete(pos);
	}
}

976
int machines__create_kernel_maps(struct machines *machines, pid_t pid)
977 978 979 980 981 982 983 984 985
{
	struct machine *machine = machines__findnew(machines, pid);

	if (machine == NULL)
		return -1;

	return machine__create_kernel_maps(machine);
}

986
int __machine__load_kallsyms(struct machine *machine, const char *filename,
987
			     enum map_type type, bool no_kcore)
988
{
989
	struct map *map = machine__kernel_map(machine);
990
	int ret = __dso__load_kallsyms(map->dso, filename, map, no_kcore);
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004

	if (ret > 0) {
		dso__set_loaded(map->dso, type);
		/*
		 * Since /proc/kallsyms will have multiple sessions for the
		 * kernel, with modules between them, fixup the end of all
		 * sections.
		 */
		__map_groups__fixup_end(&machine->kmaps, type);
	}

	return ret;
}

1005
int machine__load_kallsyms(struct machine *machine, const char *filename,
1006
			   enum map_type type)
1007
{
1008
	return __machine__load_kallsyms(machine, filename, type, false);
1009 1010
}

1011
int machine__load_vmlinux_path(struct machine *machine, enum map_type type)
1012
{
1013
	struct map *map = machine__kernel_map(machine);
1014
	int ret = dso__load_vmlinux_path(map->dso, map);
1015

1016
	if (ret > 0)
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
		dso__set_loaded(map->dso, type);

	return ret;
}

static void map_groups__fixup_end(struct map_groups *mg)
{
	int i;
	for (i = 0; i < MAP__NR_TYPES; ++i)
		__map_groups__fixup_end(mg, i);
}

static char *get_kernel_version(const char *root_dir)
{
	char version[PATH_MAX];
	FILE *file;
	char *name, *tmp;
	const char *prefix = "Linux version ";

	sprintf(version, "%s/proc/version", root_dir);
	file = fopen(version, "r");
	if (!file)
		return NULL;

	version[0] = '\0';
	tmp = fgets(version, sizeof(version), file);
	fclose(file);

	name = strstr(version, prefix);
	if (!name)
		return NULL;
	name += strlen(prefix);
	tmp = strchr(name, ' ');
	if (tmp)
		*tmp = '\0';

	return strdup(name);
}

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static bool is_kmod_dso(struct dso *dso)
{
	return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
	       dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
}

static int map_groups__set_module_path(struct map_groups *mg, const char *path,
				       struct kmod_path *m)
{
	struct map *map;
	char *long_name;

	map = map_groups__find_by_name(mg, MAP__FUNCTION, m->name);
	if (map == NULL)
		return 0;

	long_name = strdup(path);
	if (long_name == NULL)
		return -ENOMEM;

	dso__set_long_name(map->dso, long_name, true);
	dso__kernel_module_get_build_id(map->dso, "");

	/*
	 * Full name could reveal us kmod compression, so
	 * we need to update the symtab_type if needed.
	 */
	if (m->comp && is_kmod_dso(map->dso))
		map->dso->symtab_type++;

	return 0;
}

1089
static int map_groups__set_modules_path_dir(struct map_groups *mg,
1090
				const char *dir_name, int depth)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
{
	struct dirent *dent;
	DIR *dir = opendir(dir_name);
	int ret = 0;

	if (!dir) {
		pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
		return -1;
	}

	while ((dent = readdir(dir)) != NULL) {
		char path[PATH_MAX];
		struct stat st;

		/*sshfs might return bad dent->d_type, so we have to stat*/
		snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
		if (stat(path, &st))
			continue;

		if (S_ISDIR(st.st_mode)) {
			if (!strcmp(dent->d_name, ".") ||
			    !strcmp(dent->d_name, ".."))
				continue;

1115 1116 1117 1118 1119 1120 1121 1122 1123
			/* Do not follow top-level source and build symlinks */
			if (depth == 0) {
				if (!strcmp(dent->d_name, "source") ||
				    !strcmp(dent->d_name, "build"))
					continue;
			}

			ret = map_groups__set_modules_path_dir(mg, path,
							       depth + 1);
1124 1125 1126
			if (ret < 0)
				goto out;
		} else {
1127
			struct kmod_path m;
1128

1129 1130 1131
			ret = kmod_path__parse_name(&m, dent->d_name);
			if (ret)
				goto out;
1132

1133 1134
			if (m.kmod)
				ret = map_groups__set_module_path(mg, path, &m);
1135

1136
			free(m.name);
1137

1138
			if (ret)
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
				goto out;
		}
	}

out:
	closedir(dir);
	return ret;
}

static int machine__set_modules_path(struct machine *machine)
{
	char *version;
	char modules_path[PATH_MAX];

	version = get_kernel_version(machine->root_dir);
	if (!version)
		return -1;

1157
	snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1158 1159 1160
		 machine->root_dir, version);
	free(version);

1161
	return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1162
}
1163 1164 1165 1166 1167
int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
				const char *name __maybe_unused)
{
	return 0;
}
1168

1169 1170
static int machine__create_module(void *arg, const char *name, u64 start,
				  u64 size)
1171
{
1172
	struct machine *machine = arg;
1173
	struct map *map;
1174

1175 1176 1177
	if (arch__fix_module_text_start(&start, name) < 0)
		return -1;

1178
	map = machine__findnew_module_map(machine, start, name);
1179 1180
	if (map == NULL)
		return -1;
1181
	map->end = start + size;
1182 1183 1184 1185 1186 1187 1188 1189

	dso__kernel_module_get_build_id(map->dso, machine->root_dir);

	return 0;
}

static int machine__create_modules(struct machine *machine)
{
1190 1191 1192
	const char *modules;
	char path[PATH_MAX];

1193
	if (machine__is_default_guest(machine)) {
1194
		modules = symbol_conf.default_guest_modules;
1195 1196
	} else {
		snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1197 1198 1199
		modules = path;
	}

1200
	if (symbol__restricted_filename(modules, "/proc/modules"))
1201 1202
		return -1;

1203
	if (modules__parse(modules, machine, machine__create_module))
1204 1205
		return -1;

1206 1207
	if (!machine__set_modules_path(machine))
		return 0;
1208

1209
	pr_debug("Problems setting modules path maps, continuing anyway...\n");
1210

1211
	return 0;
1212 1213 1214 1215 1216
}

int machine__create_kernel_maps(struct machine *machine)
{
	struct dso *kernel = machine__get_kernel(machine);
1217 1218
	const char *name = NULL;
	u64 addr = 0;
1219 1220
	int ret;

1221
	if (kernel == NULL)
1222
		return -1;
1223

1224 1225 1226
	ret = __machine__create_kernel_maps(machine, kernel);
	dso__put(kernel);
	if (ret < 0)
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		return -1;

	if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
		if (machine__is_host(machine))
			pr_debug("Problems creating module maps, "
				 "continuing anyway...\n");
		else
			pr_debug("Problems creating module maps for guest %d, "
				 "continuing anyway...\n", machine->pid);
	}

	/*
	 * Now that we have all the maps created, just set the ->end of them:
	 */
	map_groups__fixup_end(&machine->kmaps);
1242

1243 1244 1245 1246 1247 1248
	if (!machine__get_running_kernel_start(machine, &name, &addr)) {
		if (name &&
		    maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps, name, addr)) {
			machine__destroy_kernel_maps(machine);
			return -1;
		}
1249 1250
	}

1251 1252 1253
	return 0;
}

1254 1255 1256
static void machine__set_kernel_mmap_len(struct machine *machine,
					 union perf_event *event)
{
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
	int i;

	for (i = 0; i < MAP__NR_TYPES; i++) {
		machine->vmlinux_maps[i]->start = event->mmap.start;
		machine->vmlinux_maps[i]->end   = (event->mmap.start +
						   event->mmap.len);
		/*
		 * Be a bit paranoid here, some perf.data file came with
		 * a zero sized synthesized MMAP event for the kernel.
		 */
		if (machine->vmlinux_maps[i]->end == 0)
			machine->vmlinux_maps[i]->end = ~0ULL;
	}
1270 1271
}

1272 1273 1274 1275
static bool machine__uses_kcore(struct machine *machine)
{
	struct dso *dso;

1276
	list_for_each_entry(dso, &machine->dsos.head, node) {
1277 1278 1279 1280 1281 1282 1283
		if (dso__is_kcore(dso))
			return true;
	}

	return false;
}

1284 1285 1286 1287 1288 1289 1290 1291
static int machine__process_kernel_mmap_event(struct machine *machine,
					      union perf_event *event)
{
	struct map *map;
	char kmmap_prefix[PATH_MAX];
	enum dso_kernel_type kernel_type;
	bool is_kernel_mmap;

1292 1293 1294 1295
	/* If we have maps from kcore then we do not need or want any others */
	if (machine__uses_kcore(machine))
		return 0;

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
	machine__mmap_name(machine, kmmap_prefix, sizeof(kmmap_prefix));
	if (machine__is_host(machine))
		kernel_type = DSO_TYPE_KERNEL;
	else
		kernel_type = DSO_TYPE_GUEST_KERNEL;

	is_kernel_mmap = memcmp(event->mmap.filename,
				kmmap_prefix,
				strlen(kmmap_prefix) - 1) == 0;
	if (event->mmap.filename[0] == '/' ||
	    (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1307 1308
		map = machine__findnew_module_map(machine, event->mmap.start,
						  event->mmap.filename);
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
		if (map == NULL)
			goto out_problem;

		map->end = map->start + event->mmap.len;
	} else if (is_kernel_mmap) {
		const char *symbol_name = (event->mmap.filename +
				strlen(kmmap_prefix));
		/*
		 * Should be there already, from the build-id table in
		 * the header.
		 */
1320 1321 1322
		struct dso *kernel = NULL;
		struct dso *dso;

1323
		down_read(&machine->dsos.lock);
1324

1325
		list_for_each_entry(dso, &machine->dsos.head, node) {
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345

			/*
			 * The cpumode passed to is_kernel_module is not the
			 * cpumode of *this* event. If we insist on passing
			 * correct cpumode to is_kernel_module, we should
			 * record the cpumode when we adding this dso to the
			 * linked list.
			 *
			 * However we don't really need passing correct
			 * cpumode.  We know the correct cpumode must be kernel
			 * mode (if not, we should not link it onto kernel_dsos
			 * list).
			 *
			 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
			 * is_kernel_module() treats it as a kernel cpumode.
			 */

			if (!dso->kernel ||
			    is_kernel_module(dso->long_name,
					     PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1346 1347
				continue;

1348

1349 1350 1351 1352
			kernel = dso;
			break;
		}

1353
		up_read(&machine->dsos.lock);
1354

1355
		if (kernel == NULL)
1356
			kernel = machine__findnew_dso(machine, kmmap_prefix);
1357 1358 1359 1360
		if (kernel == NULL)
			goto out_problem;

		kernel->kernel = kernel_type;
1361 1362
		if (__machine__create_kernel_maps(machine, kernel) < 0) {
			dso__put(kernel);
1363
			goto out_problem;
1364
		}
1365

1366 1367
		if (strstr(kernel->long_name, "vmlinux"))
			dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1368

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
		machine__set_kernel_mmap_len(machine, event);

		/*
		 * Avoid using a zero address (kptr_restrict) for the ref reloc
		 * symbol. Effectively having zero here means that at record
		 * time /proc/sys/kernel/kptr_restrict was non zero.
		 */
		if (event->mmap.pgoff != 0) {
			maps__set_kallsyms_ref_reloc_sym(machine->vmlinux_maps,
							 symbol_name,
							 event->mmap.pgoff);
		}

		if (machine__is_default_guest(machine)) {
			/*
			 * preload dso of guest kernel and modules
			 */
1386
			dso__load(kernel, machine__kernel_map(machine));
1387 1388 1389 1390 1391 1392 1393
		}
	}
	return 0;
out_problem:
	return -1;
}

1394
int machine__process_mmap2_event(struct machine *machine,
1395
				 union perf_event *event,
1396
				 struct perf_sample *sample)
1397 1398 1399 1400 1401 1402 1403 1404 1405
{
	struct thread *thread;
	struct map *map;
	enum map_type type;
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap2(event, stdout);

1406 1407
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1408 1409 1410 1411 1412 1413 1414
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

	thread = machine__findnew_thread(machine, event->mmap2.pid,
1415
					event->mmap2.tid);
1416 1417 1418 1419 1420 1421 1422 1423
	if (thread == NULL)
		goto out_problem;

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1424
	map = map__new(machine, event->mmap2.start,
1425
			event->mmap2.len, event->mmap2.pgoff,
1426
			event->mmap2.maj,
1427 1428
			event->mmap2.min, event->mmap2.ino,
			event->mmap2.ino_generation,
1429 1430
			event->mmap2.prot,
			event->mmap2.flags,
1431
			event->mmap2.filename, type, thread);
1432 1433

	if (map == NULL)
1434
		goto out_problem_map;
1435

1436 1437 1438 1439
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1440
	thread__put(thread);
1441
	map__put(map);
1442 1443
	return 0;

1444 1445
out_problem_insert:
	map__put(map);
1446 1447
out_problem_map:
	thread__put(thread);
1448 1449 1450 1451 1452
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
	return 0;
}

1453
int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1454
				struct perf_sample *sample)
1455 1456 1457
{
	struct thread *thread;
	struct map *map;
1458
	enum map_type type;
1459 1460 1461 1462 1463
	int ret = 0;

	if (dump_trace)
		perf_event__fprintf_mmap(event, stdout);

1464 1465
	if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
	    sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1466 1467 1468 1469 1470 1471
		ret = machine__process_kernel_mmap_event(machine, event);
		if (ret < 0)
			goto out_problem;
		return 0;
	}

1472
	thread = machine__findnew_thread(machine, event->mmap.pid,
1473
					 event->mmap.tid);
1474 1475
	if (thread == NULL)
		goto out_problem;
1476 1477 1478 1479 1480 1481

	if (event->header.misc & PERF_RECORD_MISC_MMAP_DATA)
		type = MAP__VARIABLE;
	else
		type = MAP__FUNCTION;

1482
	map = map__new(machine, event->mmap.start,
1483
			event->mmap.len, event->mmap.pgoff,
1484
			0, 0, 0, 0, 0, 0,
1485
			event->mmap.filename,
1486
			type, thread);
1487

1488
	if (map == NULL)
1489
		goto out_problem_map;
1490

1491 1492 1493 1494
	ret = thread__insert_map(thread, map);
	if (ret)
		goto out_problem_insert;

1495
	thread__put(thread);
1496
	map__put(map);
1497 1498
	return 0;

1499 1500
out_problem_insert:
	map__put(map);
1501 1502
out_problem_map:
	thread__put(thread);
1503 1504 1505 1506 1507
out_problem:
	dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
	return 0;
}

1508
static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1509
{
1510 1511 1512 1513
	struct threads *threads = machine__threads(machine, th->tid);

	if (threads->last_match == th)
		threads->last_match = NULL;
1514

1515
	BUG_ON(refcount_read(&th->refcnt) == 0);
1516
	if (lock)
1517
		down_write(&threads->lock);
1518
	rb_erase_init(&th->rb_node, &threads->entries);
1519
	RB_CLEAR_NODE(&th->rb_node);
1520
	--threads->nr;
1521
	/*
1522 1523 1524
	 * Move it first to the dead_threads list, then drop the reference,
	 * if this is the last reference, then the thread__delete destructor
	 * will be called and we will remove it from the dead_threads list.
1525
	 */
1526
	list_add_tail(&th->node, &threads->dead);
1527
	if (lock)
1528
		up_write(&threads->lock);
1529
	thread__put(th);
1530 1531
}

1532 1533 1534 1535 1536
void machine__remove_thread(struct machine *machine, struct thread *th)
{
	return __machine__remove_thread(machine, th, true);
}

1537 1538
int machine__process_fork_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample)
1539
{
1540 1541 1542
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1543 1544 1545
	struct thread *parent = machine__findnew_thread(machine,
							event->fork.ppid,
							event->fork.ptid);
1546
	int err = 0;
1547

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

	/*
	 * There may be an existing thread that is not actually the parent,
	 * either because we are processing events out of order, or because the
	 * (fork) event that would have removed the thread was lost. Assume the
	 * latter case and continue on as best we can.
	 */
	if (parent->pid_ != (pid_t)event->fork.ppid) {
		dump_printf("removing erroneous parent thread %d/%d\n",
			    parent->pid_, parent->tid);
		machine__remove_thread(machine, parent);
		thread__put(parent);
		parent = machine__findnew_thread(machine, event->fork.ppid,
						 event->fork.ptid);
	}

1566
	/* if a thread currently exists for the thread id remove it */
1567
	if (thread != NULL) {
1568
		machine__remove_thread(machine, thread);
1569 1570
		thread__put(thread);
	}
1571

1572 1573
	thread = machine__findnew_thread(machine, event->fork.pid,
					 event->fork.tid);
1574 1575

	if (thread == NULL || parent == NULL ||
1576
	    thread__fork(thread, parent, sample->time) < 0) {
1577
		dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1578
		err = -1;
1579
	}
1580 1581
	thread__put(thread);
	thread__put(parent);
1582

1583
	return err;
1584 1585
}

1586 1587
int machine__process_exit_event(struct machine *machine, union perf_event *event,
				struct perf_sample *sample __maybe_unused)
1588
{
1589 1590 1591
	struct thread *thread = machine__find_thread(machine,
						     event->fork.pid,
						     event->fork.tid);
1592 1593 1594 1595

	if (dump_trace)
		perf_event__fprintf_task(event, stdout);

1596
	if (thread != NULL) {
1597
		thread__exited(thread);
1598 1599
		thread__put(thread);
	}
1600 1601 1602 1603

	return 0;
}

1604 1605
int machine__process_event(struct machine *machine, union perf_event *event,
			   struct perf_sample *sample)
1606 1607 1608 1609 1610
{
	int ret;

	switch (event->header.type) {
	case PERF_RECORD_COMM:
1611
		ret = machine__process_comm_event(machine, event, sample); break;
1612
	case PERF_RECORD_MMAP:
1613
		ret = machine__process_mmap_event(machine, event, sample); break;
1614 1615
	case PERF_RECORD_NAMESPACES:
		ret = machine__process_namespaces_event(machine, event, sample); break;
1616
	case PERF_RECORD_MMAP2:
1617
		ret = machine__process_mmap2_event(machine, event, sample); break;
1618
	case PERF_RECORD_FORK:
1619
		ret = machine__process_fork_event(machine, event, sample); break;
1620
	case PERF_RECORD_EXIT:
1621
		ret = machine__process_exit_event(machine, event, sample); break;
1622
	case PERF_RECORD_LOST:
1623
		ret = machine__process_lost_event(machine, event, sample); break;
1624 1625
	case PERF_RECORD_AUX:
		ret = machine__process_aux_event(machine, event); break;
1626
	case PERF_RECORD_ITRACE_START:
1627
		ret = machine__process_itrace_start_event(machine, event); break;
1628 1629
	case PERF_RECORD_LOST_SAMPLES:
		ret = machine__process_lost_samples_event(machine, event, sample); break;
1630 1631 1632
	case PERF_RECORD_SWITCH:
	case PERF_RECORD_SWITCH_CPU_WIDE:
		ret = machine__process_switch_event(machine, event); break;
1633 1634 1635 1636 1637 1638 1639
	default:
		ret = -1;
		break;
	}

	return ret;
}
1640

1641
static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1642
{
1643
	if (!regexec(regex, sym->name, 0, NULL, 0))
1644 1645 1646 1647
		return 1;
	return 0;
}

1648
static void ip__resolve_ams(struct thread *thread,
1649 1650 1651 1652 1653 1654
			    struct addr_map_symbol *ams,
			    u64 ip)
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));
1655 1656 1657 1658 1659 1660 1661
	/*
	 * We cannot use the header.misc hint to determine whether a
	 * branch stack address is user, kernel, guest, hypervisor.
	 * Branches may straddle the kernel/user/hypervisor boundaries.
	 * Thus, we have to try consecutively until we find a match
	 * or else, the symbol is unknown
	 */
1662
	thread__find_cpumode_addr_location(thread, MAP__FUNCTION, ip, &al);
1663 1664 1665 1666 1667

	ams->addr = ip;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1668
	ams->phys_addr = 0;
1669 1670
}

1671
static void ip__resolve_data(struct thread *thread,
1672 1673
			     u8 m, struct addr_map_symbol *ams,
			     u64 addr, u64 phys_addr)
1674 1675 1676 1677 1678
{
	struct addr_location al;

	memset(&al, 0, sizeof(al));

1679
	thread__find_addr_location(thread, m, MAP__VARIABLE, addr, &al);
1680 1681 1682 1683 1684 1685
	if (al.map == NULL) {
		/*
		 * some shared data regions have execute bit set which puts
		 * their mapping in the MAP__FUNCTION type array.
		 * Check there as a fallback option before dropping the sample.
		 */
1686
		thread__find_addr_location(thread, m, MAP__FUNCTION, addr, &al);
1687 1688
	}

1689 1690 1691 1692
	ams->addr = addr;
	ams->al_addr = al.addr;
	ams->sym = al.sym;
	ams->map = al.map;
1693
	ams->phys_addr = phys_addr;
1694 1695
}

1696 1697
struct mem_info *sample__resolve_mem(struct perf_sample *sample,
				     struct addr_location *al)
1698 1699 1700 1701 1702 1703
{
	struct mem_info *mi = zalloc(sizeof(*mi));

	if (!mi)
		return NULL;

1704
	ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1705 1706
	ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
			 sample->addr, sample->phys_addr);
1707 1708 1709 1710 1711
	mi->data_src.val = sample->data_src;

	return mi;
}

1712 1713 1714 1715 1716
struct iterations {
	int nr_loop_iter;
	u64 cycles;
};

1717
static int add_callchain_ip(struct thread *thread,
1718
			    struct callchain_cursor *cursor,
1719 1720
			    struct symbol **parent,
			    struct addr_location *root_al,
1721
			    u8 *cpumode,
1722 1723 1724
			    u64 ip,
			    bool branch,
			    struct branch_flags *flags,
1725
			    struct iterations *iter,
1726
			    u64 branch_from)
1727 1728
{
	struct addr_location al;
1729 1730
	int nr_loop_iter = 0;
	u64 iter_cycles = 0;
1731 1732 1733

	al.filtered = 0;
	al.sym = NULL;
1734
	if (!cpumode) {
1735 1736
		thread__find_cpumode_addr_location(thread, MAP__FUNCTION,
						   ip, &al);
1737
	} else {
1738 1739 1740
		if (ip >= PERF_CONTEXT_MAX) {
			switch (ip) {
			case PERF_CONTEXT_HV:
1741
				*cpumode = PERF_RECORD_MISC_HYPERVISOR;
1742 1743
				break;
			case PERF_CONTEXT_KERNEL:
1744
				*cpumode = PERF_RECORD_MISC_KERNEL;
1745 1746
				break;
			case PERF_CONTEXT_USER:
1747
				*cpumode = PERF_RECORD_MISC_USER;
1748 1749 1750 1751 1752 1753 1754 1755
				break;
			default:
				pr_debug("invalid callchain context: "
					 "%"PRId64"\n", (s64) ip);
				/*
				 * It seems the callchain is corrupted.
				 * Discard all.
				 */
1756
				callchain_cursor_reset(cursor);
1757 1758 1759 1760
				return 1;
			}
			return 0;
		}
1761 1762
		thread__find_addr_location(thread, *cpumode, MAP__FUNCTION,
					   ip, &al);
1763 1764
	}

1765
	if (al.sym != NULL) {
1766
		if (perf_hpp_list.parent && !*parent &&
1767 1768 1769 1770 1771 1772 1773
		    symbol__match_regex(al.sym, &parent_regex))
			*parent = al.sym;
		else if (have_ignore_callees && root_al &&
		  symbol__match_regex(al.sym, &ignore_callees_regex)) {
			/* Treat this symbol as the root,
			   forgetting its callees. */
			*root_al = al;
1774
			callchain_cursor_reset(cursor);
1775 1776 1777
		}
	}

1778 1779
	if (symbol_conf.hide_unresolved && al.sym == NULL)
		return 0;
1780 1781 1782 1783 1784 1785

	if (iter) {
		nr_loop_iter = iter->nr_loop_iter;
		iter_cycles = iter->cycles;
	}

1786
	return callchain_cursor_append(cursor, al.addr, al.map, al.sym,
1787 1788
				       branch, flags, nr_loop_iter,
				       iter_cycles, branch_from);
1789 1790
}

1791 1792
struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
					   struct addr_location *al)
1793 1794
{
	unsigned int i;
1795 1796
	const struct branch_stack *bs = sample->branch_stack;
	struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1797 1798 1799 1800 1801

	if (!bi)
		return NULL;

	for (i = 0; i < bs->nr; i++) {
1802 1803
		ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
		ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1804 1805 1806 1807 1808
		bi[i].flags = bs->entries[i].flags;
	}
	return bi;
}

1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
static void save_iterations(struct iterations *iter,
			    struct branch_entry *be, int nr)
{
	int i;

	iter->nr_loop_iter = nr;
	iter->cycles = 0;

	for (i = 0; i < nr; i++)
		iter->cycles += be[i].flags.cycles;
}

1821 1822 1823 1824 1825 1826 1827
#define CHASHSZ 127
#define CHASHBITS 7
#define NO_ENTRY 0xff

#define PERF_MAX_BRANCH_DEPTH 127

/* Remove loops. */
1828 1829
static int remove_loops(struct branch_entry *l, int nr,
			struct iterations *iter)
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
{
	int i, j, off;
	unsigned char chash[CHASHSZ];

	memset(chash, NO_ENTRY, sizeof(chash));

	BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);

	for (i = 0; i < nr; i++) {
		int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;

		/* no collision handling for now */
		if (chash[h] == NO_ENTRY) {
			chash[h] = i;
		} else if (l[chash[h]].from == l[i].from) {
			bool is_loop = true;
			/* check if it is a real loop */
			off = 0;
			for (j = chash[h]; j < i && i + off < nr; j++, off++)
				if (l[j].from != l[i + off].from) {
					is_loop = false;
					break;
				}
			if (is_loop) {
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865
				j = nr - (i + off);
				if (j > 0) {
					save_iterations(iter + i + off,
						l + i, off);

					memmove(iter + i, iter + i + off,
						j * sizeof(*iter));

					memmove(l + i, l + i + off,
						j * sizeof(*l));
				}

1866 1867 1868 1869 1870 1871 1872
				nr -= off;
			}
		}
	}
	return nr;
}

K
Kan Liang 已提交
1873 1874 1875 1876 1877 1878 1879 1880
/*
 * Recolve LBR callstack chain sample
 * Return:
 * 1 on success get LBR callchain information
 * 0 no available LBR callchain information, should try fp
 * negative error code on other errors.
 */
static int resolve_lbr_callchain_sample(struct thread *thread,
1881
					struct callchain_cursor *cursor,
K
Kan Liang 已提交
1882 1883 1884 1885
					struct perf_sample *sample,
					struct symbol **parent,
					struct addr_location *root_al,
					int max_stack)
1886
{
K
Kan Liang 已提交
1887
	struct ip_callchain *chain = sample->callchain;
1888
	int chain_nr = min(max_stack, (int)chain->nr), i;
1889
	u8 cpumode = PERF_RECORD_MISC_USER;
1890
	u64 ip, branch_from = 0;
K
Kan Liang 已提交
1891 1892 1893 1894 1895 1896 1897 1898 1899

	for (i = 0; i < chain_nr; i++) {
		if (chain->ips[i] == PERF_CONTEXT_USER)
			break;
	}

	/* LBR only affects the user callchain */
	if (i != chain_nr) {
		struct branch_stack *lbr_stack = sample->branch_stack;
1900 1901 1902
		int lbr_nr = lbr_stack->nr, j, k;
		bool branch;
		struct branch_flags *flags;
K
Kan Liang 已提交
1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915
		/*
		 * LBR callstack can only get user call chain.
		 * The mix_chain_nr is kernel call chain
		 * number plus LBR user call chain number.
		 * i is kernel call chain number,
		 * 1 is PERF_CONTEXT_USER,
		 * lbr_nr + 1 is the user call chain number.
		 * For details, please refer to the comments
		 * in callchain__printf
		 */
		int mix_chain_nr = i + 1 + lbr_nr + 1;

		for (j = 0; j < mix_chain_nr; j++) {
1916
			int err;
1917 1918 1919
			branch = false;
			flags = NULL;

K
Kan Liang 已提交
1920 1921 1922
			if (callchain_param.order == ORDER_CALLEE) {
				if (j < i + 1)
					ip = chain->ips[j];
1923 1924 1925 1926 1927 1928
				else if (j > i + 1) {
					k = j - i - 2;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				} else {
K
Kan Liang 已提交
1929
					ip = lbr_stack->entries[0].to;
1930 1931
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1932 1933
					branch_from =
						lbr_stack->entries[0].from;
1934
				}
K
Kan Liang 已提交
1935
			} else {
1936 1937 1938 1939 1940 1941
				if (j < lbr_nr) {
					k = lbr_nr - j - 1;
					ip = lbr_stack->entries[k].from;
					branch = true;
					flags = &lbr_stack->entries[k].flags;
				}
K
Kan Liang 已提交
1942 1943
				else if (j > lbr_nr)
					ip = chain->ips[i + 1 - (j - lbr_nr)];
1944
				else {
K
Kan Liang 已提交
1945
					ip = lbr_stack->entries[0].to;
1946 1947
					branch = true;
					flags = &lbr_stack->entries[0].flags;
1948 1949
					branch_from =
						lbr_stack->entries[0].from;
1950
				}
K
Kan Liang 已提交
1951 1952
			}

1953 1954
			err = add_callchain_ip(thread, cursor, parent,
					       root_al, &cpumode, ip,
1955
					       branch, flags, NULL,
1956
					       branch_from);
K
Kan Liang 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
			if (err)
				return (err < 0) ? err : 0;
		}
		return 1;
	}

	return 0;
}

static int thread__resolve_callchain_sample(struct thread *thread,
1967
					    struct callchain_cursor *cursor,
K
Kan Liang 已提交
1968 1969 1970 1971 1972 1973 1974 1975
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    struct symbol **parent,
					    struct addr_location *root_al,
					    int max_stack)
{
	struct branch_stack *branch = sample->branch_stack;
	struct ip_callchain *chain = sample->callchain;
1976
	int chain_nr = 0;
1977
	u8 cpumode = PERF_RECORD_MISC_USER;
1978
	int i, j, err, nr_entries;
1979 1980 1981
	int skip_idx = -1;
	int first_call = 0;

1982 1983 1984
	if (chain)
		chain_nr = chain->nr;

1985
	if (perf_evsel__has_branch_callstack(evsel)) {
1986
		err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
K
Kan Liang 已提交
1987 1988 1989 1990 1991
						   root_al, max_stack);
		if (err)
			return (err < 0) ? err : 0;
	}

1992 1993 1994 1995
	/*
	 * Based on DWARF debug information, some architectures skip
	 * a callchain entry saved by the kernel.
	 */
1996
	skip_idx = arch_skip_callchain_idx(thread, chain);
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	/*
	 * Add branches to call stack for easier browsing. This gives
	 * more context for a sample than just the callers.
	 *
	 * This uses individual histograms of paths compared to the
	 * aggregated histograms the normal LBR mode uses.
	 *
	 * Limitations for now:
	 * - No extra filters
	 * - No annotations (should annotate somehow)
	 */

	if (branch && callchain_param.branch_callstack) {
		int nr = min(max_stack, (int)branch->nr);
		struct branch_entry be[nr];
2013
		struct iterations iter[nr];
2014 2015 2016 2017 2018 2019 2020 2021 2022

		if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
			pr_warning("corrupted branch chain. skipping...\n");
			goto check_calls;
		}

		for (i = 0; i < nr; i++) {
			if (callchain_param.order == ORDER_CALLEE) {
				be[i] = branch->entries[i];
2023 2024 2025 2026

				if (chain == NULL)
					continue;

2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
				/*
				 * Check for overlap into the callchain.
				 * The return address is one off compared to
				 * the branch entry. To adjust for this
				 * assume the calling instruction is not longer
				 * than 8 bytes.
				 */
				if (i == skip_idx ||
				    chain->ips[first_call] >= PERF_CONTEXT_MAX)
					first_call++;
				else if (be[i].from < chain->ips[first_call] &&
				    be[i].from >= chain->ips[first_call] - 8)
					first_call++;
			} else
				be[i] = branch->entries[branch->nr - i - 1];
		}

2044 2045
		memset(iter, 0, sizeof(struct iterations) * nr);
		nr = remove_loops(be, nr, iter);
2046

2047
		for (i = 0; i < nr; i++) {
2048 2049 2050 2051 2052
			err = add_callchain_ip(thread, cursor, parent,
					       root_al,
					       NULL, be[i].to,
					       true, &be[i].flags,
					       NULL, be[i].from);
2053

2054
			if (!err)
2055
				err = add_callchain_ip(thread, cursor, parent, root_al,
2056 2057
						       NULL, be[i].from,
						       true, &be[i].flags,
2058
						       &iter[i], 0);
2059 2060 2061 2062 2063
			if (err == -EINVAL)
				break;
			if (err)
				return err;
		}
2064 2065 2066 2067

		if (chain_nr == 0)
			return 0;

2068 2069 2070 2071
		chain_nr -= nr;
	}

check_calls:
2072
	for (i = first_call, nr_entries = 0;
2073
	     i < chain_nr && nr_entries < max_stack; i++) {
2074 2075 2076
		u64 ip;

		if (callchain_param.order == ORDER_CALLEE)
2077
			j = i;
2078
		else
2079 2080 2081 2082 2083 2084 2085
			j = chain->nr - i - 1;

#ifdef HAVE_SKIP_CALLCHAIN_IDX
		if (j == skip_idx)
			continue;
#endif
		ip = chain->ips[j];
2086

2087 2088
		if (ip < PERF_CONTEXT_MAX)
                       ++nr_entries;
2089

2090 2091
		err = add_callchain_ip(thread, cursor, parent,
				       root_al, &cpumode, ip,
2092
				       false, NULL, NULL, 0);
2093 2094

		if (err)
2095
			return (err < 0) ? err : 0;
2096 2097 2098 2099 2100 2101 2102 2103
	}

	return 0;
}

static int unwind_entry(struct unwind_entry *entry, void *arg)
{
	struct callchain_cursor *cursor = arg;
2104 2105 2106

	if (symbol_conf.hide_unresolved && entry->sym == NULL)
		return 0;
2107
	return callchain_cursor_append(cursor, entry->ip,
2108
				       entry->map, entry->sym,
2109
				       false, NULL, 0, 0, 0);
2110 2111
}

2112 2113 2114 2115 2116
static int thread__resolve_callchain_unwind(struct thread *thread,
					    struct callchain_cursor *cursor,
					    struct perf_evsel *evsel,
					    struct perf_sample *sample,
					    int max_stack)
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
{
	/* Can we do dwarf post unwind? */
	if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
	      (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
		return 0;

	/* Bail out if nothing was captured. */
	if ((!sample->user_regs.regs) ||
	    (!sample->user_stack.size))
		return 0;

2128
	return unwind__get_entries(unwind_entry, cursor,
2129
				   thread, sample, max_stack);
2130
}
2131

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166
int thread__resolve_callchain(struct thread *thread,
			      struct callchain_cursor *cursor,
			      struct perf_evsel *evsel,
			      struct perf_sample *sample,
			      struct symbol **parent,
			      struct addr_location *root_al,
			      int max_stack)
{
	int ret = 0;

	callchain_cursor_reset(&callchain_cursor);

	if (callchain_param.order == ORDER_CALLEE) {
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
	} else {
		ret = thread__resolve_callchain_unwind(thread, cursor,
						       evsel, sample,
						       max_stack);
		if (ret)
			return ret;
		ret = thread__resolve_callchain_sample(thread, cursor,
						       evsel, sample,
						       parent, root_al,
						       max_stack);
	}

	return ret;
2167
}
2168 2169 2170 2171 2172

int machine__for_each_thread(struct machine *machine,
			     int (*fn)(struct thread *thread, void *p),
			     void *priv)
{
2173
	struct threads *threads;
2174 2175 2176
	struct rb_node *nd;
	struct thread *thread;
	int rc = 0;
2177
	int i;
2178

2179 2180 2181 2182 2183 2184 2185 2186
	for (i = 0; i < THREADS__TABLE_SIZE; i++) {
		threads = &machine->threads[i];
		for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
			thread = rb_entry(nd, struct thread, rb_node);
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2187

2188 2189 2190 2191 2192
		list_for_each_entry(thread, &threads->dead, node) {
			rc = fn(thread, priv);
			if (rc != 0)
				return rc;
		}
2193 2194 2195
	}
	return rc;
}
2196

2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
int machines__for_each_thread(struct machines *machines,
			      int (*fn)(struct thread *thread, void *p),
			      void *priv)
{
	struct rb_node *nd;
	int rc = 0;

	rc = machine__for_each_thread(&machines->host, fn, priv);
	if (rc != 0)
		return rc;

	for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
		struct machine *machine = rb_entry(nd, struct machine, rb_node);

		rc = machine__for_each_thread(machine, fn, priv);
		if (rc != 0)
			return rc;
	}
	return rc;
}

2218
int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2219
				  struct target *target, struct thread_map *threads,
2220 2221
				  perf_event__handler_t process, bool data_mmap,
				  unsigned int proc_map_timeout)
2222
{
2223
	if (target__has_task(target))
2224
		return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2225
	else if (target__has_cpu(target))
2226
		return perf_event__synthesize_threads(tool, process, machine, data_mmap, proc_map_timeout);
2227 2228 2229
	/* command specified */
	return 0;
}
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269

pid_t machine__get_current_tid(struct machine *machine, int cpu)
{
	if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
		return -1;

	return machine->current_tid[cpu];
}

int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
			     pid_t tid)
{
	struct thread *thread;

	if (cpu < 0)
		return -EINVAL;

	if (!machine->current_tid) {
		int i;

		machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
		if (!machine->current_tid)
			return -ENOMEM;
		for (i = 0; i < MAX_NR_CPUS; i++)
			machine->current_tid[i] = -1;
	}

	if (cpu >= MAX_NR_CPUS) {
		pr_err("Requested CPU %d too large. ", cpu);
		pr_err("Consider raising MAX_NR_CPUS\n");
		return -EINVAL;
	}

	machine->current_tid[cpu] = tid;

	thread = machine__findnew_thread(machine, pid, tid);
	if (!thread)
		return -ENOMEM;

	thread->cpu = cpu;
2270
	thread__put(thread);
2271 2272 2273

	return 0;
}
2274 2275 2276

int machine__get_kernel_start(struct machine *machine)
{
2277
	struct map *map = machine__kernel_map(machine);
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289
	int err = 0;

	/*
	 * The only addresses above 2^63 are kernel addresses of a 64-bit
	 * kernel.  Note that addresses are unsigned so that on a 32-bit system
	 * all addresses including kernel addresses are less than 2^32.  In
	 * that case (32-bit system), if the kernel mapping is unknown, all
	 * addresses will be assumed to be in user space - see
	 * machine__kernel_ip().
	 */
	machine->kernel_start = 1ULL << 63;
	if (map) {
2290
		err = map__load(map);
2291
		if (!err)
2292 2293 2294 2295
			machine->kernel_start = map->start;
	}
	return err;
}
2296 2297 2298

struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
{
2299
	return dsos__findnew(&machine->dsos, filename);
2300
}
2301 2302 2303 2304 2305

char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
{
	struct machine *machine = vmachine;
	struct map *map;
2306
	struct symbol *sym = map_groups__find_symbol(&machine->kmaps, MAP__FUNCTION, *addrp, &map);
2307 2308 2309 2310 2311 2312 2313 2314

	if (sym == NULL)
		return NULL;

	*modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
	*addrp = map->unmap_ip(map, sym->start);
	return sym->name;
}