amd64_edac.c 110.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "amd64_edac.h"
3
#include <asm/amd_nb.h>
4

5
static struct edac_pci_ctl_info *pci_ctl;
6 7 8 9 10 11 12 13

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

14
static struct msr __percpu *msrs;
15

16 17
static struct amd64_family_type *fam_type;

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23
/* Device for the PCI component */
static struct device *pci_ctl_dev;

24 25 26 27 28 29 30
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
31
static const struct scrubrate {
32 33 34
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

60 61
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

99 100 101 102
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
103
 * K8: has a single DCT only and no address offsets >= 0x100
104 105 106 107 108
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
109
 * F16h: has only 1 DCT
110 111
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
112
 */
113 114
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
115
{
116 117 118 119 120
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
121

122 123 124 125 126 127 128 129 130
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
131

132 133 134
			offset += 0x100;
		}
		break;
135

136 137 138 139 140 141 142 143
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
144

145 146 147 148
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
149

150 151
	default:
		break;
152
	}
153
	return amd64_read_pci_cfg(pvt->F2, offset, val);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
185
/*
186
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
187 188
 * issue. If requested is too big, then use last maximum value found.
 */
189
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
190 191 192 193 194 195 196 197 198
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
199 200 201
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
202
	 */
203
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
204 205 206 207
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
208
		if (scrubrates[i].scrubval < min_rate)
209 210 211 212 213 214 215 216
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

217
	if (pvt->umc) {
218 219
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
220 221 222 223 224 225 226
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
227

228 229 230
	if (scrubval)
		return scrubrates[i].bandwidth;

231 232 233
	return 0;
}

234
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
235 236
{
	struct amd64_pvt *pvt = mci->pvt_info;
237
	u32 min_scrubrate = 0x5;
238

239
	if (pvt->fam == 0xf)
240 241
		min_scrubrate = 0x0;

242 243 244 245
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
246

247 248 249 250
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
251 252
}

253
static int get_scrub_rate(struct mem_ctl_info *mci)
254 255
{
	struct amd64_pvt *pvt = mci->pvt_info;
256
	int i, retval = -EINVAL;
257
	u32 scrubval = 0;
258

259
	if (pvt->umc) {
260 261 262 263 264 265 266 267
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
268 269 270 271
	} else if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
272

273 274
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
275 276
		else
			amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
277
	} else {
278
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279
	}
280 281 282

	scrubval = scrubval & 0x001F;

283
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
284
		if (scrubrates[i].scrubval == scrubval) {
285
			retval = scrubrates[i].bandwidth;
286 287 288
			break;
		}
	}
289
	return retval;
290 291
}

292
/*
293 294
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
295
 */
296
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
297
{
298
	u64 addr;
299 300 301 302 303 304 305 306 307

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

308 309
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
310 311 312 313 314 315 316 317 318 319 320 321
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
322
	u8 node_id;
323 324 325 326 327 328 329 330 331 332 333 334 335
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
336
	intlv_en = dram_intlv_en(pvt, 0);
337 338

	if (intlv_en == 0) {
339
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
340
			if (base_limit_match(pvt, sys_addr, node_id))
341
				goto found;
342
		}
343
		goto err_no_match;
344 345
	}

346 347 348
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
349
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
350 351 352 353 354 355
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
356
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
357 358
			break;	/* intlv_sel field matches */

359
		if (++node_id >= DRAM_RANGES)
360 361 362 363
			goto err_no_match;
	}

	/* sanity test for sys_addr */
364
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
365 366 367
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
368 369 370 371
		return NULL;
	}

found:
372
	return edac_mc_find((int)node_id);
373 374

err_no_match:
375 376
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
377 378 379

	return NULL;
}
380 381

/*
382 383
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
384
 */
385 386
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
387
{
388 389
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
390

391
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
392 393
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
394 395
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
396
		addr_shift	= 4;
397 398

	/*
399 400 401 402 403
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
404 405 406
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

407 408
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
409 410 411

		*mask = ~0ULL;
		/* poke holes for the csmask */
412 413
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
414

415 416
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
417 418

		return;
419 420 421 422
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
423

424
		if (pvt->fam == 0x15)
425 426
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
427
		else
428 429
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
430
	}
431

432
	*base  = (csbase & base_bits) << addr_shift;
433

434 435 436 437 438
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
439 440
}

441 442 443
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

444 445 446
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

447 448 449
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

450
#define for_each_umc(i) \
451
	for (i = 0; i < fam_type->max_mcs; i++)
452

453 454 455 456 457 458 459 460 461 462 463 464
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

465 466
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
467 468
			continue;

469 470 471
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
472 473

		if ((input_addr & mask) == (base & mask)) {
474 475 476
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
477 478 479 480

			return csrow;
		}
	}
481 482
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
503 504
static int get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			      u64 *hole_offset, u64 *hole_size)
505 506 507 508
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
509
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
510 511
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
512 513 514
		return 1;
	}

515
	/* valid for Fam10h and above */
516
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
517
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
518 519 520
		return 1;
	}

521
	if (!dhar_valid(pvt)) {
522 523
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

545 546
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
547

548 549
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
550

551 552 553
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
554 555 556

	return 0;
}
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

#ifdef CONFIG_EDAC_DEBUG
#define EDAC_DCT_ATTR_SHOW(reg)						\
static ssize_t reg##_show(struct device *dev,				\
			 struct device_attribute *mattr, char *data)	\
{									\
	struct mem_ctl_info *mci = to_mci(dev);				\
	struct amd64_pvt *pvt = mci->pvt_info;				\
									\
	return sprintf(data, "0x%016llx\n", (u64)pvt->reg);		\
}

EDAC_DCT_ATTR_SHOW(dhar);
EDAC_DCT_ATTR_SHOW(dbam0);
EDAC_DCT_ATTR_SHOW(top_mem);
EDAC_DCT_ATTR_SHOW(top_mem2);

574 575
static ssize_t dram_hole_show(struct device *dev, struct device_attribute *mattr,
			      char *data)
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
{
	struct mem_ctl_info *mci = to_mci(dev);

	u64 hole_base = 0;
	u64 hole_offset = 0;
	u64 hole_size = 0;

	get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);

	return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset,
						 hole_size);
}

/*
 * update NUM_DBG_ATTRS in case you add new members
 */
static DEVICE_ATTR(dhar, S_IRUGO, dhar_show, NULL);
static DEVICE_ATTR(dbam, S_IRUGO, dbam0_show, NULL);
static DEVICE_ATTR(topmem, S_IRUGO, top_mem_show, NULL);
static DEVICE_ATTR(topmem2, S_IRUGO, top_mem2_show, NULL);
596
static DEVICE_ATTR_RO(dram_hole);
597 598 599 600 601 602 603 604 605 606 607 608 609 610

static struct attribute *dbg_attrs[] = {
	&dev_attr_dhar.attr,
	&dev_attr_dbam.attr,
	&dev_attr_topmem.attr,
	&dev_attr_topmem2.attr,
	&dev_attr_dram_hole.attr,
	NULL
};

static const struct attribute_group dbg_group = {
	.attrs = dbg_attrs,
};

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static ssize_t inject_section_show(struct device *dev,
				   struct device_attribute *mattr, char *buf)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	return sprintf(buf, "0x%x\n", pvt->injection.section);
}

/*
 * store error injection section value which refers to one of 4 16-byte sections
 * within a 64-byte cacheline
 *
 * range: 0..3
 */
static ssize_t inject_section_store(struct device *dev,
				    struct device_attribute *mattr,
				    const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	if (value > 3) {
		amd64_warn("%s: invalid section 0x%lx\n", __func__, value);
		return -EINVAL;
	}

	pvt->injection.section = (u32) value;
	return count;
}

static ssize_t inject_word_show(struct device *dev,
				struct device_attribute *mattr, char *buf)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	return sprintf(buf, "0x%x\n", pvt->injection.word);
}

/*
 * store error injection word value which refers to one of 9 16-bit word of the
 * 16-byte (128-bit + ECC bits) section
 *
 * range: 0..8
 */
static ssize_t inject_word_store(struct device *dev,
				 struct device_attribute *mattr,
				 const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	if (value > 8) {
		amd64_warn("%s: invalid word 0x%lx\n", __func__, value);
		return -EINVAL;
	}

	pvt->injection.word = (u32) value;
	return count;
}

static ssize_t inject_ecc_vector_show(struct device *dev,
				      struct device_attribute *mattr,
				      char *buf)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	return sprintf(buf, "0x%x\n", pvt->injection.bit_map);
}

/*
 * store 16 bit error injection vector which enables injecting errors to the
 * corresponding bit within the error injection word above. When used during a
 * DRAM ECC read, it holds the contents of the of the DRAM ECC bits.
 */
static ssize_t inject_ecc_vector_store(struct device *dev,
				       struct device_attribute *mattr,
				       const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 16, &value);
	if (ret < 0)
		return ret;

	if (value & 0xFFFF0000) {
		amd64_warn("%s: invalid EccVector: 0x%lx\n", __func__, value);
		return -EINVAL;
	}

	pvt->injection.bit_map = (u32) value;
	return count;
}

/*
 * Do a DRAM ECC read. Assemble staged values in the pvt area, format into
 * fields needed by the injection registers and read the NB Array Data Port.
 */
static ssize_t inject_read_store(struct device *dev,
				 struct device_attribute *mattr,
				 const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	u32 section, word_bits;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	/* Form value to choose 16-byte section of cacheline */
	section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);

	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);

	word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection);

	/* Issue 'word' and 'bit' along with the READ request */
	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);

	edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);

	return count;
}

/*
 * Do a DRAM ECC write. Assemble staged values in the pvt area and format into
 * fields needed by the injection registers.
 */
static ssize_t inject_write_store(struct device *dev,
				  struct device_attribute *mattr,
				  const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 section, word_bits, tmp;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	/* Form value to choose 16-byte section of cacheline */
	section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);

	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);

	word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection);

	pr_notice_once("Don't forget to decrease MCE polling interval in\n"
			"/sys/bus/machinecheck/devices/machinecheck<CPUNUM>/check_interval\n"
			"so that you can get the error report faster.\n");

	on_each_cpu(disable_caches, NULL, 1);

	/* Issue 'word' and 'bit' along with the READ request */
	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);

 retry:
	/* wait until injection happens */
	amd64_read_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, &tmp);
	if (tmp & F10_NB_ARR_ECC_WR_REQ) {
		cpu_relax();
		goto retry;
	}

	on_each_cpu(enable_caches, NULL, 1);

	edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);

	return count;
}

/*
 * update NUM_INJ_ATTRS in case you add new members
 */

805 806 807 808 809
static DEVICE_ATTR_RW(inject_section);
static DEVICE_ATTR_RW(inject_word);
static DEVICE_ATTR_RW(inject_ecc_vector);
static DEVICE_ATTR_WO(inject_write);
static DEVICE_ATTR_WO(inject_read);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

static struct attribute *inj_attrs[] = {
	&dev_attr_inject_section.attr,
	&dev_attr_inject_word.attr,
	&dev_attr_inject_ecc_vector.attr,
	&dev_attr_inject_write.attr,
	&dev_attr_inject_read.attr,
	NULL
};

static umode_t inj_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
	struct amd64_pvt *pvt = mci->pvt_info;

826 827 828 829 830
	/* Families which have that injection hw */
	if (pvt->fam >= 0x10 && pvt->fam <= 0x16)
		return attr->mode;

	return 0;
831 832 833 834 835 836 837
}

static const struct attribute_group inj_group = {
	.attrs = inj_attrs,
	.is_visible = inj_is_visible,
};
#endif /* CONFIG_EDAC_DEBUG */
838

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
870
	struct amd64_pvt *pvt = mci->pvt_info;
871
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
872
	int ret;
873

874
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
875

876
	ret = get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
877
	if (!ret) {
878 879
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
880 881 882
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

883 884 885
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
886 887 888 889 890 891 892 893 894 895 896 897 898 899

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
900
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
901

902 903
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
935
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
936
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
937
		      (dram_addr & 0xfff);
938

939 940 941
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
957
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
958
		 (unsigned long)sys_addr, (unsigned long)input_addr);
959 960 961 962 963 964

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
965
						    struct err_info *err)
966
{
967 968
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
986 987
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
988 989
	return csrow;
}
990

991 992 993 994 995 996 997 998 999 1000 1001 1002
/* Protect the PCI config register pairs used for DF indirect access. */
static DEFINE_MUTEX(df_indirect_mutex);

/*
 * Data Fabric Indirect Access uses FICAA/FICAD.
 *
 * Fabric Indirect Configuration Access Address (FICAA): Constructed based
 * on the device's Instance Id and the PCI function and register offset of
 * the desired register.
 *
 * Fabric Indirect Configuration Access Data (FICAD): There are FICAD LO
 * and FICAD HI registers but so far we only need the LO register.
1003 1004
 *
 * Use Instance Id 0xFF to indicate a broadcast read.
1005
 */
1006 1007
#define DF_BROADCAST	0xFF
static int __df_indirect_read(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
{
	struct pci_dev *F4;
	u32 ficaa;
	int err = -ENODEV;

	if (node >= amd_nb_num())
		goto out;

	F4 = node_to_amd_nb(node)->link;
	if (!F4)
		goto out;

1020
	ficaa  = (instance_id == DF_BROADCAST) ? 0 : 1;
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	ficaa |= reg & 0x3FC;
	ficaa |= (func & 0x7) << 11;
	ficaa |= instance_id << 16;

	mutex_lock(&df_indirect_mutex);

	err = pci_write_config_dword(F4, 0x5C, ficaa);
	if (err) {
		pr_warn("Error writing DF Indirect FICAA, FICAA=0x%x\n", ficaa);
		goto out_unlock;
	}

	err = pci_read_config_dword(F4, 0x98, lo);
	if (err)
		pr_warn("Error reading DF Indirect FICAD LO, FICAA=0x%x.\n", ficaa);

out_unlock:
	mutex_unlock(&df_indirect_mutex);

out:
	return err;
}

1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
static int df_indirect_read_instance(u16 node, u8 func, u16 reg, u8 instance_id, u32 *lo)
{
	return __df_indirect_read(node, func, reg, instance_id, lo);
}

static int df_indirect_read_broadcast(u16 node, u8 func, u16 reg, u32 *lo)
{
	return __df_indirect_read(node, func, reg, DF_BROADCAST, lo);
}

Y
Yazen Ghannam 已提交
1054 1055 1056 1057 1058 1059 1060
struct addr_ctx {
	u64 ret_addr;
	u32 tmp;
	u16 nid;
	u8 inst_id;
};

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
static int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
{
	u64 dram_base_addr, dram_limit_addr, dram_hole_base;

	u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
	u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
	u8 intlv_addr_sel, intlv_addr_bit;
	u8 num_intlv_bits, hashed_bit;
	u8 lgcy_mmio_hole_en, base = 0;
	u8 cs_mask, cs_id = 0;
	bool hash_enabled = false;

Y
Yazen Ghannam 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	struct addr_ctx ctx;

	memset(&ctx, 0, sizeof(ctx));

	/* Start from the normalized address */
	ctx.ret_addr = norm_addr;

	ctx.nid = nid;
	ctx.inst_id = umc;

1083
	/* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
Y
Yazen Ghannam 已提交
1084
	if (df_indirect_read_instance(nid, 0, 0x1B4, umc, &ctx.tmp))
1085 1086 1087
		goto out_err;

	/* Remove HiAddrOffset from normalized address, if enabled: */
Y
Yazen Ghannam 已提交
1088 1089
	if (ctx.tmp & BIT(0)) {
		u64 hi_addr_offset = (ctx.tmp & GENMASK_ULL(31, 20)) << 8;
1090 1091

		if (norm_addr >= hi_addr_offset) {
Y
Yazen Ghannam 已提交
1092
			ctx.ret_addr -= hi_addr_offset;
1093 1094 1095 1096 1097
			base = 1;
		}
	}

	/* Read D18F0x110 (DramBaseAddress). */
Y
Yazen Ghannam 已提交
1098
	if (df_indirect_read_instance(nid, 0, 0x110 + (8 * base), umc, &ctx.tmp))
1099 1100 1101
		goto out_err;

	/* Check if address range is valid. */
Y
Yazen Ghannam 已提交
1102
	if (!(ctx.tmp & BIT(0))) {
1103
		pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
Y
Yazen Ghannam 已提交
1104
			__func__, ctx.tmp);
1105 1106 1107
		goto out_err;
	}

Y
Yazen Ghannam 已提交
1108 1109 1110 1111
	lgcy_mmio_hole_en = ctx.tmp & BIT(1);
	intlv_num_chan	  = (ctx.tmp >> 4) & 0xF;
	intlv_addr_sel	  = (ctx.tmp >> 8) & 0x7;
	dram_base_addr	  = (ctx.tmp & GENMASK_ULL(31, 12)) << 16;
1112 1113 1114 1115 1116 1117 1118 1119 1120

	/* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
	if (intlv_addr_sel > 3) {
		pr_err("%s: Invalid interleave address select %d.\n",
			__func__, intlv_addr_sel);
		goto out_err;
	}

	/* Read D18F0x114 (DramLimitAddress). */
Y
Yazen Ghannam 已提交
1121
	if (df_indirect_read_instance(nid, 0, 0x114 + (8 * base), umc, &ctx.tmp))
1122 1123
		goto out_err;

Y
Yazen Ghannam 已提交
1124 1125 1126
	intlv_num_sockets = (ctx.tmp >> 8) & 0x1;
	intlv_num_dies	  = (ctx.tmp >> 10) & 0x3;
	dram_limit_addr	  = ((ctx.tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176

	intlv_addr_bit = intlv_addr_sel + 8;

	/* Re-use intlv_num_chan by setting it equal to log2(#channels) */
	switch (intlv_num_chan) {
	case 0:	intlv_num_chan = 0; break;
	case 1: intlv_num_chan = 1; break;
	case 3: intlv_num_chan = 2; break;
	case 5:	intlv_num_chan = 3; break;
	case 7:	intlv_num_chan = 4; break;

	case 8: intlv_num_chan = 1;
		hash_enabled = true;
		break;
	default:
		pr_err("%s: Invalid number of interleaved channels %d.\n",
			__func__, intlv_num_chan);
		goto out_err;
	}

	num_intlv_bits = intlv_num_chan;

	if (intlv_num_dies > 2) {
		pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
			__func__, intlv_num_dies);
		goto out_err;
	}

	num_intlv_bits += intlv_num_dies;

	/* Add a bit if sockets are interleaved. */
	num_intlv_bits += intlv_num_sockets;

	/* Assert num_intlv_bits <= 4 */
	if (num_intlv_bits > 4) {
		pr_err("%s: Invalid interleave bits %d.\n",
			__func__, num_intlv_bits);
		goto out_err;
	}

	if (num_intlv_bits > 0) {
		u64 temp_addr_x, temp_addr_i, temp_addr_y;
		u8 die_id_bit, sock_id_bit, cs_fabric_id;

		/*
		 * Read FabricBlockInstanceInformation3_CS[BlockFabricID].
		 * This is the fabric id for this coherent slave. Use
		 * umc/channel# as instance id of the coherent slave
		 * for FICAA.
		 */
Y
Yazen Ghannam 已提交
1177
		if (df_indirect_read_instance(nid, 0, 0x50, umc, &ctx.tmp))
1178 1179
			goto out_err;

Y
Yazen Ghannam 已提交
1180
		cs_fabric_id = (ctx.tmp >> 8) & 0xFF;
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
		die_id_bit   = 0;

		/* If interleaved over more than 1 channel: */
		if (intlv_num_chan) {
			die_id_bit = intlv_num_chan;
			cs_mask	   = (1 << die_id_bit) - 1;
			cs_id	   = cs_fabric_id & cs_mask;
		}

		sock_id_bit = die_id_bit;

		/* Read D18F1x208 (SystemFabricIdMask). */
		if (intlv_num_dies || intlv_num_sockets)
Y
Yazen Ghannam 已提交
1194
			if (df_indirect_read_broadcast(nid, 1, 0x208, &ctx.tmp))
1195 1196 1197 1198 1199
				goto out_err;

		/* If interleaved over more than 1 die. */
		if (intlv_num_dies) {
			sock_id_bit  = die_id_bit + intlv_num_dies;
Y
Yazen Ghannam 已提交
1200 1201
			die_id_shift = (ctx.tmp >> 24) & 0xF;
			die_id_mask  = (ctx.tmp >> 8) & 0xFF;
1202 1203 1204 1205 1206 1207

			cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
		}

		/* If interleaved over more than 1 socket. */
		if (intlv_num_sockets) {
Y
Yazen Ghannam 已提交
1208 1209
			socket_id_shift	= (ctx.tmp >> 28) & 0xF;
			socket_id_mask	= (ctx.tmp >> 16) & 0xFF;
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

			cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
		}

		/*
		 * The pre-interleaved address consists of XXXXXXIIIYYYYY
		 * where III is the ID for this CS, and XXXXXXYYYYY are the
		 * address bits from the post-interleaved address.
		 * "num_intlv_bits" has been calculated to tell us how many "I"
		 * bits there are. "intlv_addr_bit" tells us how many "Y" bits
		 * there are (where "I" starts).
		 */
Y
Yazen Ghannam 已提交
1222
		temp_addr_y = ctx.ret_addr & GENMASK_ULL(intlv_addr_bit - 1, 0);
1223
		temp_addr_i = (cs_id << intlv_addr_bit);
Y
Yazen Ghannam 已提交
1224 1225
		temp_addr_x = (ctx.ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
		ctx.ret_addr    = temp_addr_x | temp_addr_i | temp_addr_y;
1226 1227 1228
	}

	/* Add dram base address */
Y
Yazen Ghannam 已提交
1229
	ctx.ret_addr += dram_base_addr;
1230 1231 1232

	/* If legacy MMIO hole enabled */
	if (lgcy_mmio_hole_en) {
Y
Yazen Ghannam 已提交
1233
		if (df_indirect_read_broadcast(nid, 0, 0x104, &ctx.tmp))
1234 1235
			goto out_err;

Y
Yazen Ghannam 已提交
1236 1237 1238
		dram_hole_base = ctx.tmp & GENMASK(31, 24);
		if (ctx.ret_addr >= dram_hole_base)
			ctx.ret_addr += (BIT_ULL(32) - dram_hole_base);
1239 1240 1241 1242
	}

	if (hash_enabled) {
		/* Save some parentheses and grab ls-bit at the end. */
Y
Yazen Ghannam 已提交
1243 1244 1245 1246
		hashed_bit =	(ctx.ret_addr >> 12) ^
				(ctx.ret_addr >> 18) ^
				(ctx.ret_addr >> 21) ^
				(ctx.ret_addr >> 30) ^
1247 1248 1249 1250
				cs_id;

		hashed_bit &= BIT(0);

Y
Yazen Ghannam 已提交
1251 1252
		if (hashed_bit != ((ctx.ret_addr >> intlv_addr_bit) & BIT(0)))
			ctx.ret_addr ^= BIT(intlv_addr_bit);
1253 1254 1255
	}

	/* Is calculated system address is above DRAM limit address? */
Y
Yazen Ghannam 已提交
1256
	if (ctx.ret_addr > dram_limit_addr)
1257 1258
		goto out_err;

Y
Yazen Ghannam 已提交
1259
	*sys_addr = ctx.ret_addr;
1260 1261 1262 1263 1264 1265
	return 0;

out_err:
	return -EINVAL;
}

1266
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
1267 1268 1269 1270 1271

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
1272
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
1273
{
1274
	unsigned long edac_cap = EDAC_FLAG_NONE;
1275 1276 1277 1278
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
1279

1280
		for_each_umc(i) {
1281 1282
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
1283

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
1301 1302 1303 1304

	return edac_cap;
}

1305
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
1306

1307
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
1308
{
1309
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
1310

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

1324

1325 1326
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
1327

1328
	if (pvt->fam == 0x10)
1329 1330
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
1331

1332 1333 1334 1335 1336
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
1337 1338
}

1339 1340
#define CS_EVEN_PRIMARY		BIT(0)
#define CS_ODD_PRIMARY		BIT(1)
1341 1342
#define CS_EVEN_SECONDARY	BIT(2)
#define CS_ODD_SECONDARY	BIT(3)
1343
#define CS_3R_INTERLEAVE	BIT(4)
1344

1345 1346
#define CS_EVEN			(CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
#define CS_ODD			(CS_ODD_PRIMARY | CS_ODD_SECONDARY)
1347 1348

static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
1349
{
1350
	u8 base, count = 0;
1351
	int cs_mode = 0;
1352

1353 1354
	if (csrow_enabled(2 * dimm, ctrl, pvt))
		cs_mode |= CS_EVEN_PRIMARY;
1355

1356 1357 1358
	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_PRIMARY;

1359 1360 1361 1362
	/* Asymmetric dual-rank DIMM support. */
	if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_SECONDARY;

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	/*
	 * 3 Rank inteleaving support.
	 * There should be only three bases enabled and their two masks should
	 * be equal.
	 */
	for_each_chip_select(base, ctrl, pvt)
		count += csrow_enabled(base, ctrl, pvt);

	if (count == 3 &&
	    pvt->csels[ctrl].csmasks[0] == pvt->csels[ctrl].csmasks[1]) {
		edac_dbg(1, "3R interleaving in use.\n");
		cs_mode |= CS_3R_INTERLEAVE;
	}

1377
	return cs_mode;
1378 1379
}

1380 1381
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
1382
	int dimm, size0, size1, cs0, cs1, cs_mode;
1383 1384 1385

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

1386
	for (dimm = 0; dimm < 2; dimm++) {
1387 1388 1389
		cs0 = dimm * 2;
		cs1 = dimm * 2 + 1;

1390 1391 1392 1393
		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);

		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
1394 1395

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1396 1397
				cs0,	size0,
				cs1,	size1);
1398 1399 1400 1401 1402 1403 1404 1405
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

1406
	for_each_umc(i) {
1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

1432
		if (umc->dram_type == MEM_LRDDR4) {
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

1445
/* Display and decode various NB registers for debug purposes. */
1446
static void __dump_misc_regs(struct amd64_pvt *pvt)
1447
{
1448
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
1449

1450 1451
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
1452

1453 1454 1455
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
1456

1457
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
1458

1459
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
1460

1461 1462
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
1463 1464
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
1465

1466
	debug_display_dimm_sizes(pvt, 0);
1467

1468
	/* everything below this point is Fam10h and above */
1469
	if (pvt->fam == 0xf)
1470
		return;
1471

1472
	debug_display_dimm_sizes(pvt, 1);
1473

1474
	/* Only if NOT ganged does dclr1 have valid info */
1475
	if (!dct_ganging_enabled(pvt))
1476
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
1477 1478
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

1489
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
1490 1491
}

1492
/*
1493
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
1494
 */
1495
static void prep_chip_selects(struct amd64_pvt *pvt)
1496
{
1497
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
1498 1499
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
1500
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
1501 1502
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
1503 1504 1505 1506 1507 1508 1509 1510
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

1511
	} else {
1512 1513
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
1514 1515 1516
	}
}

1517 1518
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
1519 1520 1521 1522 1523 1524
	u32 umc_base_reg, umc_base_reg_sec;
	u32 umc_mask_reg, umc_mask_reg_sec;
	u32 base_reg, base_reg_sec;
	u32 mask_reg, mask_reg_sec;
	u32 *base, *base_sec;
	u32 *mask, *mask_sec;
1525 1526 1527 1528
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
1529
		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
1530 1531 1532

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];
1533
			base_sec = &pvt->csels[umc].csbases_sec[cs];
1534 1535

			base_reg = umc_base_reg + (cs * 4);
1536
			base_reg_sec = umc_base_reg_sec + (cs * 4);
1537 1538 1539 1540

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
1541 1542 1543 1544

			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base_sec, base_reg_sec);
1545 1546 1547
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
1548
		umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
1549 1550 1551

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];
1552
			mask_sec = &pvt->csels[umc].csmasks_sec[cs];
1553 1554

			mask_reg = umc_mask_reg + (cs * 4);
1555
			mask_reg_sec = umc_mask_reg_sec + (cs * 4);
1556 1557 1558 1559

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
1560 1561 1562 1563

			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask_sec, mask_reg_sec);
1564 1565 1566 1567
		}
	}
}

1568
/*
1569
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
1570
 */
1571
static void read_dct_base_mask(struct amd64_pvt *pvt)
1572
{
1573
	int cs;
1574

1575
	prep_chip_selects(pvt);
1576

1577 1578
	if (pvt->umc)
		return read_umc_base_mask(pvt);
1579

1580
	for_each_chip_select(cs, 0, pvt) {
1581 1582
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
1583 1584
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
1585

1586 1587 1588
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1589

1590 1591
		if (pvt->fam == 0xf)
			continue;
1592

1593 1594 1595 1596
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1597 1598
	}

1599
	for_each_chip_select_mask(cs, 0, pvt) {
1600 1601
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1602 1603
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1604

1605 1606 1607
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1608

1609 1610
		if (pvt->fam == 0xf)
			continue;
1611

1612 1613 1614 1615
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1616 1617 1618
	}
}

1619
static void determine_memory_type_df(struct amd64_pvt *pvt)
1620
{
1621 1622
	struct amd64_umc *umc;
	u32 i;
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	for_each_umc(i) {
		umc = &pvt->umc[i];

		if (!(umc->sdp_ctrl & UMC_SDP_INIT)) {
			umc->dram_type = MEM_EMPTY;
			continue;
		}

		if (umc->dimm_cfg & BIT(5))
			umc->dram_type = MEM_LRDDR4;
		else if (umc->dimm_cfg & BIT(4))
			umc->dram_type = MEM_RDDR4;
1636
		else
1637 1638 1639
			umc->dram_type = MEM_DDR4;

		edac_dbg(1, "  UMC%d DIMM type: %s\n", i, edac_mem_types[umc->dram_type]);
1640
	}
1641 1642 1643 1644 1645 1646 1647 1648
}

static void determine_memory_type(struct amd64_pvt *pvt)
{
	u32 dram_ctrl, dcsm;

	if (pvt->umc)
		return determine_memory_type_df(pvt);
1649

1650 1651 1652 1653 1654 1655 1656 1657 1658
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1659
		if (pvt->dchr0 & DDR3_MODE)
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1687
		else
1688
			pvt->dram_type = MEM_RDDR3;
1689

1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
		return;

	case 0x16:
		goto ddr3;

	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1700

1701 1702
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1703 1704
}

1705
/* Get the number of DCT channels the memory controller is using. */
1706 1707
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1708
	int flag;
1709

1710
	if (pvt->ext_model >= K8_REV_F)
1711
		/* RevF (NPT) and later */
1712
		flag = pvt->dclr0 & WIDTH_128;
1713
	else
1714 1715 1716 1717 1718 1719 1720 1721 1722
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1723
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1724
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1725
{
1726
	u16 mce_nid = topology_die_id(m->extcpu);
1727
	struct mem_ctl_info *mci;
1728 1729
	u8 start_bit = 1;
	u8 end_bit   = 47;
1730 1731 1732 1733 1734 1735 1736
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1737

1738
	if (pvt->fam == 0xf) {
1739 1740 1741 1742
		start_bit = 3;
		end_bit   = 39;
	}

1743
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1744 1745 1746 1747

	/*
	 * Erratum 637 workaround
	 */
1748
	if (pvt->fam == 0x15) {
1749 1750
		u64 cc6_base, tmp_addr;
		u32 tmp;
1751
		u8 intlv_en;
1752

1753
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1754 1755 1756 1757 1758 1759 1760
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1761
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1762 1763 1764 1765 1766 1767 1768 1769

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1770
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1771 1772 1773 1774

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1775
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1776 1777

		/* OR DramIntlvSel into bits [14:12] */
1778
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1779 1780

		/* add remaining [11:0] bits from original MC4_ADDR */
1781
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1782 1783 1784 1785 1786

		return cc6_base | tmp_addr;
	}

	return addr;
1787 1788
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1805
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1806
{
1807
	struct amd_northbridge *nb;
1808 1809
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1810
	int off = range << 3;
1811
	u32 llim;
1812

1813 1814
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1815

1816
	if (pvt->fam == 0xf)
1817
		return;
1818

1819 1820
	if (!dram_rw(pvt, range))
		return;
1821

1822 1823
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1824

1825
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1826
	if (pvt->fam != 0x15)
1827
		return;
1828

1829 1830 1831
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1832

1833 1834 1835 1836 1837 1838
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1839 1840

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1841 1842
	if (WARN_ON(!f1))
		return;
1843

1844
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1845

1846
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1847

1848 1849
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1850

1851
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1852

1853 1854 1855 1856
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1857 1858
}

1859
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1860
				    struct err_info *err)
1861
{
1862
	struct amd64_pvt *pvt = mci->pvt_info;
1863

1864
	error_address_to_page_and_offset(sys_addr, err);
1865 1866 1867 1868 1869

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1870 1871
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1872 1873
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1874
		err->err_code = ERR_NODE;
1875 1876 1877 1878
		return;
	}

	/* Now map the sys_addr to a CSROW */
1879 1880 1881
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1882 1883 1884
		return;
	}

1885
	/* CHIPKILL enabled */
1886
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1887 1888
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1889 1890 1891 1892 1893
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1894
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1895
				      "possible error reporting race\n",
1896 1897
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1909
		err->channel = ((sys_addr & BIT(3)) != 0);
1910 1911 1912
	}
}

1913
static int ddr2_cs_size(unsigned i, bool dct_width)
1914
{
1915
	unsigned shift = 0;
1916

1917 1918 1919 1920
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1921
	else
1922
		shift = (i + 1) >> 1;
1923

1924 1925 1926 1927
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1928
				  unsigned cs_mode, int cs_mask_nr)
1929 1930 1931 1932 1933 1934 1935 1936
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1937
		unsigned diff;
1938 1939
		WARN_ON(cs_mode > 10);

1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1967 1968 1969 1970 1971
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1972 1973
}

1974 1975 1976 1977 1978 1979 1980 1981
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1982
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1983
{
1984
	int i, j, channels = 0;
1985

1986
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1987
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1988
		return 2;
1989 1990

	/*
1991 1992 1993
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1994 1995 1996 1997
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1998
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1999

2000 2001 2002 2003 2004
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
2005 2006
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
2007

2008 2009 2010 2011 2012 2013
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
2014 2015
	}

2016 2017 2018
	if (channels > 2)
		channels = 2;

2019
	amd64_info("MCT channel count: %d\n", channels);
2020 2021 2022 2023

	return channels;
}

2024 2025 2026 2027 2028
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
2029
	for_each_umc(i)
2030 2031 2032 2033 2034 2035 2036
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

2037
static int ddr3_cs_size(unsigned i, bool dct_width)
2038
{
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

2094
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
2095
				   unsigned cs_mode, int cs_mask_nr)
2096 2097 2098 2099
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
2100 2101

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
2102
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
2103
	else
2104 2105 2106 2107 2108 2109 2110
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
2111
				   unsigned cs_mode, int cs_mask_nr)
2112 2113
{
	WARN_ON(cs_mode > 12);
2114

2115
	return ddr3_cs_size(cs_mode, false);
2116 2117
}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

2149
/*
2150
 * F16h and F15h model 30h have only limited cs_modes.
2151 2152
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
2153
				unsigned cs_mode, int cs_mask_nr)
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

2164
static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
2165 2166
				    unsigned int cs_mode, int csrow_nr)
{
2167 2168 2169
	u32 addr_mask_orig, addr_mask_deinterleaved;
	u32 msb, weight, num_zero_bits;
	int dimm, size = 0;
2170

2171 2172 2173
	/* No Chip Selects are enabled. */
	if (!cs_mode)
		return size;
2174

2175 2176 2177
	/* Requested size of an even CS but none are enabled. */
	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
		return size;
2178

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	/* Requested size of an odd CS but none are enabled. */
	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
		return size;

	/*
	 * There is one mask per DIMM, and two Chip Selects per DIMM.
	 *	CS0 and CS1 -> DIMM0
	 *	CS2 and CS3 -> DIMM1
	 */
	dimm = csrow_nr >> 1;

2190 2191 2192 2193 2194
	/* Asymmetric dual-rank DIMM support. */
	if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
		addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm];
	else
		addr_mask_orig = pvt->csels[umc].csmasks[dimm];
2195 2196 2197 2198 2199 2200 2201

	/*
	 * The number of zero bits in the mask is equal to the number of bits
	 * in a full mask minus the number of bits in the current mask.
	 *
	 * The MSB is the number of bits in the full mask because BIT[0] is
	 * always 0.
2202 2203 2204 2205
	 *
	 * In the special 3 Rank interleaving case, a single bit is flipped
	 * without swapping with the most significant bit. This can be handled
	 * by keeping the MSB where it is and ignoring the single zero bit.
2206 2207 2208
	 */
	msb = fls(addr_mask_orig) - 1;
	weight = hweight_long(addr_mask_orig);
2209
	num_zero_bits = msb - weight - !!(cs_mode & CS_3R_INTERLEAVE);
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

	/* Take the number of zero bits off from the top of the mask. */
	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);

	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);

	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
	size = (addr_mask_deinterleaved >> 2) + 1;
2220 2221 2222 2223 2224

	/* Return size in MBs. */
	return size >> 10;
}

2225
static void read_dram_ctl_register(struct amd64_pvt *pvt)
2226 2227
{

2228
	if (pvt->fam == 0xf)
2229 2230
		return;

2231
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
2232 2233
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
2234

2235 2236
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
2237 2238

		if (!dct_ganging_enabled(pvt))
2239 2240
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
2241

2242 2243 2244
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
2245

2246 2247 2248 2249
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
2250 2251
	}

2252
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
2253 2254
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
2283 2284 2285
	return channel;
}

2286
/*
2287
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
2288 2289
 * Interleaving Modes.
 */
2290
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
2291
				bool hi_range_sel, u8 intlv_en)
2292
{
2293
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
2294 2295

	if (dct_ganging_enabled(pvt))
2296
		return 0;
2297

2298 2299
	if (hi_range_sel)
		return dct_sel_high;
2300

2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
2313
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
2314 2315 2316 2317

			return ((sys_addr >> shift) & 1) ^ temp;
		}

2318 2319 2320 2321 2322 2323
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

2324 2325 2326 2327 2328
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
2329 2330 2331 2332

	return 0;
}

2333
/* Convert the sys_addr to the normalized DCT address */
2334
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
2335 2336
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
2337 2338
{
	u64 chan_off;
2339 2340
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
2341
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
2342

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
2357
		    dhar_valid(pvt) &&
2358
		    (sys_addr >= BIT_64(32)))
2359
			chan_off = hole_off;
2360 2361 2362
		else
			chan_off = dct_sel_base_off;
	} else {
2363 2364 2365 2366 2367 2368 2369 2370 2371
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
2372
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
2373
			chan_off = hole_off;
2374
		else
2375
			chan_off = dram_base;
2376 2377
	}

2378
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
2379 2380 2381 2382 2383 2384
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
2385
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
2386
{
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
2410
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
2411 2412 2413
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2414
	u64 cs_base, cs_mask;
2415 2416 2417
	int cs_found = -EINVAL;
	int csrow;

2418
	mci = edac_mc_find(nid);
2419 2420 2421 2422 2423
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

2424
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
2425

2426 2427
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
2428 2429
			continue;

2430
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
2431

2432 2433
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
2434

2435
		cs_mask = ~cs_mask;
2436

2437 2438
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
2439

2440
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
2441 2442 2443 2444
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
2445
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
2446

2447
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
2448 2449 2450 2451 2452 2453
			break;
		}
	}
	return cs_found;
}

2454 2455 2456 2457 2458
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
2459
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
2460 2461 2462
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

2463
	if (pvt->fam == 0x10) {
2464
		/* only revC3 and revE have that feature */
2465
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
2466 2467 2468
			return sys_addr;
	}

2469
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

2488
/* For a given @dram_range, check if @sys_addr falls within it. */
2489
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
2490
				  u64 sys_addr, int *chan_sel)
2491
{
2492
	int cs_found = -EINVAL;
2493
	u64 chan_addr;
2494
	u32 dct_sel_base;
2495
	u8 channel;
2496
	bool high_range = false;
2497

2498
	u8 node_id    = dram_dst_node(pvt, range);
2499
	u8 intlv_en   = dram_intlv_en(pvt, range);
2500
	u32 intlv_sel = dram_intlv_sel(pvt, range);
2501

2502 2503
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
2504

2505 2506 2507 2508 2509 2510 2511 2512
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

2513
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
2514 2515
		return -EINVAL;

2516
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
2517

2518 2519 2520 2521 2522 2523 2524 2525 2526
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
2527
		high_range = true;
2528

2529
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
2530

2531
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
2532
					  high_range, dct_sel_base);
2533

2534 2535 2536 2537
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
2538

2539
	/* remove channel interleave */
2540 2541 2542
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
2557 2558
	}

2559
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
2560

2561
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
2562

2563
	if (cs_found >= 0)
2564
		*chan_sel = channel;
2565

2566 2567 2568
	return cs_found;
}

2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
2606 2607
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2608 2609

	if (!(dct_cont_base_reg & BIT(0)) &&
2610 2611
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
2612 2613 2614 2615 2616 2617 2618 2619
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

2620 2621 2622 2623 2624
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
2625 2626

	/* Verify we stay within the MAX number of channels allowed */
2627
	if (channel > 3)
2628 2629 2630 2631 2632 2633 2634 2635
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
2636
		chan_offset = dct_base << 27;
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2666
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2694
{
2695 2696
	int cs_found = -EINVAL;
	unsigned range;
2697

2698 2699
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2700 2701
			continue;

2702 2703 2704 2705
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2706

2707 2708
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2709
			cs_found = f1x_match_to_this_node(pvt, range,
2710
							  sys_addr, chan_sel);
2711 2712 2713 2714 2715 2716 2717 2718
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2719 2720
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2721
 *
2722 2723
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2724
 */
2725
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2726
				     struct err_info *err)
2727 2728 2729
{
	struct amd64_pvt *pvt = mci->pvt_info;

2730
	error_address_to_page_and_offset(sys_addr, err);
2731

2732 2733 2734
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2735 2736 2737 2738 2739 2740 2741 2742
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2743
	if (dct_ganging_enabled(pvt))
2744
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2745 2746 2747
}

/*
2748
 * debug routine to display the memory sizes of all logical DIMMs and its
2749
 * CSROWs
2750
 */
2751
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2752
{
2753
	int dimm, size0, size1;
2754 2755
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2756

2757
	if (pvt->fam == 0xf) {
2758
		/* K8 families < revF not supported yet */
2759
	       if (pvt->ext_model < K8_REV_F)
2760 2761 2762 2763 2764
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2775 2776
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2777

2778 2779
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2780 2781 2782 2783
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2784
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2785 2786 2787
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2788 2789 2790
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2791
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2792 2793
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2794 2795

		size1 = 0;
2796
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2797
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2798 2799
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2800

2801
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2802 2803
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2804 2805 2806
	}
}

2807
static struct amd64_family_type family_types[] = {
2808
	[K8_CPUS] = {
2809
		.ctl_name = "K8",
2810
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2811
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2812
		.max_mcs = 2,
2813
		.ops = {
2814 2815 2816
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2817 2818 2819
		}
	},
	[F10_CPUS] = {
2820
		.ctl_name = "F10h",
2821
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2822
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2823
		.max_mcs = 2,
2824
		.ops = {
2825
			.early_channel_count	= f1x_early_channel_count,
2826
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2827
			.dbam_to_cs		= f10_dbam_to_chip_select,
2828 2829 2830 2831
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2832
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2833
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2834
		.max_mcs = 2,
2835
		.ops = {
2836
			.early_channel_count	= f1x_early_channel_count,
2837
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2838
			.dbam_to_cs		= f15_dbam_to_chip_select,
2839 2840
		}
	},
2841 2842 2843
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2844
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2845
		.max_mcs = 2,
2846 2847 2848 2849 2850 2851
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2852 2853 2854
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2855
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2856
		.max_mcs = 2,
2857 2858 2859 2860 2861 2862
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2863 2864 2865
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2866
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2867
		.max_mcs = 2,
2868 2869 2870 2871 2872 2873
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2874 2875 2876
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2877
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2878
		.max_mcs = 2,
2879 2880 2881 2882 2883 2884
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2885 2886 2887 2888
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2889
		.max_mcs = 2,
2890 2891
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2892
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2893 2894
		}
	},
2895 2896 2897 2898
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
2899
		.max_mcs = 2,
2900 2901
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2902
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2903 2904
		}
	},
2905 2906 2907 2908
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
2909
		.max_mcs = 8,
2910 2911
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2912
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2913 2914
		}
	},
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
	[F17_M60H_CPUS] = {
		.ctl_name = "F17h_M60h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F6,
		.max_mcs = 2,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2925 2926 2927 2928
	[F17_M70H_CPUS] = {
		.ctl_name = "F17h_M70h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
2929
		.max_mcs = 2,
2930 2931 2932 2933 2934
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	[F19_CPUS] = {
		.ctl_name = "F19h",
		.f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6,
		.max_mcs = 8,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	[F19_M10H_CPUS] = {
		.ctl_name = "F19h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_19H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_19H_M10H_DF_F6,
		.max_mcs = 12,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	[F19_M50H_CPUS] = {
		.ctl_name = "F19h_M50h",
		.f0_id = PCI_DEVICE_ID_AMD_19H_M50H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_19H_M50H_DF_F6,
		.max_mcs = 2,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2965 2966
};

2967
/*
2968 2969 2970
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2971
 *
2972
 * Algorithm courtesy of Ross LaFetra from AMD.
2973
 */
2974
static const u16 x4_vectors[] = {
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
3011 3012
};

3013
static const u16 x8_vectors[] = {
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

3035
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
3036
			   unsigned v_dim)
3037
{
3038 3039 3040 3041
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
3042 3043
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
3056

3057 3058 3059
					if (!s)
						return err_sym;
				}
3060

3061 3062 3063 3064
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
3065 3066
	}

3067
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
3068 3069
	return -1;
}
3070

3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
		case 0x22:
		case 0x23:
			return 1;
		default:
			return err_sym >> 4;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
		case 0x11:
			return 0;
		case 0x12:
			return 1;
		default:
			return err_sym >> 3;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
3105 3106
	int err_sym = -1;

3107
	if (pvt->ecc_sym_sz == 8)
3108 3109
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
3110 3111
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
3112 3113
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
3114
					  pvt->ecc_sym_sz);
3115
	else {
3116
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
3117
		return err_sym;
3118
	}
3119

3120
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
3121 3122
}

3123
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
3124
			    u8 ecc_type)
3125
{
3126 3127
	enum hw_event_mc_err_type err_type;
	const char *string;
3128

3129 3130 3131 3132
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
3133 3134
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
3135 3136
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
3137 3138 3139
		return;
	}

3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
3151 3152 3153 3154 3155 3156 3157
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
3158 3159 3160 3161
		break;
	default:
		string = "WTF error";
		break;
3162
	}
3163 3164 3165 3166 3167

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
3168 3169
}

3170
static inline void decode_bus_error(int node_id, struct mce *m)
3171
{
3172 3173
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3174
	u8 ecc_type = (m->status >> 45) & 0x3;
3175 3176
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
3177 3178
	u64 sys_addr;
	struct err_info err;
3179

3180 3181 3182 3183 3184 3185
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

3186
	/* Bail out early if this was an 'observed' error */
3187
	if (PP(ec) == NBSL_PP_OBS)
3188
		return;
3189

3190 3191
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
3192 3193
		return;

3194 3195
	memset(&err, 0, sizeof(err));

3196
	sys_addr = get_error_address(pvt, m);
3197

3198
	if (ecc_type == 2)
3199 3200 3201 3202
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

3203
	__log_ecc_error(mci, &err, ecc_type);
3204 3205
}

3206 3207 3208 3209
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
3210 3211 3212 3213
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
3214
 */
3215
static int find_umc_channel(struct mce *m)
3216
{
3217
	return (m->ipid & GENMASK(31, 0)) >> 20;
3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

3239
	err.channel = find_umc_channel(m);
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

3257 3258 3259 3260 3261 3262 3263
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

3264 3265 3266 3267
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

3268
/*
3269 3270
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
3271
 * Reserve F0 and F6 on systems with a UMC.
3272
 */
3273 3274 3275 3276 3277 3278
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
3279
			edac_dbg(1, "F0 not found, device 0x%x\n", pci_id1);
3280 3281 3282 3283 3284 3285 3286 3287
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

3288
			edac_dbg(1, "F6 not found: device 0x%x\n", pci_id2);
3289 3290
			return -ENODEV;
		}
3291

3292 3293 3294
		if (!pci_ctl_dev)
			pci_ctl_dev = &pvt->F0->dev;

3295 3296 3297 3298 3299 3300 3301
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

3302
	/* Reserve the ADDRESS MAP Device */
3303
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
3304
	if (!pvt->F1) {
3305
		edac_dbg(1, "F1 not found: device 0x%x\n", pci_id1);
3306
		return -ENODEV;
3307 3308
	}

3309
	/* Reserve the DCT Device */
3310
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
3311
	if (!pvt->F2) {
3312 3313
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
3314

3315
		edac_dbg(1, "F2 not found: device 0x%x\n", pci_id2);
3316
		return -ENODEV;
3317
	}
3318

3319 3320 3321
	if (!pci_ctl_dev)
		pci_ctl_dev = &pvt->F2->dev;

3322 3323 3324
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
3325 3326 3327 3328

	return 0;
}

3329
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
3330
{
3331 3332 3333 3334 3335 3336 3337
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
3338 3339
}

3340 3341 3342 3343 3344 3345 3346
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

3347
		for_each_umc(i) {
3348
			/* Check enabled channels only: */
3349 3350 3351 3352 3353 3354 3355 3356
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
3357 3358
			}
		}
3359
	} else if (pvt->fam >= 0x10) {
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
3383
	for_each_umc(i) {
3384 3385 3386 3387

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

3388 3389
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
3390 3391
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
3392
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
3393 3394 3395
	}
}

3396 3397 3398 3399
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
3400
static void read_mc_regs(struct amd64_pvt *pvt)
3401
{
3402
	unsigned int range;
3403 3404 3405 3406
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
3407
	 * those are Read-As-Zero.
3408
	 */
3409
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
3410
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
3411

3412
	/* Check first whether TOP_MEM2 is enabled: */
3413
	rdmsrl(MSR_AMD64_SYSCFG, msr_val);
3414
	if (msr_val & BIT(21)) {
3415
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
3416
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
3417
	} else {
3418
		edac_dbg(0, "  TOP_MEM2 disabled\n");
3419 3420 3421 3422 3423 3424 3425 3426
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
3427

3428
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
3429

3430
	read_dram_ctl_register(pvt);
3431

3432 3433
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
3434

3435 3436 3437 3438 3439 3440 3441
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

3442 3443 3444 3445
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
3446

3447 3448 3449 3450 3451 3452
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
3453 3454
	}

3455
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
3456
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
3457

3458
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
3459

3460 3461
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
3462

3463
	if (!dct_ganging_enabled(pvt)) {
3464 3465
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
3466
	}
3467

3468 3469 3470
skip:
	read_dct_base_mask(pvt);

3471
	determine_memory_type(pvt);
3472 3473 3474

	if (!pvt->umc)
		edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
3475

3476
	determine_ecc_sym_sz(pvt);
3477 3478 3479 3480 3481 3482
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
3483
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
3513
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
3514
{
3515
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
3516 3517
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
3518

3519
	if (!pvt->umc) {
3520
		csrow_nr >>= 1;
3521 3522 3523 3524
		cs_mode = DBAM_DIMM(csrow_nr, dbam);
	} else {
		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
	}
3525

3526 3527
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
3528

3529
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
3530
		    csrow_nr_orig, dct,  cs_mode);
3531
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
3532 3533 3534 3535

	return nr_pages;
}

3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
3570
			dimm->mtype = pvt->umc[umc].dram_type;
3571 3572
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
Y
Yazen Ghannam 已提交
3573
			dimm->grain = 64;
3574 3575 3576 3577 3578 3579
		}
	}

	return empty;
}

3580 3581 3582 3583
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
3584
static int init_csrows(struct mem_ctl_info *mci)
3585
{
3586
	struct amd64_pvt *pvt = mci->pvt_info;
3587
	enum edac_type edac_mode = EDAC_NONE;
3588
	struct csrow_info *csrow;
3589
	struct dimm_info *dimm;
3590
	int i, j, empty = 1;
3591
	int nr_pages = 0;
3592
	u32 val;
3593

3594 3595
	if (pvt->umc)
		return init_csrows_df(mci);
3596

3597
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
3598

3599 3600 3601 3602 3603
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
3604

3605 3606 3607
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
3608
	for_each_chip_select(i, 0, pvt) {
3609 3610
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
3611

3612
		if (pvt->fam != 0xf)
3613 3614 3615
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
3616 3617
			continue;

3618
		csrow = mci->csrows[i];
3619
		empty = 0;
3620 3621 3622 3623

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

3624
		if (row_dct0) {
3625
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
3626 3627
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
3628

3629
		/* K8 has only one DCT */
3630
		if (pvt->fam != 0xf && row_dct1) {
3631
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
3632 3633 3634 3635

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
3636

3637
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
3638

3639
		/* Determine DIMM ECC mode: */
3640
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
3641 3642 3643 3644
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
3645 3646

		for (j = 0; j < pvt->channel_count; j++) {
3647
			dimm = csrow->channels[j]->dimm;
3648
			dimm->mtype = pvt->dram_type;
3649
			dimm->edac_mode = edac_mode;
Y
Yazen Ghannam 已提交
3650
			dimm->grain = 64;
3651
		}
3652 3653 3654 3655
	}

	return empty;
}
3656

3657
/* get all cores on this DCT */
3658
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3659 3660 3661 3662
{
	int cpu;

	for_each_online_cpu(cpu)
3663
		if (topology_die_id(cpu) == nid)
3664 3665 3666 3667
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
3668
static bool nb_mce_bank_enabled_on_node(u16 nid)
3669 3670
{
	cpumask_var_t mask;
3671
	int cpu, nbe;
3672 3673 3674
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3675
		amd64_warn("%s: Error allocating mask\n", __func__);
3676 3677 3678 3679 3680 3681 3682 3683
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
3684
		struct msr *reg = per_cpu_ptr(msrs, cpu);
3685
		nbe = reg->l & MSR_MCGCTL_NBE;
3686

3687 3688 3689
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3701
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3702 3703
{
	cpumask_var_t cmask;
3704
	int cpu;
3705 3706

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3707
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3708
		return -ENOMEM;
3709 3710
	}

3711
	get_cpus_on_this_dct_cpumask(cmask, nid);
3712 3713 3714 3715 3716

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3717 3718
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3719
		if (on) {
3720
			if (reg->l & MSR_MCGCTL_NBE)
3721
				s->flags.nb_mce_enable = 1;
3722

3723
			reg->l |= MSR_MCGCTL_NBE;
3724 3725
		} else {
			/*
3726
			 * Turn off NB MCE reporting only when it was off before
3727
			 */
3728
			if (!s->flags.nb_mce_enable)
3729
				reg->l &= ~MSR_MCGCTL_NBE;
3730 3731 3732 3733 3734 3735 3736 3737 3738
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3739
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3740
				       struct pci_dev *F3)
3741
{
3742
	bool ret = true;
B
Borislav Petkov 已提交
3743
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3744

3745 3746 3747 3748 3749
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3750
	amd64_read_pci_cfg(F3, NBCTL, &value);
3751

3752 3753
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3754 3755

	value |= mask;
B
Borislav Petkov 已提交
3756
	amd64_write_pci_cfg(F3, NBCTL, value);
3757

3758
	amd64_read_pci_cfg(F3, NBCFG, &value);
3759

3760 3761
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3762

3763
	if (!(value & NBCFG_ECC_ENABLE)) {
3764
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3765

3766
		s->flags.nb_ecc_prev = 0;
3767

3768
		/* Attempt to turn on DRAM ECC Enable */
3769 3770
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3771

3772
		amd64_read_pci_cfg(F3, NBCFG, &value);
3773

3774
		if (!(value & NBCFG_ECC_ENABLE)) {
3775 3776
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3777
			ret = false;
3778
		} else {
3779
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3780
		}
3781
	} else {
3782
		s->flags.nb_ecc_prev = 1;
3783
	}
3784

3785 3786
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3787

3788
	return ret;
3789 3790
}

3791
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3792
					struct pci_dev *F3)
3793
{
B
Borislav Petkov 已提交
3794 3795
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3796
	if (!s->nbctl_valid)
3797 3798
		return;

B
Borislav Petkov 已提交
3799
	amd64_read_pci_cfg(F3, NBCTL, &value);
3800
	value &= ~mask;
3801
	value |= s->old_nbctl;
3802

B
Borislav Petkov 已提交
3803
	amd64_write_pci_cfg(F3, NBCTL, value);
3804

3805 3806
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3807 3808 3809
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3810 3811 3812
	}

	/* restore the NB Enable MCGCTL bit */
3813
	if (toggle_ecc_err_reporting(s, nid, OFF))
3814
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3815 3816
}

3817
static bool ecc_enabled(struct amd64_pvt *pvt)
3818
{
3819
	u16 nid = pvt->mc_node_id;
3820
	bool nb_mce_en = false;
3821 3822
	u8 ecc_en = 0, i;
	u32 value;
3823

3824 3825
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3826
		struct amd64_umc *umc;
3827

3828
		for_each_umc(i) {
3829
			umc = &pvt->umc[i];
3830 3831

			/* Only check enabled UMCs. */
3832
			if (!(umc->sdp_ctrl & UMC_SDP_INIT))
3833 3834 3835 3836
				continue;

			umc_en_mask |= BIT(i);

3837
			if (umc->umc_cap_hi & UMC_ECC_ENABLED)
3838 3839 3840 3841 3842 3843
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3844 3845
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3846 3847 3848 3849

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
3850
		amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
3851

3852 3853 3854 3855
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3856
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3857 3858 3859
				     MSR_IA32_MCG_CTL, nid);
	}

3860
	edac_dbg(3, "Node %d: DRAM ECC %s.\n", nid, (ecc_en ? "enabled" : "disabled"));
3861

3862
	if (!ecc_en || !nb_mce_en)
3863
		return false;
3864 3865
	else
		return true;
3866 3867
}

3868 3869 3870
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3871
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3872

3873
	for_each_umc(i) {
3874 3875 3876
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3877 3878 3879

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3880 3881 3882 3883 3884 3885 3886
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3887 3888 3889 3890
		if (!cpk_en)
			return;

		if (dev_x4)
3891
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3892 3893 3894 3895
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3896 3897 3898
	}
}

3899
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
3900 3901 3902 3903 3904 3905
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3906 3907 3908 3909 3910
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3911

3912 3913 3914
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3915

3916
	mci->edac_cap		= determine_edac_cap(pvt);
3917
	mci->mod_name		= EDAC_MOD_STR;
3918
	mci->ctl_name		= fam_type->ctl_name;
3919
	mci->dev_name		= pci_name(pvt->F3);
3920 3921 3922
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3923 3924
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3925 3926
}

3927 3928 3929
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3930
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3931
{
3932
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3933
	pvt->stepping	= boot_cpu_data.x86_stepping;
3934 3935 3936 3937
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3938
	case 0xf:
3939 3940
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3941
		break;
3942

3943
	case 0x10:
3944 3945
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3946 3947 3948
		break;

	case 0x15:
3949
		if (pvt->model == 0x30) {
3950 3951
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3952
			break;
3953 3954 3955 3956
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3957 3958 3959 3960 3961 3962
		/* Richland is only client */
		} else if (pvt->model == 0x13) {
			return NULL;
		} else {
			fam_type	= &family_types[F15_CPUS];
			pvt->ops	= &family_types[F15_CPUS].ops;
3963
		}
3964 3965
		break;

3966
	case 0x16:
3967 3968 3969 3970 3971
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3972 3973
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3974 3975
		break;

3976
	case 0x17:
3977 3978 3979 3980
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3981 3982 3983 3984
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3985 3986 3987 3988
		} else if (pvt->model >= 0x60 && pvt->model <= 0x6f) {
			fam_type = &family_types[F17_M60H_CPUS];
			pvt->ops = &family_types[F17_M60H_CPUS].ops;
			break;
3989 3990 3991 3992
		} else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			break;
3993
		}
3994
		fallthrough;
P
Pu Wen 已提交
3995
	case 0x18:
3996 3997
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
P
Pu Wen 已提交
3998 3999 4000

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
4001 4002
		break;

4003
	case 0x19:
4004 4005 4006 4007 4008
		if (pvt->model >= 0x10 && pvt->model <= 0x1f) {
			fam_type = &family_types[F19_M10H_CPUS];
			pvt->ops = &family_types[F19_M10H_CPUS].ops;
			break;
		} else if (pvt->model >= 0x20 && pvt->model <= 0x2f) {
4009 4010 4011 4012
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			fam_type->ctl_name = "F19h_M20h";
			break;
4013 4014 4015 4016 4017
		} else if (pvt->model >= 0x50 && pvt->model <= 0x5f) {
			fam_type = &family_types[F19_M50H_CPUS];
			pvt->ops = &family_types[F19_M50H_CPUS].ops;
			fam_type->ctl_name = "F19h_M50h";
			break;
4018 4019 4020 4021 4022
		} else if (pvt->model >= 0xa0 && pvt->model <= 0xaf) {
			fam_type = &family_types[F19_M10H_CPUS];
			pvt->ops = &family_types[F19_M10H_CPUS].ops;
			fam_type->ctl_name = "F19h_MA0h";
			break;
4023
		}
4024 4025 4026 4027 4028
		fam_type	= &family_types[F19_CPUS];
		pvt->ops	= &family_types[F19_CPUS].ops;
		family_types[F19_CPUS].ctl_name = "F19h";
		break;

4029
	default:
4030
		amd64_err("Unsupported family!\n");
4031
		return NULL;
4032
	}
4033 4034

	return fam_type;
4035 4036
}

4037 4038
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
4039
	&dbg_group,
4040
	&inj_group,
4041 4042 4043 4044
#endif
	NULL
};

4045
static int hw_info_get(struct amd64_pvt *pvt)
4046
{
4047
	u16 pci_id1, pci_id2;
4048
	int ret;
4049

4050
	if (pvt->fam >= 0x17) {
4051
		pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
4052 4053
		if (!pvt->umc)
			return -ENOMEM;
4054 4055 4056 4057 4058 4059 4060 4061

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

4062 4063 4064
	ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
	if (ret)
		return ret;
4065

4066
	read_mc_regs(pvt);
4067

4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	return 0;
}

static void hw_info_put(struct amd64_pvt *pvt)
{
	if (pvt->F0 || pvt->F1)
		free_mc_sibling_devs(pvt);

	kfree(pvt->umc);
}

static int init_one_instance(struct amd64_pvt *pvt)
{
	struct mem_ctl_info *mci = NULL;
	struct edac_mc_layer layers[2];
	int ret = -EINVAL;

4085 4086 4087
	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
4088
	 * tables in the 'mci' structure.
4089 4090 4091
	 */
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
4092
		return ret;
4093 4094

	ret = -ENOMEM;
4095 4096 4097 4098
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
4099 4100 4101 4102 4103 4104

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
4105
	layers[1].size = fam_type->max_mcs;
4106
	layers[1].is_virt_csrow = false;
4107

4108
	mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
4109
	if (!mci)
4110
		return ret;
4111 4112

	mci->pvt_info = pvt;
4113
	mci->pdev = &pvt->F3->dev;
4114

4115
	setup_mci_misc_attrs(mci);
4116 4117

	if (init_csrows(mci))
4118 4119 4120
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
4121
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
4122
		edac_dbg(1, "failed edac_mc_add_mc()\n");
4123 4124
		edac_mc_free(mci);
		return ret;
4125 4126 4127 4128 4129
	}

	return 0;
}

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142
static bool instance_has_memory(struct amd64_pvt *pvt)
{
	bool cs_enabled = false;
	int cs = 0, dct = 0;

	for (dct = 0; dct < fam_type->max_mcs; dct++) {
		for_each_chip_select(cs, dct, pvt)
			cs_enabled |= csrow_enabled(cs, dct, pvt);
	}

	return cs_enabled;
}

4143
static int probe_one_instance(unsigned int nid)
4144
{
4145
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
4146
	struct amd64_pvt *pvt = NULL;
4147
	struct ecc_settings *s;
4148
	int ret;
4149

4150 4151 4152
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
4153
		goto err_out;
4154 4155 4156

	ecc_stngs[nid] = s;

4157 4158 4159 4160 4161 4162 4163
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
		goto err_settings;

	pvt->mc_node_id	= nid;
	pvt->F3 = F3;

4164
	ret = -ENODEV;
4165 4166 4167 4168 4169 4170 4171 4172
	fam_type = per_family_init(pvt);
	if (!fam_type)
		goto err_enable;

	ret = hw_info_get(pvt);
	if (ret < 0)
		goto err_enable;

4173 4174 4175 4176 4177 4178
	ret = 0;
	if (!instance_has_memory(pvt)) {
		amd64_info("Node %d: No DIMMs detected.\n", nid);
		goto err_enable;
	}

4179
	if (!ecc_enabled(pvt)) {
4180
		ret = -ENODEV;
4181 4182 4183 4184

		if (!ecc_enable_override)
			goto err_enable;

4185 4186 4187 4188 4189
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
4190 4191 4192 4193 4194

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

4195
	ret = init_one_instance(pvt);
4196
	if (ret < 0) {
4197
		amd64_err("Error probing instance: %d\n", nid);
4198 4199 4200

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
4201 4202

		goto err_enable;
4203
	}
4204

4205 4206 4207 4208 4209 4210
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
		     (pvt->fam == 0xf ?
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);

4211 4212
	dump_misc_regs(pvt);

4213
	return ret;
4214 4215

err_enable:
4216 4217 4218 4219
	hw_info_put(pvt);
	kfree(pvt);

err_settings:
4220 4221 4222 4223 4224
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
4225 4226
}

4227
static void remove_one_instance(unsigned int nid)
4228
{
4229 4230
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
4231 4232
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
4233 4234

	/* Remove from EDAC CORE tracking list */
4235
	mci = edac_mc_del_mc(&F3->dev);
4236 4237 4238 4239 4240
	if (!mci)
		return;

	pvt = mci->pvt_info;

4241
	restore_ecc_error_reporting(s, nid, F3);
4242

4243 4244
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
4245

4246
	/* Free the EDAC CORE resources */
4247 4248
	mci->pvt_info = NULL;

4249
	hw_info_put(pvt);
4250
	kfree(pvt);
4251 4252 4253
	edac_mc_free(mci);
}

4254
static void setup_pci_device(void)
4255
{
4256
	if (pci_ctl)
4257 4258
		return;

4259
	pci_ctl = edac_pci_create_generic_ctl(pci_ctl_dev, EDAC_MOD_STR);
4260 4261 4262
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
4263 4264 4265
	}
}

4266
static const struct x86_cpu_id amd64_cpuids[] = {
4267 4268 4269 4270 4271 4272 4273
	X86_MATCH_VENDOR_FAM(AMD,	0x0F, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x10, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x15, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x16, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x17, NULL),
	X86_MATCH_VENDOR_FAM(HYGON,	0x18, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x19, NULL),
4274 4275 4276 4277
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

4278 4279
static int __init amd64_edac_init(void)
{
4280
	const char *owner;
4281
	int err = -ENODEV;
4282
	int i;
4283

4284 4285 4286 4287
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

4288 4289 4290
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

4291
	if (amd_cache_northbridges() < 0)
4292
		return -ENODEV;
4293

4294 4295
	opstate_init();

4296
	err = -ENOMEM;
K
Kees Cook 已提交
4297
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
4298
	if (!ecc_stngs)
4299
		goto err_free;
4300

4301
	msrs = msrs_alloc();
4302
	if (!msrs)
4303
		goto err_free;
4304

4305 4306 4307
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
4308 4309 4310
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
4311

4312 4313
			goto err_pci;
		}
4314
	}
4315

4316 4317 4318 4319 4320
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

4321 4322 4323 4324 4325 4326
	/* register stuff with EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

4327
	setup_pci_device();
T
Tomasz Pala 已提交
4328 4329 4330 4331 4332

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

4333 4334
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

4335
	return 0;
4336

4337
err_pci:
4338 4339
	pci_ctl_dev = NULL;

4340 4341
	msrs_free(msrs);
	msrs = NULL;
4342

4343 4344 4345 4346
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

4347 4348 4349 4350 4351
	return err;
}

static void __exit amd64_edac_exit(void)
{
4352 4353
	int i;

4354 4355
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
4356

4357 4358 4359 4360 4361 4362
	/* unregister from EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

4363 4364
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
4365

4366 4367 4368
	kfree(ecc_stngs);
	ecc_stngs = NULL;

4369 4370
	pci_ctl_dev = NULL;

4371 4372
	msrs_free(msrs);
	msrs = NULL;
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");