amd64_edac.c 93.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "amd64_edac.h"
3
#include <asm/amd_nb.h>
4

5
static struct edac_pci_ctl_info *pci_ctl;
6 7 8 9 10 11 12 13 14 15 16

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

17
static struct msr __percpu *msrs;
18

19 20
static struct amd64_family_type *fam_type;

21
/* Per-node stuff */
22
static struct ecc_settings **ecc_stngs;
23

24 25 26
/* Number of Unified Memory Controllers */
static u8 num_umcs;

27 28 29 30 31 32 33
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
34
static const struct scrubrate {
35 36 37
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

63 64
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

89 90 91 92 93 94 95 96 97 98 99 100 101
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

102 103 104 105
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
106
 * K8: has a single DCT only and no address offsets >= 0x100
107 108 109 110 111
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
112
 * F16h: has only 1 DCT
113 114
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
115
 */
116 117
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
118
{
119 120 121 122 123
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
124

125 126 127 128 129 130 131 132 133
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
134

135 136 137
			offset += 0x100;
		}
		break;
138

139 140 141 142 143 144 145 146
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
147

148 149 150 151
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
152

153 154
	default:
		break;
155
	}
156
	return amd64_read_pci_cfg(pvt->F2, offset, val);
157 158
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
188
/*
189
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
190 191
 * issue. If requested is too big, then use last maximum value found.
 */
192
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
193 194 195 196 197 198 199 200 201
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
202 203 204
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
205
	 */
206
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
207 208 209 210
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
211
		if (scrubrates[i].scrubval < min_rate)
212 213 214 215 216 217 218 219
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

P
Pu Wen 已提交
220
	if (pvt->fam == 0x17 || pvt->fam == 0x18) {
221 222
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
223 224 225 226 227 228 229
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
230

231 232 233
	if (scrubval)
		return scrubrates[i].bandwidth;

234 235 236
	return 0;
}

237
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
238 239
{
	struct amd64_pvt *pvt = mci->pvt_info;
240
	u32 min_scrubrate = 0x5;
241

242
	if (pvt->fam == 0xf)
243 244
		min_scrubrate = 0x0;

245 246 247 248
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
249

250 251 252 253
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
254 255
}

256
static int get_scrub_rate(struct mem_ctl_info *mci)
257 258
{
	struct amd64_pvt *pvt = mci->pvt_info;
259
	int i, retval = -EINVAL;
260
	u32 scrubval = 0;
261

262 263
	switch (pvt->fam) {
	case 0x15:
264 265 266
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
267

268 269
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
270 271 272
		break;

	case 0x17:
P
Pu Wen 已提交
273
	case 0x18:
274 275 276 277 278 279 280 281 282 283 284
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
		break;

	default:
285
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
286 287
		break;
	}
288 289 290

	scrubval = scrubval & 0x001F;

291
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
292
		if (scrubrates[i].scrubval == scrubval) {
293
			retval = scrubrates[i].bandwidth;
294 295 296
			break;
		}
	}
297
	return retval;
298 299
}

300
/*
301 302
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
303
 */
304
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
305
{
306
	u64 addr;
307 308 309 310 311 312 313 314 315

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

316 317
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
318 319 320 321 322 323 324 325 326 327 328 329
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
330
	u8 node_id;
331 332 333 334 335 336 337 338 339 340 341 342 343
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
344
	intlv_en = dram_intlv_en(pvt, 0);
345 346

	if (intlv_en == 0) {
347
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
348
			if (base_limit_match(pvt, sys_addr, node_id))
349
				goto found;
350
		}
351
		goto err_no_match;
352 353
	}

354 355 356
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
357
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
358 359 360 361 362 363
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
364
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
365 366
			break;	/* intlv_sel field matches */

367
		if (++node_id >= DRAM_RANGES)
368 369 370 371
			goto err_no_match;
	}

	/* sanity test for sys_addr */
372
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
373 374 375
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
376 377 378 379
		return NULL;
	}

found:
380
	return edac_mc_find((int)node_id);
381 382

err_no_match:
383 384
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
385 386 387

	return NULL;
}
388 389

/*
390 391
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
392
 */
393 394
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
395
{
396 397
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
398

399
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
400 401
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
402 403
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
404
		addr_shift	= 4;
405 406

	/*
407 408 409 410 411
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
412 413 414
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

415 416
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
417 418 419

		*mask = ~0ULL;
		/* poke holes for the csmask */
420 421
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
422

423 424
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
425 426

		return;
427 428 429 430
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
431

432
		if (pvt->fam == 0x15)
433 434
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
435
		else
436 437
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
438
	}
439

440
	*base  = (csbase & base_bits) << addr_shift;
441

442 443 444 445 446
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
447 448
}

449 450 451
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

452 453 454
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

455 456 457
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

458
#define for_each_umc(i) \
459
	for (i = 0; i < num_umcs; i++)
460

461 462 463 464 465 466 467 468 469 470 471 472
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

473 474
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
475 476
			continue;

477 478 479
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
480 481

		if ((input_addr & mask) == (base & mask)) {
482 483 484
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
485 486 487 488

			return csrow;
		}
	}
489 490
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
517
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
518 519
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
520 521 522
		return 1;
	}

523
	/* valid for Fam10h and above */
524
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
525
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
526 527 528
		return 1;
	}

529
	if (!dhar_valid(pvt)) {
530 531
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

553 554
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
555

556 557
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
558

559 560 561
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
562 563 564 565 566

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
598
	struct amd64_pvt *pvt = mci->pvt_info;
599
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
600
	int ret;
601

602
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
603 604 605 606

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
607 608
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
609 610 611
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

612 613 614
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
615 616 617 618 619 620 621 622 623 624 625 626 627 628

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
629
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
630

631 632
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
664
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
665
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
666
		      (dram_addr & 0xfff);
667

668 669 670
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
686
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
687
		 (unsigned long)sys_addr, (unsigned long)input_addr);
688 689 690 691 692 693

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
694
						    struct err_info *err)
695
{
696 697
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
715 716
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
717 718
	return csrow;
}
719

720
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
721 722 723 724 725

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
726
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
727
{
728
	unsigned long edac_cap = EDAC_FLAG_NONE;
729 730 731 732
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
733

734
		for_each_umc(i) {
735 736
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
737

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
755 756 757 758

	return edac_cap;
}

759
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
760

761
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
762
{
763
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
764

765 766 767 768 769 770 771 772 773 774 775 776 777
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

778

779 780
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
781

782
	if (pvt->fam == 0x10)
783 784
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
785

786 787 788 789 790
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
791 792
}

793 794
#define CS_EVEN_PRIMARY		BIT(0)
#define CS_ODD_PRIMARY		BIT(1)
795 796
#define CS_EVEN_SECONDARY	BIT(2)
#define CS_ODD_SECONDARY	BIT(3)
797

798 799
#define CS_EVEN			(CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
#define CS_ODD			(CS_ODD_PRIMARY | CS_ODD_SECONDARY)
800 801

static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
802
{
803
	int cs_mode = 0;
804

805 806
	if (csrow_enabled(2 * dimm, ctrl, pvt))
		cs_mode |= CS_EVEN_PRIMARY;
807

808 809 810
	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_PRIMARY;

811 812 813 814
	/* Asymmetric dual-rank DIMM support. */
	if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_SECONDARY;

815
	return cs_mode;
816 817
}

818 819
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
820
	int dimm, size0, size1, cs0, cs1, cs_mode;
821 822 823

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

824
	for (dimm = 0; dimm < 2; dimm++) {
825 826 827
		cs0 = dimm * 2;
		cs1 = dimm * 2 + 1;

828 829 830 831
		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);

		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
832 833

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
834 835
				cs0,	size0,
				cs1,	size1);
836 837 838 839 840 841 842 843
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

844
	for_each_umc(i) {
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

883
/* Display and decode various NB registers for debug purposes. */
884
static void __dump_misc_regs(struct amd64_pvt *pvt)
885
{
886
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
887

888 889
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
890

891 892 893
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
894

895
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
896

897
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
898

899 900
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
901 902
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
903

904
	debug_display_dimm_sizes(pvt, 0);
905

906
	/* everything below this point is Fam10h and above */
907
	if (pvt->fam == 0xf)
908
		return;
909

910
	debug_display_dimm_sizes(pvt, 1);
911

912
	/* Only if NOT ganged does dclr1 have valid info */
913
	if (!dct_ganging_enabled(pvt))
914
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
915 916
}

917 918 919 920 921 922 923 924 925 926
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

927
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
928 929
}

930
/*
931
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
932
 */
933
static void prep_chip_selects(struct amd64_pvt *pvt)
934
{
935
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
936 937
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
938
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
939 940
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
941 942 943 944 945 946 947 948
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

949
	} else {
950 951
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
952 953 954
	}
}

955 956
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
957 958 959 960 961 962
	u32 umc_base_reg, umc_base_reg_sec;
	u32 umc_mask_reg, umc_mask_reg_sec;
	u32 base_reg, base_reg_sec;
	u32 mask_reg, mask_reg_sec;
	u32 *base, *base_sec;
	u32 *mask, *mask_sec;
963 964 965 966
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
967
		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
968 969 970

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];
971
			base_sec = &pvt->csels[umc].csbases_sec[cs];
972 973

			base_reg = umc_base_reg + (cs * 4);
974
			base_reg_sec = umc_base_reg_sec + (cs * 4);
975 976 977 978

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
979 980 981 982

			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base_sec, base_reg_sec);
983 984 985
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
986
		umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
987 988 989

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];
990
			mask_sec = &pvt->csels[umc].csmasks_sec[cs];
991 992

			mask_reg = umc_mask_reg + (cs * 4);
993
			mask_reg_sec = umc_mask_reg_sec + (cs * 4);
994 995 996 997

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
998 999 1000 1001

			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask_sec, mask_reg_sec);
1002 1003 1004 1005
		}
	}
}

1006
/*
1007
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
1008
 */
1009
static void read_dct_base_mask(struct amd64_pvt *pvt)
1010
{
1011
	int cs;
1012

1013
	prep_chip_selects(pvt);
1014

1015 1016
	if (pvt->umc)
		return read_umc_base_mask(pvt);
1017

1018
	for_each_chip_select(cs, 0, pvt) {
1019 1020
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
1021 1022
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
1023

1024 1025 1026
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1027

1028 1029
		if (pvt->fam == 0xf)
			continue;
1030

1031 1032 1033 1034
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1035 1036
	}

1037
	for_each_chip_select_mask(cs, 0, pvt) {
1038 1039
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1040 1041
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1042

1043 1044 1045
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1046

1047 1048
		if (pvt->fam == 0xf)
			continue;
1049

1050 1051 1052 1053
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1054 1055 1056
	}
}

1057
static void determine_memory_type(struct amd64_pvt *pvt)
1058
{
1059
	u32 dram_ctrl, dcsm;
1060

1061 1062 1063 1064 1065 1066 1067 1068 1069
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1070
		if (pvt->dchr0 & DDR3_MODE)
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1098
		else
1099
			pvt->dram_type = MEM_RDDR3;
1100

1101 1102 1103 1104 1105
		return;

	case 0x16:
		goto ddr3;

1106
	case 0x17:
P
Pu Wen 已提交
1107
	case 0x18:
1108 1109 1110 1111 1112 1113 1114 1115
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

1116 1117 1118 1119 1120
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1121

1122 1123
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1124 1125
}

1126
/* Get the number of DCT channels the memory controller is using. */
1127 1128
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1129
	int flag;
1130

1131
	if (pvt->ext_model >= K8_REV_F)
1132
		/* RevF (NPT) and later */
1133
		flag = pvt->dclr0 & WIDTH_128;
1134
	else
1135 1136 1137 1138 1139 1140 1141 1142 1143
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1144
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1145
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1146
{
1147 1148
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1149 1150
	u8 start_bit = 1;
	u8 end_bit   = 47;
1151 1152 1153 1154 1155 1156 1157
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1158

1159
	if (pvt->fam == 0xf) {
1160 1161 1162 1163
		start_bit = 3;
		end_bit   = 39;
	}

1164
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1165 1166 1167 1168

	/*
	 * Erratum 637 workaround
	 */
1169
	if (pvt->fam == 0x15) {
1170 1171
		u64 cc6_base, tmp_addr;
		u32 tmp;
1172
		u8 intlv_en;
1173

1174
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1175 1176 1177 1178 1179 1180 1181
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1182
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1183 1184 1185 1186 1187 1188 1189 1190

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1191
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1192 1193 1194 1195

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1196
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1197 1198

		/* OR DramIntlvSel into bits [14:12] */
1199
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1200 1201

		/* add remaining [11:0] bits from original MC4_ADDR */
1202
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1203 1204 1205 1206 1207

		return cc6_base | tmp_addr;
	}

	return addr;
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1226
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1227
{
1228
	struct amd_northbridge *nb;
1229 1230
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1231
	int off = range << 3;
1232
	u32 llim;
1233

1234 1235
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1236

1237
	if (pvt->fam == 0xf)
1238
		return;
1239

1240 1241
	if (!dram_rw(pvt, range))
		return;
1242

1243 1244
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1245

1246
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1247
	if (pvt->fam != 0x15)
1248
		return;
1249

1250 1251 1252
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1253

1254 1255 1256 1257 1258 1259
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1260 1261

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1262 1263
	if (WARN_ON(!f1))
		return;
1264

1265
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1266

1267
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1268

1269 1270
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1271

1272
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1273

1274 1275 1276 1277
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1278 1279
}

1280
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1281
				    struct err_info *err)
1282
{
1283
	struct amd64_pvt *pvt = mci->pvt_info;
1284

1285
	error_address_to_page_and_offset(sys_addr, err);
1286 1287 1288 1289 1290

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1291 1292
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1293 1294
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1295
		err->err_code = ERR_NODE;
1296 1297 1298 1299
		return;
	}

	/* Now map the sys_addr to a CSROW */
1300 1301 1302
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1303 1304 1305
		return;
	}

1306
	/* CHIPKILL enabled */
1307
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1308 1309
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1310 1311 1312 1313 1314
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1315
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1316
				      "possible error reporting race\n",
1317 1318
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1330
		err->channel = ((sys_addr & BIT(3)) != 0);
1331 1332 1333
	}
}

1334
static int ddr2_cs_size(unsigned i, bool dct_width)
1335
{
1336
	unsigned shift = 0;
1337

1338 1339 1340 1341
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1342
	else
1343
		shift = (i + 1) >> 1;
1344

1345 1346 1347 1348
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1349
				  unsigned cs_mode, int cs_mask_nr)
1350 1351 1352 1353 1354 1355 1356 1357
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1358
		unsigned diff;
1359 1360
		WARN_ON(cs_mode > 10);

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1388 1389 1390 1391 1392
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1393 1394
}

1395 1396 1397 1398 1399 1400 1401 1402
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1403
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1404
{
1405
	int i, j, channels = 0;
1406

1407
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1408
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1409
		return 2;
1410 1411

	/*
1412 1413 1414
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1415 1416 1417 1418
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1419
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1420

1421 1422 1423 1424 1425
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1426 1427
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1428

1429 1430 1431 1432 1433 1434
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1435 1436
	}

1437 1438 1439
	if (channels > 2)
		channels = 2;

1440
	amd64_info("MCT channel count: %d\n", channels);
1441 1442 1443 1444

	return channels;
}

1445 1446 1447 1448 1449
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1450
	for_each_umc(i)
1451 1452 1453 1454 1455 1456 1457
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1458
static int ddr3_cs_size(unsigned i, bool dct_width)
1459
{
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1515
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1516
				   unsigned cs_mode, int cs_mask_nr)
1517 1518 1519 1520
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1521 1522

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1523
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1524
	else
1525 1526 1527 1528 1529 1530 1531
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1532
				   unsigned cs_mode, int cs_mask_nr)
1533 1534
{
	WARN_ON(cs_mode > 12);
1535

1536
	return ddr3_cs_size(cs_mode, false);
1537 1538
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1570
/*
1571
 * F16h and F15h model 30h have only limited cs_modes.
1572 1573
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1574
				unsigned cs_mode, int cs_mask_nr)
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1585
static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1586 1587
				    unsigned int cs_mode, int csrow_nr)
{
1588 1589 1590
	u32 addr_mask_orig, addr_mask_deinterleaved;
	u32 msb, weight, num_zero_bits;
	int dimm, size = 0;
1591

1592 1593 1594
	/* No Chip Selects are enabled. */
	if (!cs_mode)
		return size;
1595

1596 1597 1598
	/* Requested size of an even CS but none are enabled. */
	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
		return size;
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
	/* Requested size of an odd CS but none are enabled. */
	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
		return size;

	/*
	 * There is one mask per DIMM, and two Chip Selects per DIMM.
	 *	CS0 and CS1 -> DIMM0
	 *	CS2 and CS3 -> DIMM1
	 */
	dimm = csrow_nr >> 1;

1611 1612 1613 1614 1615
	/* Asymmetric dual-rank DIMM support. */
	if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
		addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm];
	else
		addr_mask_orig = pvt->csels[umc].csmasks[dimm];
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636

	/*
	 * The number of zero bits in the mask is equal to the number of bits
	 * in a full mask minus the number of bits in the current mask.
	 *
	 * The MSB is the number of bits in the full mask because BIT[0] is
	 * always 0.
	 */
	msb = fls(addr_mask_orig) - 1;
	weight = hweight_long(addr_mask_orig);
	num_zero_bits = msb - weight;

	/* Take the number of zero bits off from the top of the mask. */
	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);

	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);

	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
	size = (addr_mask_deinterleaved >> 2) + 1;
1637 1638 1639 1640 1641

	/* Return size in MBs. */
	return size >> 10;
}

1642
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1643 1644
{

1645
	if (pvt->fam == 0xf)
1646 1647
		return;

1648
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1649 1650
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1651

1652 1653
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1654 1655

		if (!dct_ganging_enabled(pvt))
1656 1657
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1658

1659 1660 1661
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1662

1663 1664 1665 1666
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1667 1668
	}

1669
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1670 1671
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1700 1701 1702
	return channel;
}

1703
/*
1704
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1705 1706
 * Interleaving Modes.
 */
1707
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1708
				bool hi_range_sel, u8 intlv_en)
1709
{
1710
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1711 1712

	if (dct_ganging_enabled(pvt))
1713
		return 0;
1714

1715 1716
	if (hi_range_sel)
		return dct_sel_high;
1717

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1730
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1731 1732 1733 1734

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1735 1736 1737 1738 1739 1740
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1741 1742 1743 1744 1745
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1746 1747 1748 1749

	return 0;
}

1750
/* Convert the sys_addr to the normalized DCT address */
1751
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1752 1753
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1754 1755
{
	u64 chan_off;
1756 1757
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1758
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1759

1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1774
		    dhar_valid(pvt) &&
1775
		    (sys_addr >= BIT_64(32)))
1776
			chan_off = hole_off;
1777 1778 1779
		else
			chan_off = dct_sel_base_off;
	} else {
1780 1781 1782 1783 1784 1785 1786 1787 1788
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1789
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1790
			chan_off = hole_off;
1791
		else
1792
			chan_off = dram_base;
1793 1794
	}

1795
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1796 1797 1798 1799 1800 1801
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1802
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1803
{
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1827
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1828 1829 1830
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1831
	u64 cs_base, cs_mask;
1832 1833 1834
	int cs_found = -EINVAL;
	int csrow;

1835
	mci = edac_mc_find(nid);
1836 1837 1838 1839 1840
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1841
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1842

1843 1844
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1845 1846
			continue;

1847
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1848

1849 1850
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1851

1852
		cs_mask = ~cs_mask;
1853

1854 1855
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1856

1857
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1858 1859 1860 1861
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1862
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1863

1864
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1865 1866 1867 1868 1869 1870
			break;
		}
	}
	return cs_found;
}

1871 1872 1873 1874 1875
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1876
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1877 1878 1879
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1880
	if (pvt->fam == 0x10) {
1881
		/* only revC3 and revE have that feature */
1882
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1883 1884 1885
			return sys_addr;
	}

1886
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1905
/* For a given @dram_range, check if @sys_addr falls within it. */
1906
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1907
				  u64 sys_addr, int *chan_sel)
1908
{
1909
	int cs_found = -EINVAL;
1910
	u64 chan_addr;
1911
	u32 dct_sel_base;
1912
	u8 channel;
1913
	bool high_range = false;
1914

1915
	u8 node_id    = dram_dst_node(pvt, range);
1916
	u8 intlv_en   = dram_intlv_en(pvt, range);
1917
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1918

1919 1920
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1921

1922 1923 1924 1925 1926 1927 1928 1929
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1930
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1931 1932
		return -EINVAL;

1933
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1934

1935 1936 1937 1938 1939 1940 1941 1942 1943
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1944
		high_range = true;
1945

1946
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1947

1948
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1949
					  high_range, dct_sel_base);
1950

1951 1952 1953 1954
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1955

1956
	/* remove channel interleave */
1957 1958 1959
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1974 1975
	}

1976
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1977

1978
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1979

1980
	if (cs_found >= 0)
1981
		*chan_sel = channel;
1982

1983 1984 1985
	return cs_found;
}

1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
2023 2024
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2025 2026

	if (!(dct_cont_base_reg & BIT(0)) &&
2027 2028
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
2029 2030 2031 2032 2033 2034 2035 2036
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

2037 2038 2039 2040 2041
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
2042 2043

	/* Verify we stay within the MAX number of channels allowed */
2044
	if (channel > 3)
2045 2046 2047 2048 2049 2050 2051 2052
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
2053
		chan_offset = dct_base << 27;
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2083
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2111
{
2112 2113
	int cs_found = -EINVAL;
	unsigned range;
2114

2115 2116
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2117 2118
			continue;

2119 2120 2121 2122
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2123

2124 2125
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2126
			cs_found = f1x_match_to_this_node(pvt, range,
2127
							  sys_addr, chan_sel);
2128 2129 2130 2131 2132 2133 2134 2135
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2136 2137
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2138
 *
2139 2140
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2141
 */
2142
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2143
				     struct err_info *err)
2144 2145 2146
{
	struct amd64_pvt *pvt = mci->pvt_info;

2147
	error_address_to_page_and_offset(sys_addr, err);
2148

2149 2150 2151
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2152 2153 2154 2155 2156 2157 2158 2159
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2160
	if (dct_ganging_enabled(pvt))
2161
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2162 2163 2164
}

/*
2165
 * debug routine to display the memory sizes of all logical DIMMs and its
2166
 * CSROWs
2167
 */
2168
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2169
{
2170
	int dimm, size0, size1;
2171 2172
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2173

2174
	if (pvt->fam == 0xf) {
2175
		/* K8 families < revF not supported yet */
2176
	       if (pvt->ext_model < K8_REV_F)
2177 2178 2179 2180 2181
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2192 2193
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2194

2195 2196
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2197 2198 2199 2200
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2201
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2202 2203 2204
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2205 2206 2207
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2208
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2209 2210
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2211 2212

		size1 = 0;
2213
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2214
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2215 2216
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2217

2218
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2219 2220
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2221 2222 2223
	}
}

2224
static struct amd64_family_type family_types[] = {
2225
	[K8_CPUS] = {
2226
		.ctl_name = "K8",
2227
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2228
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2229
		.ops = {
2230 2231 2232
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2233 2234 2235
		}
	},
	[F10_CPUS] = {
2236
		.ctl_name = "F10h",
2237
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2238
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2239
		.ops = {
2240
			.early_channel_count	= f1x_early_channel_count,
2241
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2242
			.dbam_to_cs		= f10_dbam_to_chip_select,
2243 2244 2245 2246
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2247
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2248
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2249
		.ops = {
2250
			.early_channel_count	= f1x_early_channel_count,
2251
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2252
			.dbam_to_cs		= f15_dbam_to_chip_select,
2253 2254
		}
	},
2255 2256 2257
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2258
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2259 2260 2261 2262 2263 2264
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2265 2266 2267
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2268
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2269 2270 2271 2272 2273 2274
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2275 2276 2277
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2278
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2279 2280 2281 2282 2283 2284
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2285 2286 2287
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2288
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2289 2290 2291 2292 2293 2294
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2295 2296 2297 2298 2299 2300
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2301
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2302 2303
		}
	},
2304 2305 2306 2307 2308 2309
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2310
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2311 2312
		}
	},
2313 2314 2315 2316 2317 2318
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2319
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2320 2321
		}
	},
2322 2323 2324 2325 2326 2327 2328 2329 2330
	[F17_M70H_CPUS] = {
		.ctl_name = "F17h_M70h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2331 2332
};

2333
/*
2334 2335 2336
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2337
 *
2338
 * Algorithm courtesy of Ross LaFetra from AMD.
2339
 */
2340
static const u16 x4_vectors[] = {
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2377 2378
};

2379
static const u16 x8_vectors[] = {
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2401
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2402
			   unsigned v_dim)
2403
{
2404 2405 2406 2407
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2408 2409
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2422

2423 2424 2425
					if (!s)
						return err_sym;
				}
2426

2427 2428 2429 2430
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2431 2432
	}

2433
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2434 2435
	return -1;
}
2436

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2479 2480
	int err_sym = -1;

2481
	if (pvt->ecc_sym_sz == 8)
2482 2483
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2484 2485
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2486 2487
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2488
					  pvt->ecc_sym_sz);
2489
	else {
2490
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2491
		return err_sym;
2492
	}
2493

2494
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2495 2496
}

2497
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2498
			    u8 ecc_type)
2499
{
2500 2501
	enum hw_event_mc_err_type err_type;
	const char *string;
2502

2503 2504 2505 2506
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2507 2508
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2509 2510
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2511 2512 2513
		return;
	}

2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2525 2526 2527 2528 2529 2530 2531
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2532 2533 2534 2535
		break;
	default:
		string = "WTF error";
		break;
2536
	}
2537 2538 2539 2540 2541

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2542 2543
}

2544
static inline void decode_bus_error(int node_id, struct mce *m)
2545
{
2546 2547
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2548
	u8 ecc_type = (m->status >> 45) & 0x3;
2549 2550
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2551 2552
	u64 sys_addr;
	struct err_info err;
2553

2554 2555 2556 2557 2558 2559
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2560
	/* Bail out early if this was an 'observed' error */
2561
	if (PP(ec) == NBSL_PP_OBS)
2562
		return;
2563

2564 2565
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2566 2567
		return;

2568 2569
	memset(&err, 0, sizeof(err));

2570
	sys_addr = get_error_address(pvt, m);
2571

2572
	if (ecc_type == 2)
2573 2574 2575 2576
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2577
	__log_ecc_error(mci, &err, ecc_type);
2578 2579
}

2580 2581 2582 2583
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
2584 2585 2586 2587
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
2588
 */
2589
static int find_umc_channel(struct mce *m)
2590
{
2591
	return (m->ipid & GENMASK(31, 0)) >> 20;
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

2613
	err.channel = find_umc_channel(m);
2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

2631 2632 2633 2634 2635 2636 2637
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

2638 2639 2640 2641
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2642
/*
2643 2644
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2645
 * Reserve F0 and F6 on systems with a UMC.
2646
 */
2647 2648 2649 2650 2651 2652
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2653
			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2654 2655 2656 2657 2658 2659 2660 2661
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2662
			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2663 2664
			return -ENODEV;
		}
2665

2666 2667 2668 2669 2670 2671 2672
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2673
	/* Reserve the ADDRESS MAP Device */
2674
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2675
	if (!pvt->F1) {
2676
		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2677
		return -ENODEV;
2678 2679
	}

2680
	/* Reserve the DCT Device */
2681
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2682
	if (!pvt->F2) {
2683 2684
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2685

2686 2687
		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
		return -ENODEV;
2688
	}
2689

2690 2691 2692
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2693 2694 2695 2696

	return 0;
}

2697
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2698
{
2699 2700 2701 2702 2703 2704 2705
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2706 2707
}

2708 2709 2710 2711 2712 2713 2714
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

2715
		for_each_umc(i) {
2716
			/* Check enabled channels only: */
2717 2718 2719 2720 2721 2722 2723 2724
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
2725 2726
			}
		}
2727
	} else if (pvt->fam >= 0x10) {
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
2751
	for_each_umc(i) {
2752 2753 2754 2755

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2756 2757
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2758 2759
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2760
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2761 2762 2763
	}
}

2764 2765 2766 2767
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2768
static void read_mc_regs(struct amd64_pvt *pvt)
2769
{
2770
	unsigned int range;
2771 2772 2773 2774
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2775
	 * those are Read-As-Zero.
2776
	 */
2777
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2778
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2779

2780
	/* Check first whether TOP_MEM2 is enabled: */
2781
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2782
	if (msr_val & BIT(21)) {
2783
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2784
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2785
	} else {
2786
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2787 2788 2789 2790 2791 2792 2793 2794
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2795

2796
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2797

2798
	read_dram_ctl_register(pvt);
2799

2800 2801
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2802

2803 2804 2805 2806 2807 2808 2809
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2810 2811 2812 2813
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2814

2815 2816 2817 2818 2819 2820
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2821 2822
	}

2823
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2824
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2825

2826
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2827

2828 2829
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2830

2831
	if (!dct_ganging_enabled(pvt)) {
2832 2833
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2834
	}
2835

2836 2837 2838
skip:
	read_dct_base_mask(pvt);

2839 2840
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2841

2842
	determine_ecc_sym_sz(pvt);
2843

2844
	dump_misc_regs(pvt);
2845 2846 2847 2848 2849 2850
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2851
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2881
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2882
{
2883
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2884 2885
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
2886

2887
	if (!pvt->umc) {
2888
		csrow_nr >>= 1;
2889 2890 2891 2892
		cs_mode = DBAM_DIMM(csrow_nr, dbam);
	} else {
		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
	}
2893

2894 2895
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
2896

2897
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2898
		    csrow_nr_orig, dct,  cs_mode);
2899
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2900 2901 2902 2903

	return nr_pages;
}

2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
			dimm->mtype = pvt->dram_type;
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
Y
Yazen Ghannam 已提交
2941
			dimm->grain = 64;
2942 2943 2944 2945 2946 2947
		}
	}

	return empty;
}

2948 2949 2950 2951
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2952
static int init_csrows(struct mem_ctl_info *mci)
2953
{
2954
	struct amd64_pvt *pvt = mci->pvt_info;
2955
	enum edac_type edac_mode = EDAC_NONE;
2956
	struct csrow_info *csrow;
2957
	struct dimm_info *dimm;
2958
	int i, j, empty = 1;
2959
	int nr_pages = 0;
2960
	u32 val;
2961

2962 2963
	if (pvt->umc)
		return init_csrows_df(mci);
2964

2965
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2966

2967 2968 2969 2970 2971
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2972

2973 2974 2975
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2976
	for_each_chip_select(i, 0, pvt) {
2977 2978
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2979

2980
		if (pvt->fam != 0xf)
2981 2982 2983
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2984 2985
			continue;

2986
		csrow = mci->csrows[i];
2987
		empty = 0;
2988 2989 2990 2991

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2992
		if (row_dct0) {
2993
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2994 2995
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2996

2997
		/* K8 has only one DCT */
2998
		if (pvt->fam != 0xf && row_dct1) {
2999
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
3000 3001 3002 3003

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
3004

3005
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
3006

3007
		/* Determine DIMM ECC mode: */
3008
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
3009 3010 3011 3012
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
3013 3014

		for (j = 0; j < pvt->channel_count; j++) {
3015
			dimm = csrow->channels[j]->dimm;
3016
			dimm->mtype = pvt->dram_type;
3017
			dimm->edac_mode = edac_mode;
Y
Yazen Ghannam 已提交
3018
			dimm->grain = 64;
3019
		}
3020 3021 3022 3023
	}

	return empty;
}
3024

3025
/* get all cores on this DCT */
3026
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3027 3028 3029 3030 3031 3032 3033 3034 3035
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
3036
static bool nb_mce_bank_enabled_on_node(u16 nid)
3037 3038
{
	cpumask_var_t mask;
3039
	int cpu, nbe;
3040 3041 3042
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3043
		amd64_warn("%s: Error allocating mask\n", __func__);
3044 3045 3046 3047 3048 3049 3050 3051
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
3052
		struct msr *reg = per_cpu_ptr(msrs, cpu);
3053
		nbe = reg->l & MSR_MCGCTL_NBE;
3054

3055 3056 3057
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3069
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3070 3071
{
	cpumask_var_t cmask;
3072
	int cpu;
3073 3074

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3075
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3076
		return -ENOMEM;
3077 3078
	}

3079
	get_cpus_on_this_dct_cpumask(cmask, nid);
3080 3081 3082 3083 3084

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3085 3086
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3087
		if (on) {
3088
			if (reg->l & MSR_MCGCTL_NBE)
3089
				s->flags.nb_mce_enable = 1;
3090

3091
			reg->l |= MSR_MCGCTL_NBE;
3092 3093
		} else {
			/*
3094
			 * Turn off NB MCE reporting only when it was off before
3095
			 */
3096
			if (!s->flags.nb_mce_enable)
3097
				reg->l &= ~MSR_MCGCTL_NBE;
3098 3099 3100 3101 3102 3103 3104 3105 3106
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3107
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3108
				       struct pci_dev *F3)
3109
{
3110
	bool ret = true;
B
Borislav Petkov 已提交
3111
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3112

3113 3114 3115 3116 3117
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3118
	amd64_read_pci_cfg(F3, NBCTL, &value);
3119

3120 3121
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3122 3123

	value |= mask;
B
Borislav Petkov 已提交
3124
	amd64_write_pci_cfg(F3, NBCTL, value);
3125

3126
	amd64_read_pci_cfg(F3, NBCFG, &value);
3127

3128 3129
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3130

3131
	if (!(value & NBCFG_ECC_ENABLE)) {
3132
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3133

3134
		s->flags.nb_ecc_prev = 0;
3135

3136
		/* Attempt to turn on DRAM ECC Enable */
3137 3138
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3139

3140
		amd64_read_pci_cfg(F3, NBCFG, &value);
3141

3142
		if (!(value & NBCFG_ECC_ENABLE)) {
3143 3144
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3145
			ret = false;
3146
		} else {
3147
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3148
		}
3149
	} else {
3150
		s->flags.nb_ecc_prev = 1;
3151
	}
3152

3153 3154
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3155

3156
	return ret;
3157 3158
}

3159
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3160
					struct pci_dev *F3)
3161
{
B
Borislav Petkov 已提交
3162 3163
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3164
	if (!s->nbctl_valid)
3165 3166
		return;

B
Borislav Petkov 已提交
3167
	amd64_read_pci_cfg(F3, NBCTL, &value);
3168
	value &= ~mask;
3169
	value |= s->old_nbctl;
3170

B
Borislav Petkov 已提交
3171
	amd64_write_pci_cfg(F3, NBCTL, value);
3172

3173 3174
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3175 3176 3177
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3178 3179 3180
	}

	/* restore the NB Enable MCGCTL bit */
3181
	if (toggle_ecc_err_reporting(s, nid, OFF))
3182
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3183 3184 3185
}

/*
3186 3187 3188 3189
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
3190
 */
3191 3192 3193 3194 3195
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
3196

3197
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3198
{
3199
	bool nb_mce_en = false;
3200 3201
	u8 ecc_en = 0, i;
	u32 value;
3202

3203 3204
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3205

3206
		for_each_umc(i) {
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
			u32 base = get_umc_base(i);

			/* Only check enabled UMCs. */
			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
				continue;

			if (!(value & UMC_SDP_INIT))
				continue;

			umc_en_mask |= BIT(i);

			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
				continue;

			if (value & UMC_ECC_ENABLED)
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3228 3229
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3230 3231 3232 3233 3234

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
		amd64_read_pci_cfg(F3, NBCFG, &value);
3235

3236 3237 3238 3239
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3240
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3241 3242 3243
				     MSR_IA32_MCG_CTL, nid);
	}

3244 3245
	amd64_info("Node %d: DRAM ECC %s.\n",
		   nid, (ecc_en ? "enabled" : "disabled"));
3246

3247
	if (!ecc_en || !nb_mce_en) {
3248
		amd64_info("%s", ecc_msg);
3249 3250 3251
		return false;
	}
	return true;
3252 3253
}

3254 3255 3256
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3257
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3258

3259
	for_each_umc(i) {
3260 3261 3262
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3263 3264 3265

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3266 3267 3268 3269 3270 3271 3272
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3273 3274 3275 3276
		if (!cpk_en)
			return;

		if (dev_x4)
3277
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3278 3279 3280 3281
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3282 3283 3284
	}
}

3285
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
3286 3287 3288 3289 3290 3291
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3292 3293 3294 3295 3296
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3297

3298 3299 3300
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3301

3302
	mci->edac_cap		= determine_edac_cap(pvt);
3303
	mci->mod_name		= EDAC_MOD_STR;
3304
	mci->ctl_name		= fam_type->ctl_name;
3305
	mci->dev_name		= pci_name(pvt->F3);
3306 3307 3308
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3309 3310
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3311 3312
}

3313 3314 3315
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3316
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3317
{
3318
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3319
	pvt->stepping	= boot_cpu_data.x86_stepping;
3320 3321 3322 3323
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3324
	case 0xf:
3325 3326
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3327
		break;
3328

3329
	case 0x10:
3330 3331
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3332 3333 3334
		break;

	case 0x15:
3335
		if (pvt->model == 0x30) {
3336 3337
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3338
			break;
3339 3340 3341 3342
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3343 3344
		}

3345 3346
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3347 3348
		break;

3349
	case 0x16:
3350 3351 3352 3353 3354
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3355 3356
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3357 3358
		break;

3359
	case 0x17:
3360 3361 3362 3363
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3364 3365 3366 3367
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3368 3369 3370 3371
		} else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			break;
3372
		}
P
Pu Wen 已提交
3373 3374
		/* fall through */
	case 0x18:
3375 3376
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
P
Pu Wen 已提交
3377 3378 3379

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3380 3381
		break;

3382
	default:
3383
		amd64_err("Unsupported family!\n");
3384
		return NULL;
3385
	}
3386

3387
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3388
		     (pvt->fam == 0xf ?
3389 3390 3391
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3392
	return fam_type;
3393 3394
}

3395 3396 3397 3398 3399 3400 3401 3402 3403 3404
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
/* Set the number of Unified Memory Controllers in the system. */
static void compute_num_umcs(void)
{
	u8 model = boot_cpu_data.x86_model;

	if (boot_cpu_data.x86 < 0x17)
		return;

	if (model >= 0x30 && model <= 0x3f)
		num_umcs = 8;
	else
		num_umcs = 2;

	edac_dbg(1, "Number of UMCs: %x", num_umcs);
}

3421
static int init_one_instance(unsigned int nid)
3422
{
3423
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3424
	struct mem_ctl_info *mci = NULL;
3425
	struct edac_mc_layer layers[2];
3426
	struct amd64_pvt *pvt = NULL;
3427
	u16 pci_id1, pci_id2;
3428 3429 3430 3431 3432
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
3433
		goto err_ret;
3434

3435
	pvt->mc_node_id	= nid;
3436
	pvt->F3 = F3;
3437

3438
	ret = -EINVAL;
3439
	fam_type = per_family_init(pvt);
3440
	if (!fam_type)
3441 3442
		goto err_free;

3443
	if (pvt->fam >= 0x17) {
3444
		pvt->umc = kcalloc(num_umcs, sizeof(struct amd64_umc), GFP_KERNEL);
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
		if (!pvt->umc) {
			ret = -ENOMEM;
			goto err_free;
		}

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3458
	if (err)
3459
		goto err_post_init;
3460

3461
	read_mc_regs(pvt);
3462 3463 3464 3465

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3466
	 * tables in the 'mci' structure.
3467
	 */
3468
	ret = -EINVAL;
3469 3470
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3471
		goto err_siblings;
3472 3473

	ret = -ENOMEM;
3474 3475 3476 3477
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3478 3479 3480 3481 3482

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
3483 3484 3485
	 *
	 * On Fam17h+, the number of controllers may be greater than two. So set
	 * the size equal to the maximum number of UMCs.
3486
	 */
3487 3488 3489 3490
	if (pvt->fam >= 0x17)
		layers[1].size = num_umcs;
	else
		layers[1].size = 2;
3491
	layers[1].is_virt_csrow = false;
3492

3493
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3494
	if (!mci)
3495
		goto err_siblings;
3496 3497

	mci->pvt_info = pvt;
3498
	mci->pdev = &pvt->F3->dev;
3499

3500
	setup_mci_misc_attrs(mci);
3501 3502

	if (init_csrows(mci))
3503 3504 3505
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3506
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3507
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3508 3509 3510 3511 3512 3513 3514 3515
		goto err_add_mc;
	}

	return 0;

err_add_mc:
	edac_mc_free(mci);

3516 3517
err_siblings:
	free_mc_sibling_devs(pvt);
3518

3519 3520 3521 3522
err_post_init:
	if (pvt->fam >= 0x17)
		kfree(pvt->umc);

3523 3524
err_free:
	kfree(pvt);
3525

3526
err_ret:
3527 3528 3529
	return ret;
}

3530
static int probe_one_instance(unsigned int nid)
3531
{
3532
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3533
	struct ecc_settings *s;
3534
	int ret;
3535

3536 3537 3538
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3539
		goto err_out;
3540 3541 3542

	ecc_stngs[nid] = s;

3543
	if (!ecc_enabled(F3, nid)) {
3544
		ret = 0;
3545 3546 3547 3548

		if (!ecc_enable_override)
			goto err_enable;

3549 3550 3551 3552 3553
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3554 3555 3556 3557 3558

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3559
	ret = init_one_instance(nid);
3560
	if (ret < 0) {
3561
		amd64_err("Error probing instance: %d\n", nid);
3562 3563 3564

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3565 3566

		goto err_enable;
3567
	}
3568 3569

	return ret;
3570 3571 3572 3573 3574 3575 3576

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3577 3578
}

3579
static void remove_one_instance(unsigned int nid)
3580
{
3581 3582
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3583 3584
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3585

3586
	mci = find_mci_by_dev(&F3->dev);
3587 3588
	WARN_ON(!mci);

3589
	/* Remove from EDAC CORE tracking list */
3590
	mci = edac_mc_del_mc(&F3->dev);
3591 3592 3593 3594 3595
	if (!mci)
		return;

	pvt = mci->pvt_info;

3596
	restore_ecc_error_reporting(s, nid, F3);
3597

3598
	free_mc_sibling_devs(pvt);
3599

3600 3601
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3602

3603
	/* Free the EDAC CORE resources */
3604 3605 3606
	mci->pvt_info = NULL;

	kfree(pvt);
3607 3608 3609
	edac_mc_free(mci);
}

3610
static void setup_pci_device(void)
3611 3612 3613 3614
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3615
	if (pci_ctl)
3616 3617
		return;

3618
	mci = edac_mc_find(0);
3619 3620
	if (!mci)
		return;
3621

3622
	pvt = mci->pvt_info;
3623 3624 3625 3626
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3627 3628 3629
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3630 3631 3632
	}
}

3633 3634 3635 3636 3637
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3638
	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
P
Pu Wen 已提交
3639
	{ X86_VENDOR_HYGON, 0x18, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3640 3641 3642 3643
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3644 3645
static int __init amd64_edac_init(void)
{
3646
	const char *owner;
3647
	int err = -ENODEV;
3648
	int i;
3649

3650 3651 3652 3653
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3654 3655 3656
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3657
	if (amd_cache_northbridges() < 0)
3658
		return -ENODEV;
3659

3660 3661
	opstate_init();

3662
	err = -ENOMEM;
K
Kees Cook 已提交
3663
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3664
	if (!ecc_stngs)
3665
		goto err_free;
3666

3667
	msrs = msrs_alloc();
3668
	if (!msrs)
3669
		goto err_free;
3670

3671 3672
	compute_num_umcs();

3673 3674 3675
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3676 3677 3678
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3679

3680 3681
			goto err_pci;
		}
3682
	}
3683

3684 3685 3686 3687 3688
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3689 3690 3691 3692 3693 3694 3695 3696 3697
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3698
	setup_pci_device();
T
Tomasz Pala 已提交
3699 3700 3701 3702 3703

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3704 3705
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3706
	return 0;
3707

3708 3709 3710
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3711

3712 3713 3714 3715
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3716 3717 3718 3719 3720
	return err;
}

static void __exit amd64_edac_exit(void)
{
3721 3722
	int i;

3723 3724
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3725

3726 3727 3728 3729 3730 3731 3732 3733
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);

	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

3734 3735
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3736

3737 3738 3739
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3740 3741
	msrs_free(msrs);
	msrs = NULL;
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");