amd64_edac.c 76.3 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23 24 25 26 27
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
28
static const struct scrubrate {
29 30 31
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

57 58
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

96 97 98 99
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
100
 * K8: has a single DCT only and no address offsets >= 0x100
101 102 103 104 105
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
106
 * F16h: has only 1 DCT
107 108
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109
 */
110 111
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
112
{
113 114 115 116 117
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
118

119 120 121 122 123 124 125 126 127
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
128

129 130 131
			offset += 0x100;
		}
		break;
132

133 134 135 136 137 138 139 140
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
141

142 143 144 145
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
146

147 148
	default:
		break;
149
	}
150
	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
171
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
172 173 174 175 176 177 178 179 180
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
181 182 183
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
184
	 */
185
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
186 187 188 189
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
190
		if (scrubrates[i].scrubval < min_rate)
191 192 193 194 195 196 197 198
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

199 200 201 202 203 204 205 206
	if (pvt->fam == 0x15 && pvt->model == 0x60) {
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
207

208 209 210
	if (scrubval)
		return scrubrates[i].bandwidth;

211 212 213
	return 0;
}

214
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
215 216
{
	struct amd64_pvt *pvt = mci->pvt_info;
217
	u32 min_scrubrate = 0x5;
218

219
	if (pvt->fam == 0xf)
220 221
		min_scrubrate = 0x0;

222 223 224 225
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
226

227 228 229 230
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
231 232
}

233
static int get_scrub_rate(struct mem_ctl_info *mci)
234 235 236
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
237
	int i, retval = -EINVAL;
238

239 240 241 242
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
243

244 245 246 247
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
	} else
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
248 249 250

	scrubval = scrubval & 0x001F;

251
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
252
		if (scrubrates[i].scrubval == scrubval) {
253
			retval = scrubrates[i].bandwidth;
254 255 256
			break;
		}
	}
257
	return retval;
258 259
}

260
/*
261 262
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
263
 */
264
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
265
{
266
	u64 addr;
267 268 269 270 271 272 273 274 275

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

276 277
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
278 279 280 281 282 283 284 285 286 287 288 289
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
290
	u8 node_id;
291 292 293 294 295 296 297 298 299 300 301 302 303
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
304
	intlv_en = dram_intlv_en(pvt, 0);
305 306

	if (intlv_en == 0) {
307
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
308
			if (base_limit_match(pvt, sys_addr, node_id))
309
				goto found;
310
		}
311
		goto err_no_match;
312 313
	}

314 315 316
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
317
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
318 319 320 321 322 323
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
324
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
325 326
			break;	/* intlv_sel field matches */

327
		if (++node_id >= DRAM_RANGES)
328 329 330 331
			goto err_no_match;
	}

	/* sanity test for sys_addr */
332
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
333 334 335
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
336 337 338 339
		return NULL;
	}

found:
340
	return edac_mc_find((int)node_id);
341 342

err_no_match:
343 344
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
345 346 347

	return NULL;
}
348 349

/*
350 351
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
352
 */
353 354
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
355
{
356 357
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
358

359
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
360 361
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
362 363
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
364
		addr_shift	= 4;
365 366

	/*
367 368 369 370 371
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
372 373 374
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

375 376
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
377 378 379

		*mask = ~0ULL;
		/* poke holes for the csmask */
380 381
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
382

383 384
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
385 386

		return;
387 388 389 390
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
391

392
		if (pvt->fam == 0x15)
393 394
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
395
		else
396 397
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
398
	}
399

400
	*base  = (csbase & base_bits) << addr_shift;
401

402 403 404 405 406
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
407 408
}

409 410 411
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

412 413 414
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

415 416 417
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

418 419 420 421 422 423 424 425 426 427 428 429
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

430 431
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
432 433
			continue;

434 435 436
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
437 438

		if ((input_addr & mask) == (base & mask)) {
439 440 441
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
442 443 444 445

			return csrow;
		}
	}
446 447
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
474
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
475 476
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
477 478 479
		return 1;
	}

480
	/* valid for Fam10h and above */
481
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
482
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
483 484 485
		return 1;
	}

486
	if (!dhar_valid(pvt)) {
487 488
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

510 511
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
512

513 514
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
515

516 517 518
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
519 520 521 522 523

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
555
	struct amd64_pvt *pvt = mci->pvt_info;
556
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
557
	int ret;
558

559
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
560 561 562 563

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
564 565
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
566 567 568
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

569 570 571
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
572 573 574 575 576 577 578 579 580 581 582 583 584 585

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
586
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
587

588 589
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
621
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
623
		      (dram_addr & 0xfff);
624

625 626 627
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
643
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
644
		 (unsigned long)sys_addr, (unsigned long)input_addr);
645 646 647 648 649 650

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
651
						    struct err_info *err)
652
{
653 654
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
672 673
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
674 675
	return csrow;
}
676

677
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
678 679 680 681 682

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
683
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
684
{
685
	u8 bit;
686
	unsigned long edac_cap = EDAC_FLAG_NONE;
687

688
	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
689 690 691
		? 19
		: 17;

692
	if (pvt->dclr0 & BIT(bit))
693 694 695 696 697
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

698
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
699

700
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
701
{
702
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
703

704 705 706 707 708 709 710 711 712 713 714 715 716
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

717

718 719
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
720

721
	if (pvt->fam == 0x10)
722 723
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
724

725 726 727 728 729
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
730 731
}

732
/* Display and decode various NB registers for debug purposes. */
733
static void dump_misc_regs(struct amd64_pvt *pvt)
734
{
735
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
736

737 738
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
739

740 741 742
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
743

744
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
745

746
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
747

748 749
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
750 751
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
752

753
	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
754

755
	debug_display_dimm_sizes(pvt, 0);
756

757
	/* everything below this point is Fam10h and above */
758
	if (pvt->fam == 0xf)
759
		return;
760

761
	debug_display_dimm_sizes(pvt, 1);
762

763
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
764

765
	/* Only if NOT ganged does dclr1 have valid info */
766
	if (!dct_ganging_enabled(pvt))
767
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
768 769
}

770
/*
771
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
772
 */
773
static void prep_chip_selects(struct amd64_pvt *pvt)
774
{
775
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
776 777
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
778
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
779 780
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
781
	} else {
782 783
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
784 785 786 787
	}
}

/*
788
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
789
 */
790
static void read_dct_base_mask(struct amd64_pvt *pvt)
791
{
792
	int cs;
793

794
	prep_chip_selects(pvt);
795

796
	for_each_chip_select(cs, 0, pvt) {
797 798
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
799 800
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
801

802
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
803 804
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
805

806
		if (pvt->fam == 0xf)
807
			continue;
808

809
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
810
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
811 812
				 cs, *base1, (pvt->fam == 0x10) ? reg1
								: reg0);
813 814
	}

815
	for_each_chip_select_mask(cs, 0, pvt) {
816 817
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
818 819
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
820

821
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
822 823
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
824

825
		if (pvt->fam == 0xf)
826
			continue;
827

828
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
829
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
830 831
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
								: reg0);
832 833 834
	}
}

835
static void determine_memory_type(struct amd64_pvt *pvt)
836
{
837
	u32 dram_ctrl, dcsm;
838

839 840 841 842 843 844 845 846 847
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
848
		if (pvt->dchr0 & DDR3_MODE)
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
876
		else
877
			pvt->dram_type = MEM_RDDR3;
878

879 880 881 882 883 884 885 886 887 888
		return;

	case 0x16:
		goto ddr3;

	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
889

890 891
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
892 893
}

894
/* Get the number of DCT channels the memory controller is using. */
895 896
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
897
	int flag;
898

899
	if (pvt->ext_model >= K8_REV_F)
900
		/* RevF (NPT) and later */
901
		flag = pvt->dclr0 & WIDTH_128;
902
	else
903 904 905 906 907 908 909 910 911
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

912
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
913
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
914
{
915 916
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
917 918
	u8 start_bit = 1;
	u8 end_bit   = 47;
919 920 921 922 923 924 925
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
926

927
	if (pvt->fam == 0xf) {
928 929 930 931
		start_bit = 3;
		end_bit   = 39;
	}

932
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
933 934 935 936

	/*
	 * Erratum 637 workaround
	 */
937
	if (pvt->fam == 0x15) {
938 939
		u64 cc6_base, tmp_addr;
		u32 tmp;
940
		u8 intlv_en;
941

942
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
943 944 945 946 947 948 949
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
950
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
951 952 953 954 955 956 957 958

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
959
			return cc6_base | (addr & GENMASK_ULL(23, 0));
960 961 962 963

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
964
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
965 966

		/* OR DramIntlvSel into bits [14:12] */
967
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
968 969

		/* add remaining [11:0] bits from original MC4_ADDR */
970
		tmp_addr |= addr & GENMASK_ULL(11, 0);
971 972 973 974 975

		return cc6_base | tmp_addr;
	}

	return addr;
976 977
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

994
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
995
{
996
	struct amd_northbridge *nb;
997 998
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
999
	int off = range << 3;
1000
	u32 llim;
1001

1002 1003
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1004

1005
	if (pvt->fam == 0xf)
1006
		return;
1007

1008 1009
	if (!dram_rw(pvt, range))
		return;
1010

1011 1012
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1013

1014
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1015
	if (pvt->fam != 0x15)
1016
		return;
1017

1018 1019 1020
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1021

1022 1023 1024 1025 1026 1027
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1028 1029

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1030 1031
	if (WARN_ON(!f1))
		return;
1032

1033
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1034

1035
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1036

1037 1038
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1039

1040
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1041

1042 1043 1044 1045
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1046 1047
}

1048
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1049
				    struct err_info *err)
1050
{
1051
	struct amd64_pvt *pvt = mci->pvt_info;
1052

1053
	error_address_to_page_and_offset(sys_addr, err);
1054 1055 1056 1057 1058

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1059 1060
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1061 1062
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1063
		err->err_code = ERR_NODE;
1064 1065 1066 1067
		return;
	}

	/* Now map the sys_addr to a CSROW */
1068 1069 1070
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1071 1072 1073
		return;
	}

1074
	/* CHIPKILL enabled */
1075
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1076 1077
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1078 1079 1080 1081 1082
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1083
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1084
				      "possible error reporting race\n",
1085 1086
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1098
		err->channel = ((sys_addr & BIT(3)) != 0);
1099 1100 1101
	}
}

1102
static int ddr2_cs_size(unsigned i, bool dct_width)
1103
{
1104
	unsigned shift = 0;
1105

1106 1107 1108 1109
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1110
	else
1111
		shift = (i + 1) >> 1;
1112

1113 1114 1115 1116
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1117
				  unsigned cs_mode, int cs_mask_nr)
1118 1119 1120 1121 1122 1123 1124 1125
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1126
		unsigned diff;
1127 1128
		WARN_ON(cs_mode > 10);

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1156 1157 1158 1159 1160
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1171
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1172
{
1173
	int i, j, channels = 0;
1174

1175
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1176
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1177
		return 2;
1178 1179

	/*
1180 1181 1182
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1183 1184 1185 1186
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1187
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1188

1189 1190 1191 1192 1193
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1194 1195
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1196

1197 1198 1199 1200 1201 1202
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1203 1204
	}

1205 1206 1207
	if (channels > 2)
		channels = 2;

1208
	amd64_info("MCT channel count: %d\n", channels);
1209 1210 1211 1212

	return channels;
}

1213
static int ddr3_cs_size(unsigned i, bool dct_width)
1214
{
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1270
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1271
				   unsigned cs_mode, int cs_mask_nr)
1272 1273 1274 1275
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1276 1277

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1278
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1279
	else
1280 1281 1282 1283 1284 1285 1286
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1287
				   unsigned cs_mode, int cs_mask_nr)
1288 1289
{
	WARN_ON(cs_mode > 12);
1290

1291
	return ddr3_cs_size(cs_mode, false);
1292 1293
}

1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1325
/*
1326
 * F16h and F15h model 30h have only limited cs_modes.
1327 1328
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1329
				unsigned cs_mode, int cs_mask_nr)
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1340
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1341 1342
{

1343
	if (pvt->fam == 0xf)
1344 1345
		return;

1346
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1347 1348
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1349

1350 1351
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1352 1353

		if (!dct_ganging_enabled(pvt))
1354 1355
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1356

1357 1358 1359
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1360

1361 1362 1363 1364
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1365 1366
	}

1367
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1368 1369
}

1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1398 1399 1400
	return channel;
}

1401
/*
1402
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1403 1404
 * Interleaving Modes.
 */
1405
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1406
				bool hi_range_sel, u8 intlv_en)
1407
{
1408
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1409 1410

	if (dct_ganging_enabled(pvt))
1411
		return 0;
1412

1413 1414
	if (hi_range_sel)
		return dct_sel_high;
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;

			return ((sys_addr >> shift) & 1) ^ temp;
		}

		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1438 1439 1440 1441

	return 0;
}

1442
/* Convert the sys_addr to the normalized DCT address */
1443
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1444 1445
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1446 1447
{
	u64 chan_off;
1448 1449
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1450
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1451

1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1466
		    dhar_valid(pvt) &&
1467
		    (sys_addr >= BIT_64(32)))
1468
			chan_off = hole_off;
1469 1470 1471
		else
			chan_off = dct_sel_base_off;
	} else {
1472 1473 1474 1475 1476 1477 1478 1479 1480
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1481
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1482
			chan_off = hole_off;
1483
		else
1484
			chan_off = dram_base;
1485 1486
	}

1487
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1488 1489 1490 1491 1492 1493
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1494
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1495
{
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1519
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1520 1521 1522
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1523
	u64 cs_base, cs_mask;
1524 1525 1526
	int cs_found = -EINVAL;
	int csrow;

1527
	mci = edac_mc_find(nid);
1528 1529 1530 1531 1532
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1533
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1534

1535 1536
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1537 1538
			continue;

1539
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1540

1541 1542
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1543

1544
		cs_mask = ~cs_mask;
1545

1546 1547
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1548

1549
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1550 1551 1552 1553
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1554
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1555

1556
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1557 1558 1559 1560 1561 1562
			break;
		}
	}
	return cs_found;
}

1563 1564 1565 1566 1567
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1568
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1569 1570 1571
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1572
	if (pvt->fam == 0x10) {
1573
		/* only revC3 and revE have that feature */
1574
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1575 1576 1577
			return sys_addr;
	}

1578
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1597
/* For a given @dram_range, check if @sys_addr falls within it. */
1598
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1599
				  u64 sys_addr, int *chan_sel)
1600
{
1601
	int cs_found = -EINVAL;
1602
	u64 chan_addr;
1603
	u32 dct_sel_base;
1604
	u8 channel;
1605
	bool high_range = false;
1606

1607
	u8 node_id    = dram_dst_node(pvt, range);
1608
	u8 intlv_en   = dram_intlv_en(pvt, range);
1609
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1610

1611 1612
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1613

1614 1615 1616 1617 1618 1619 1620 1621
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1622
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1623 1624
		return -EINVAL;

1625
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1626

1627 1628 1629 1630 1631 1632 1633 1634 1635
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1636
		high_range = true;
1637

1638
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1639

1640
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1641
					  high_range, dct_sel_base);
1642

1643 1644 1645 1646
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1647

1648
	/* remove channel interleave */
1649 1650 1651
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1666 1667
	}

1668
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1669

1670
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1671

1672
	if (cs_found >= 0)
1673
		*chan_sel = channel;
1674

1675 1676 1677
	return cs_found;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1715 1716
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1717 1718

	if (!(dct_cont_base_reg & BIT(0)) &&
1719 1720
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

	channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
					     num_dcts_intlv, dct_sel);

	/* Verify we stay within the MAX number of channels allowed */
1733
	if (channel > 3)
1734 1735 1736 1737 1738 1739 1740 1741
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1742
		chan_offset = dct_base << 27;
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
1772
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
1800
{
1801 1802
	int cs_found = -EINVAL;
	unsigned range;
1803

1804 1805
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
1806 1807
			continue;

1808 1809 1810 1811
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
1812

1813 1814
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
1815
			cs_found = f1x_match_to_this_node(pvt, range,
1816
							  sys_addr, chan_sel);
1817 1818 1819 1820 1821 1822 1823 1824
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1825 1826
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1827
 *
1828 1829
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1830
 */
1831
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1832
				     struct err_info *err)
1833 1834 1835
{
	struct amd64_pvt *pvt = mci->pvt_info;

1836
	error_address_to_page_and_offset(sys_addr, err);
1837

1838 1839 1840
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1841 1842 1843 1844 1845 1846 1847 1848
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1849
	if (dct_ganging_enabled(pvt))
1850
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1851 1852 1853
}

/*
1854
 * debug routine to display the memory sizes of all logical DIMMs and its
1855
 * CSROWs
1856
 */
1857
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1858
{
1859
	int dimm, size0, size1;
1860 1861
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1862

1863
	if (pvt->fam == 0xf) {
1864
		/* K8 families < revF not supported yet */
1865
	       if (pvt->ext_model < K8_REV_F)
1866 1867 1868 1869 1870
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
1881 1882
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
1883

1884 1885
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1886 1887 1888 1889
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1890
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1891 1892 1893 1894 1895
			/* For f15m60h, need multiplier for LRDIMM cs_size
			 * calculation. We pass 'dimm' value to the dbam_to_cs
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
1896
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1897 1898
						     DBAM_DIMM(dimm, dbam),
						     dimm);
1899 1900

		size1 = 0;
1901
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1902
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1903 1904
						     DBAM_DIMM(dimm, dbam),
						     dimm);
1905

1906
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1907 1908
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
1909 1910 1911
	}
}

1912
static struct amd64_family_type family_types[] = {
1913
	[K8_CPUS] = {
1914
		.ctl_name = "K8",
1915
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1916
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
1917
		.ops = {
1918 1919 1920
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
1921 1922 1923
		}
	},
	[F10_CPUS] = {
1924
		.ctl_name = "F10h",
1925
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1926
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
1927
		.ops = {
1928
			.early_channel_count	= f1x_early_channel_count,
1929
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1930
			.dbam_to_cs		= f10_dbam_to_chip_select,
1931 1932 1933 1934
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
1935
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
1936
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
1937
		.ops = {
1938
			.early_channel_count	= f1x_early_channel_count,
1939
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
1940
			.dbam_to_cs		= f15_dbam_to_chip_select,
1941 1942
		}
	},
1943 1944 1945
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
1946
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
1947 1948 1949 1950 1951 1952
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
1953 1954 1955
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
1956
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
1957 1958 1959 1960 1961 1962
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
1963 1964 1965
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
1966
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
1967 1968 1969 1970 1971 1972
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
1973 1974 1975
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
1976
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
1977 1978 1979 1980 1981 1982
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
1983 1984
};

1985
/*
1986 1987 1988
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
1989
 *
1990
 * Algorithm courtesy of Ross LaFetra from AMD.
1991
 */
1992
static const u16 x4_vectors[] = {
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2029 2030
};

2031
static const u16 x8_vectors[] = {
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2053
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2054
			   unsigned v_dim)
2055
{
2056 2057 2058 2059
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2060 2061
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2074

2075 2076 2077
					if (!s)
						return err_sym;
				}
2078

2079 2080 2081 2082
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2083 2084
	}

2085
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2086 2087
	return -1;
}
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2131 2132
	int err_sym = -1;

2133
	if (pvt->ecc_sym_sz == 8)
2134 2135
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2136 2137
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2138 2139
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2140
					  pvt->ecc_sym_sz);
2141
	else {
2142
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2143
		return err_sym;
2144
	}
2145

2146
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2147 2148
}

2149 2150
static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
			    u8 ecc_type)
2151
{
2152 2153
	enum hw_event_mc_err_type err_type;
	const char *string;
2154

2155 2156 2157 2158 2159 2160
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2161 2162 2163
		return;
	}

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
		string = "unknown syndrome - possible error reporting race";
		break;
	default:
		string = "WTF error";
		break;
2180
	}
2181 2182 2183 2184 2185

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2186 2187
}

2188
static inline void decode_bus_error(int node_id, struct mce *m)
2189
{
2190 2191
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2192
	u8 ecc_type = (m->status >> 45) & 0x3;
2193 2194
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2195 2196
	u64 sys_addr;
	struct err_info err;
2197

2198 2199 2200 2201 2202 2203
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2204
	/* Bail out early if this was an 'observed' error */
2205
	if (PP(ec) == NBSL_PP_OBS)
2206
		return;
2207

2208 2209
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2210 2211
		return;

2212 2213
	memset(&err, 0, sizeof(err));

2214
	sys_addr = get_error_address(pvt, m);
2215

2216
	if (ecc_type == 2)
2217 2218 2219 2220 2221
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

	__log_bus_error(mci, &err, ecc_type);
2222 2223
}

2224
/*
2225 2226
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2227
 */
2228
static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f2_id)
2229 2230
{
	/* Reserve the ADDRESS MAP Device */
2231
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, f1_id, pvt->F3);
2232
	if (!pvt->F1) {
2233 2234 2235
		amd64_err("error address map device not found: "
			  "vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, f1_id);
2236
		return -ENODEV;
2237 2238
	}

2239 2240 2241
	/* Reserve the DCT Device */
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, f2_id, pvt->F3);
	if (!pvt->F2) {
2242 2243
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2244

2245
		amd64_err("error F2 device not found: "
2246
			  "vendor %x device 0x%x (broken BIOS?)\n",
2247
			  PCI_VENDOR_ID_AMD, f2_id);
2248

2249
		return -ENODEV;
2250
	}
2251 2252 2253
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2254 2255 2256 2257

	return 0;
}

2258
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2259
{
2260
	pci_dev_put(pvt->F1);
2261
	pci_dev_put(pvt->F2);
2262 2263 2264 2265 2266 2267
}

/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2268
static void read_mc_regs(struct amd64_pvt *pvt)
2269
{
2270
	unsigned range;
2271
	u64 msr_val;
2272
	u32 tmp;
2273 2274 2275 2276 2277

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
	 * those are Read-As-Zero
	 */
2278
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2279
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2280 2281 2282 2283

	/* check first whether TOP_MEM2 is enabled */
	rdmsrl(MSR_K8_SYSCFG, msr_val);
	if (msr_val & (1U << 21)) {
2284
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2285
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2286
	} else
2287
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2288

2289
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2290

2291
	read_dram_ctl_register(pvt);
2292

2293 2294
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2295

2296 2297 2298 2299 2300 2301 2302
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2303 2304 2305 2306
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2307

2308 2309 2310 2311 2312 2313
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2314 2315
	}

2316
	read_dct_base_mask(pvt);
2317

2318
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2319
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2320

2321
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2322

2323 2324
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2325

2326
	if (!dct_ganging_enabled(pvt)) {
2327 2328
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2329
	}
2330

2331
	pvt->ecc_sym_sz = 4;
2332 2333
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2334

2335
	if (pvt->fam >= 0x10) {
2336
		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2337
		/* F16h has only DCT0, so no need to read dbam1 */
2338
		if (pvt->fam != 0x16)
2339
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
2340

2341
		/* F10h, revD and later can do x8 ECC too */
2342
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
2343 2344
			pvt->ecc_sym_sz = 8;
	}
2345
	dump_misc_regs(pvt);
2346 2347 2348 2349 2350 2351
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2352
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2382
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2383
{
2384
	u32 cs_mode, nr_pages;
2385
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2386

2387

2388 2389 2390 2391 2392 2393 2394
	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
B
Borislav Petkov 已提交
2395
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2396

2397 2398
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
							   << (20 - PAGE_SHIFT);
2399

2400 2401 2402
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
		    csrow_nr, dct,  cs_mode);
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2403 2404 2405 2406 2407 2408 2409 2410

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2411
static int init_csrows(struct mem_ctl_info *mci)
2412
{
2413
	struct amd64_pvt *pvt = mci->pvt_info;
2414
	struct csrow_info *csrow;
2415
	struct dimm_info *dimm;
2416
	enum edac_type edac_mode;
2417
	int i, j, empty = 1;
2418
	int nr_pages = 0;
2419
	u32 val;
2420

2421
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2422

2423
	pvt->nbcfg = val;
2424

2425 2426 2427
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2428

2429 2430 2431
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2432
	for_each_chip_select(i, 0, pvt) {
2433 2434
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2435

2436
		if (pvt->fam != 0xf)
2437 2438 2439
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2440 2441
			continue;

2442
		csrow = mci->csrows[i];
2443
		empty = 0;
2444 2445 2446 2447

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2448
		if (row_dct0) {
2449
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2450 2451
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2452

2453
		/* K8 has only one DCT */
2454
		if (pvt->fam != 0xf && row_dct1) {
2455
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2456 2457 2458 2459

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2460

2461
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2462 2463 2464 2465

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2466
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2467 2468
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2469
		else
2470 2471 2472
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2473
			dimm = csrow->channels[j]->dimm;
2474
			dimm->mtype = pvt->dram_type;
2475
			dimm->edac_mode = edac_mode;
2476
		}
2477 2478 2479 2480
	}

	return empty;
}
2481

2482
/* get all cores on this DCT */
2483
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2484 2485 2486 2487 2488 2489 2490 2491 2492
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2493
static bool nb_mce_bank_enabled_on_node(u16 nid)
2494 2495
{
	cpumask_var_t mask;
2496
	int cpu, nbe;
2497 2498 2499
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2500
		amd64_warn("%s: Error allocating mask\n", __func__);
2501 2502 2503 2504 2505 2506 2507 2508
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2509
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2510
		nbe = reg->l & MSR_MCGCTL_NBE;
2511

2512 2513 2514
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2526
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2527 2528
{
	cpumask_var_t cmask;
2529
	int cpu;
2530 2531

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2532
		amd64_warn("%s: error allocating mask\n", __func__);
2533 2534 2535
		return false;
	}

2536
	get_cpus_on_this_dct_cpumask(cmask, nid);
2537 2538 2539 2540 2541

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2542 2543
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2544
		if (on) {
2545
			if (reg->l & MSR_MCGCTL_NBE)
2546
				s->flags.nb_mce_enable = 1;
2547

2548
			reg->l |= MSR_MCGCTL_NBE;
2549 2550
		} else {
			/*
2551
			 * Turn off NB MCE reporting only when it was off before
2552
			 */
2553
			if (!s->flags.nb_mce_enable)
2554
				reg->l &= ~MSR_MCGCTL_NBE;
2555 2556 2557 2558 2559 2560 2561 2562 2563
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2564
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2565
				       struct pci_dev *F3)
2566
{
2567
	bool ret = true;
B
Borislav Petkov 已提交
2568
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2569

2570 2571 2572 2573 2574
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2575
	amd64_read_pci_cfg(F3, NBCTL, &value);
2576

2577 2578
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2579 2580

	value |= mask;
B
Borislav Petkov 已提交
2581
	amd64_write_pci_cfg(F3, NBCTL, value);
2582

2583
	amd64_read_pci_cfg(F3, NBCFG, &value);
2584

2585 2586
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2587

2588
	if (!(value & NBCFG_ECC_ENABLE)) {
2589
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2590

2591
		s->flags.nb_ecc_prev = 0;
2592

2593
		/* Attempt to turn on DRAM ECC Enable */
2594 2595
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2596

2597
		amd64_read_pci_cfg(F3, NBCFG, &value);
2598

2599
		if (!(value & NBCFG_ECC_ENABLE)) {
2600 2601
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2602
			ret = false;
2603
		} else {
2604
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2605
		}
2606
	} else {
2607
		s->flags.nb_ecc_prev = 1;
2608
	}
2609

2610 2611
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2612

2613
	return ret;
2614 2615
}

2616
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2617
					struct pci_dev *F3)
2618
{
B
Borislav Petkov 已提交
2619 2620
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2621

2622
	if (!s->nbctl_valid)
2623 2624
		return;

B
Borislav Petkov 已提交
2625
	amd64_read_pci_cfg(F3, NBCTL, &value);
2626
	value &= ~mask;
2627
	value |= s->old_nbctl;
2628

B
Borislav Petkov 已提交
2629
	amd64_write_pci_cfg(F3, NBCTL, value);
2630

2631 2632
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2633 2634 2635
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2636 2637 2638
	}

	/* restore the NB Enable MCGCTL bit */
2639
	if (toggle_ecc_err_reporting(s, nid, OFF))
2640
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2641 2642 2643
}

/*
2644 2645 2646 2647
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2648
 */
2649 2650 2651 2652 2653
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2654

2655
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2656 2657
{
	u32 value;
2658
	u8 ecc_en = 0;
2659
	bool nb_mce_en = false;
2660

2661
	amd64_read_pci_cfg(F3, NBCFG, &value);
2662

2663
	ecc_en = !!(value & NBCFG_ECC_ENABLE);
2664
	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2665

2666
	nb_mce_en = nb_mce_bank_enabled_on_node(nid);
2667
	if (!nb_mce_en)
2668 2669 2670
		amd64_notice("NB MCE bank disabled, set MSR "
			     "0x%08x[4] on node %d to enable.\n",
			     MSR_IA32_MCG_CTL, nid);
2671

2672 2673 2674 2675 2676
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2677 2678
}

2679 2680
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2681 2682 2683 2684 2685 2686
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2687
	if (pvt->nbcap & NBCAP_SECDED)
2688 2689
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2690
	if (pvt->nbcap & NBCAP_CHIPKILL)
2691 2692
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

2693
	mci->edac_cap		= determine_edac_cap(pvt);
2694 2695
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2696
	mci->ctl_name		= fam->ctl_name;
2697
	mci->dev_name		= pci_name(pvt->F2);
2698 2699 2700
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
2701 2702
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
2703 2704
}

2705 2706 2707
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
2708
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
2709
{
2710 2711
	struct amd64_family_type *fam_type = NULL;

2712
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
2713
	pvt->stepping	= boot_cpu_data.x86_mask;
2714 2715 2716 2717
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
2718
	case 0xf:
2719 2720
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
2721
		break;
2722

2723
	case 0x10:
2724 2725
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
2726 2727 2728
		break;

	case 0x15:
2729
		if (pvt->model == 0x30) {
2730 2731
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
2732
			break;
2733 2734 2735 2736
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
2737 2738
		}

2739 2740
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
2741 2742
		break;

2743
	case 0x16:
2744 2745 2746 2747 2748
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
2749 2750
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
2751 2752
		break;

2753
	default:
2754
		amd64_err("Unsupported family!\n");
2755
		return NULL;
2756
	}
2757

2758
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2759
		     (pvt->fam == 0xf ?
2760 2761 2762
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2763
	return fam_type;
2764 2765
}

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

2776
static int init_one_instance(unsigned int nid)
2777
{
2778
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2779
	struct amd64_family_type *fam_type = NULL;
2780
	struct mem_ctl_info *mci = NULL;
2781
	struct edac_mc_layer layers[2];
2782
	struct amd64_pvt *pvt = NULL;
2783 2784 2785 2786 2787
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2788
		goto err_ret;
2789

2790
	pvt->mc_node_id	= nid;
2791
	pvt->F3 = F3;
2792

2793
	ret = -EINVAL;
2794
	fam_type = per_family_init(pvt);
2795
	if (!fam_type)
2796 2797
		goto err_free;

2798
	ret = -ENODEV;
2799
	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f2_id);
2800 2801 2802
	if (err)
		goto err_free;

2803
	read_mc_regs(pvt);
2804 2805 2806 2807

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
2808
	 * tables in the 'mci' structure.
2809
	 */
2810
	ret = -EINVAL;
2811 2812
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
2813
		goto err_siblings;
2814 2815

	ret = -ENOMEM;
2816 2817 2818 2819
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
2820 2821 2822 2823 2824 2825 2826

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
2827
	layers[1].is_virt_csrow = false;
2828

2829
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
2830
	if (!mci)
2831
		goto err_siblings;
2832 2833

	mci->pvt_info = pvt;
2834
	mci->pdev = &pvt->F3->dev;
2835

2836
	setup_mci_misc_attrs(mci, fam_type);
2837 2838

	if (init_csrows(mci))
2839 2840 2841
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
2842
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
2843
		edac_dbg(1, "failed edac_mc_add_mc()\n");
2844 2845 2846
		goto err_add_mc;
	}

2847 2848 2849 2850
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

2851
	amd_register_ecc_decoder(decode_bus_error);
2852

2853 2854 2855 2856 2857
	return 0;

err_add_mc:
	edac_mc_free(mci);

2858 2859
err_siblings:
	free_mc_sibling_devs(pvt);
2860

2861 2862
err_free:
	kfree(pvt);
2863

2864
err_ret:
2865 2866 2867
	return ret;
}

2868
static int probe_one_instance(unsigned int nid)
2869
{
2870
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2871
	struct ecc_settings *s;
2872
	int ret;
2873

2874 2875 2876
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
2877
		goto err_out;
2878 2879 2880

	ecc_stngs[nid] = s;

2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

		amd64_warn("Forcing ECC on!\n");

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

2893
	ret = init_one_instance(nid);
2894
	if (ret < 0) {
2895
		amd64_err("Error probing instance: %d\n", nid);
2896 2897
		restore_ecc_error_reporting(s, nid, F3);
	}
2898 2899

	return ret;
2900 2901 2902 2903 2904 2905 2906

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
2907 2908
}

2909
static void remove_one_instance(unsigned int nid)
2910
{
2911 2912
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
2913 2914
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2915

2916
	mci = find_mci_by_dev(&F3->dev);
2917 2918
	WARN_ON(!mci);

2919
	/* Remove from EDAC CORE tracking list */
2920
	mci = edac_mc_del_mc(&F3->dev);
2921 2922 2923 2924 2925
	if (!mci)
		return;

	pvt = mci->pvt_info;

2926
	restore_ecc_error_reporting(s, nid, F3);
2927

2928
	free_mc_sibling_devs(pvt);
2929

2930 2931
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
2932
	amd_unregister_ecc_decoder(decode_bus_error);
2933

2934 2935
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
2936

2937
	/* Free the EDAC CORE resources */
2938 2939 2940
	mci->pvt_info = NULL;

	kfree(pvt);
2941 2942 2943
	edac_mc_free(mci);
}

2944
static void setup_pci_device(void)
2945 2946 2947 2948
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

2949
	if (pci_ctl)
2950 2951
		return;

2952
	mci = edac_mc_find(0);
2953 2954
	if (!mci)
		return;
2955

2956 2957 2958 2959 2960
	pvt = mci->pvt_info;
	pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
2961 2962 2963 2964 2965
	}
}

static int __init amd64_edac_init(void)
{
2966
	int err = -ENODEV;
2967
	int i;
2968 2969 2970

	opstate_init();

2971
	if (amd_cache_northbridges() < 0)
2972
		goto err_ret;
2973

2974
	err = -ENOMEM;
2975
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2976
	if (!ecc_stngs)
2977
		goto err_free;
2978

2979
	msrs = msrs_alloc();
2980
	if (!msrs)
2981
		goto err_free;
2982

2983 2984 2985 2986 2987
	for (i = 0; i < amd_nb_num(); i++)
		if (probe_one_instance(i)) {
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
2988

2989 2990
			goto err_pci;
		}
2991

2992
	setup_pci_device();
T
Tomasz Pala 已提交
2993 2994 2995 2996 2997

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

2998 2999
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3000
	return 0;
3001

3002 3003 3004
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3005

3006 3007 3008 3009
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3010
err_ret:
3011 3012 3013 3014 3015
	return err;
}

static void __exit amd64_edac_exit(void)
{
3016 3017
	int i;

3018 3019
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3020

3021 3022
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3023

3024 3025 3026
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3027 3028
	msrs_free(msrs);
	msrs = NULL;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");