amd64_edac.c 85.5 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23 24 25 26 27
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
28
static const struct scrubrate {
29 30 31
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

57 58
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

96 97 98 99
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
100
 * K8: has a single DCT only and no address offsets >= 0x100
101 102 103 104 105
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
106
 * F16h: has only 1 DCT
107 108
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109
 */
110 111
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
112
{
113 114 115 116 117
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
118

119 120 121 122 123 124 125 126 127
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
128

129 130 131
			offset += 0x100;
		}
		break;
132

133 134 135 136 137 138 139 140
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
141

142 143 144 145
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
146

147 148
	default:
		break;
149
	}
150
	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
182
/*
183
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 185
 * issue. If requested is too big, then use last maximum value found.
 */
186
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 188 189 190 191 192 193 194 195
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
196 197 198
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
199
	 */
200
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 202 203 204
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
205
		if (scrubrates[i].scrubval < min_rate)
206 207 208 209 210 211 212 213
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

214 215 216
	if (pvt->fam == 0x17) {
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 218 219 220 221 222 223
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
224

225 226 227
	if (scrubval)
		return scrubrates[i].bandwidth;

228 229 230
	return 0;
}

231
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 233
{
	struct amd64_pvt *pvt = mci->pvt_info;
234
	u32 min_scrubrate = 0x5;
235

236
	if (pvt->fam == 0xf)
237 238
		min_scrubrate = 0x0;

239 240 241 242
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
243

244 245 246 247
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
248 249
}

250
static int get_scrub_rate(struct mem_ctl_info *mci)
251 252
{
	struct amd64_pvt *pvt = mci->pvt_info;
253
	int i, retval = -EINVAL;
254
	u32 scrubval = 0;
255

256 257
	switch (pvt->fam) {
	case 0x15:
258 259 260
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
261

262 263
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
264 265 266 267 268 269 270 271 272 273 274 275 276 277
		break;

	case 0x17:
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
		break;

	default:
278
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279 280
		break;
	}
281 282 283

	scrubval = scrubval & 0x001F;

284
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
285
		if (scrubrates[i].scrubval == scrubval) {
286
			retval = scrubrates[i].bandwidth;
287 288 289
			break;
		}
	}
290
	return retval;
291 292
}

293
/*
294 295
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
296
 */
297
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
298
{
299
	u64 addr;
300 301 302 303 304 305 306 307 308

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

309 310
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
311 312 313 314 315 316 317 318 319 320 321 322
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
323
	u8 node_id;
324 325 326 327 328 329 330 331 332 333 334 335 336
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
337
	intlv_en = dram_intlv_en(pvt, 0);
338 339

	if (intlv_en == 0) {
340
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
341
			if (base_limit_match(pvt, sys_addr, node_id))
342
				goto found;
343
		}
344
		goto err_no_match;
345 346
	}

347 348 349
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
350
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
351 352 353 354 355 356
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
357
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
358 359
			break;	/* intlv_sel field matches */

360
		if (++node_id >= DRAM_RANGES)
361 362 363 364
			goto err_no_match;
	}

	/* sanity test for sys_addr */
365
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
366 367 368
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
369 370 371 372
		return NULL;
	}

found:
373
	return edac_mc_find((int)node_id);
374 375

err_no_match:
376 377
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
378 379 380

	return NULL;
}
381 382

/*
383 384
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
385
 */
386 387
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
388
{
389 390
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
391

392
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
393 394
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
395 396
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
397
		addr_shift	= 4;
398 399

	/*
400 401 402 403 404
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
405 406 407
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

408 409
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
410 411 412

		*mask = ~0ULL;
		/* poke holes for the csmask */
413 414
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
415

416 417
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
418 419

		return;
420 421 422 423
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
424

425
		if (pvt->fam == 0x15)
426 427
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
428
		else
429 430
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
431
	}
432

433
	*base  = (csbase & base_bits) << addr_shift;
434

435 436 437 438 439
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
440 441
}

442 443 444
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

445 446 447
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

448 449 450
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

451 452 453 454 455 456 457 458 459 460 461 462
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

463 464
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
465 466
			continue;

467 468 469
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
470 471

		if ((input_addr & mask) == (base & mask)) {
472 473 474
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
475 476 477 478

			return csrow;
		}
	}
479 480
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
507
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
508 509
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
510 511 512
		return 1;
	}

513
	/* valid for Fam10h and above */
514
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
515
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
516 517 518
		return 1;
	}

519
	if (!dhar_valid(pvt)) {
520 521
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

543 544
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
545

546 547
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
548

549 550 551
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
552 553 554 555 556

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
588
	struct amd64_pvt *pvt = mci->pvt_info;
589
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
590
	int ret;
591

592
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
593 594 595 596

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
597 598
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
599 600 601
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

602 603 604
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
605 606 607 608 609 610 611 612 613 614 615 616 617 618

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
619
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
620

621 622
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
654
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
655
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
656
		      (dram_addr & 0xfff);
657

658 659 660
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
676
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
677
		 (unsigned long)sys_addr, (unsigned long)input_addr);
678 679 680 681 682 683

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
684
						    struct err_info *err)
685
{
686 687
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
705 706
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
707 708
	return csrow;
}
709

710
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
711 712 713 714 715

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
716
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
717
{
718
	u8 bit;
719
	unsigned long edac_cap = EDAC_FLAG_NONE;
720

721
	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
722 723 724
		? 19
		: 17;

725
	if (pvt->dclr0 & BIT(bit))
726 727 728 729 730
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

731
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
732

733
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
734
{
735
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
736

737 738 739 740 741 742 743 744 745 746 747 748 749
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

750

751 752
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
753

754
	if (pvt->fam == 0x10)
755 756
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
757

758 759 760 761 762
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
763 764
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	int dimm, size0, size1;

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

	for (dimm = 0; dimm < 4; dimm++) {
		size0 = 0;

		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);

		size1 = 0;
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

	for (i = 0; i < NUM_UMCS; i++) {
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

832
/* Display and decode various NB registers for debug purposes. */
833
static void __dump_misc_regs(struct amd64_pvt *pvt)
834
{
835
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
836

837 838
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
839

840 841 842
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
843

844
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
845

846
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
847

848 849
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
850 851
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
852

853
	debug_display_dimm_sizes(pvt, 0);
854

855
	/* everything below this point is Fam10h and above */
856
	if (pvt->fam == 0xf)
857
		return;
858

859
	debug_display_dimm_sizes(pvt, 1);
860

861
	/* Only if NOT ganged does dclr1 have valid info */
862
	if (!dct_ganging_enabled(pvt))
863
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
864 865
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

	amd64_info("using %s syndromes.\n",
			((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
}

880
/*
881
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
882
 */
883
static void prep_chip_selects(struct amd64_pvt *pvt)
884
{
885
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
886 887
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
888
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
889 890
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
891
	} else {
892 893
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
894 895 896 897
	}
}

/*
898
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
899
 */
900
static void read_dct_base_mask(struct amd64_pvt *pvt)
901
{
902
	int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
903

904
	prep_chip_selects(pvt);
905

906 907 908 909 910 911 912 913 914 915 916 917
	if (pvt->umc) {
		base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
		base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
		mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
		mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
	} else {
		base_reg0 = DCSB0;
		base_reg1 = DCSB1;
		mask_reg0 = DCSM0;
		mask_reg1 = DCSM1;
	}

918
	for_each_chip_select(cs, 0, pvt) {
919 920
		int reg0   = base_reg0 + (cs * 4);
		int reg1   = base_reg1 + (cs * 4);
921 922
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: 0x%x\n",
					 cs, *base0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: 0x%x\n",
					 cs, *base1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
					 cs, *base0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
					 cs, *base1, (pvt->fam == 0x10) ? reg1
943
								: reg0);
944
		}
945 946
	}

947
	for_each_chip_select_mask(cs, 0, pvt) {
948 949
		int reg0   = mask_reg0 + (cs * 4);
		int reg1   = mask_reg1 + (cs * 4);
950 951
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask1, (pvt->fam == 0x10) ? reg1
972
								: reg0);
973
		}
974 975 976
	}
}

977
static void determine_memory_type(struct amd64_pvt *pvt)
978
{
979
	u32 dram_ctrl, dcsm;
980

981 982 983 984 985 986 987 988 989
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
990
		if (pvt->dchr0 & DDR3_MODE)
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1018
		else
1019
			pvt->dram_type = MEM_RDDR3;
1020

1021 1022 1023 1024 1025
		return;

	case 0x16:
		goto ddr3;

1026 1027 1028 1029 1030 1031 1032 1033 1034
	case 0x17:
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

1035 1036 1037 1038 1039
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1040

1041 1042
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1043 1044
}

1045
/* Get the number of DCT channels the memory controller is using. */
1046 1047
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1048
	int flag;
1049

1050
	if (pvt->ext_model >= K8_REV_F)
1051
		/* RevF (NPT) and later */
1052
		flag = pvt->dclr0 & WIDTH_128;
1053
	else
1054 1055 1056 1057 1058 1059 1060 1061 1062
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1063
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1064
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1065
{
1066 1067
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1068 1069
	u8 start_bit = 1;
	u8 end_bit   = 47;
1070 1071 1072 1073 1074 1075 1076
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1077

1078
	if (pvt->fam == 0xf) {
1079 1080 1081 1082
		start_bit = 3;
		end_bit   = 39;
	}

1083
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1084 1085 1086 1087

	/*
	 * Erratum 637 workaround
	 */
1088
	if (pvt->fam == 0x15) {
1089 1090
		u64 cc6_base, tmp_addr;
		u32 tmp;
1091
		u8 intlv_en;
1092

1093
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1094 1095 1096 1097 1098 1099 1100
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1101
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1102 1103 1104 1105 1106 1107 1108 1109

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1110
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1111 1112 1113 1114

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1115
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1116 1117

		/* OR DramIntlvSel into bits [14:12] */
1118
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1119 1120

		/* add remaining [11:0] bits from original MC4_ADDR */
1121
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1122 1123 1124 1125 1126

		return cc6_base | tmp_addr;
	}

	return addr;
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1145
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1146
{
1147
	struct amd_northbridge *nb;
1148 1149
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1150
	int off = range << 3;
1151
	u32 llim;
1152

1153 1154
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1155

1156
	if (pvt->fam == 0xf)
1157
		return;
1158

1159 1160
	if (!dram_rw(pvt, range))
		return;
1161

1162 1163
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1164

1165
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1166
	if (pvt->fam != 0x15)
1167
		return;
1168

1169 1170 1171
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1172

1173 1174 1175 1176 1177 1178
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1179 1180

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1181 1182
	if (WARN_ON(!f1))
		return;
1183

1184
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1185

1186
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1187

1188 1189
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1190

1191
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1192

1193 1194 1195 1196
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1197 1198
}

1199
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1200
				    struct err_info *err)
1201
{
1202
	struct amd64_pvt *pvt = mci->pvt_info;
1203

1204
	error_address_to_page_and_offset(sys_addr, err);
1205 1206 1207 1208 1209

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1210 1211
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1212 1213
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1214
		err->err_code = ERR_NODE;
1215 1216 1217 1218
		return;
	}

	/* Now map the sys_addr to a CSROW */
1219 1220 1221
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1222 1223 1224
		return;
	}

1225
	/* CHIPKILL enabled */
1226
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1227 1228
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1229 1230 1231 1232 1233
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1234
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1235
				      "possible error reporting race\n",
1236 1237
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1249
		err->channel = ((sys_addr & BIT(3)) != 0);
1250 1251 1252
	}
}

1253
static int ddr2_cs_size(unsigned i, bool dct_width)
1254
{
1255
	unsigned shift = 0;
1256

1257 1258 1259 1260
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1261
	else
1262
		shift = (i + 1) >> 1;
1263

1264 1265 1266 1267
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1268
				  unsigned cs_mode, int cs_mask_nr)
1269 1270 1271 1272 1273 1274 1275 1276
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1277
		unsigned diff;
1278 1279
		WARN_ON(cs_mode > 10);

1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1307 1308 1309 1310 1311
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1312 1313
}

1314 1315 1316 1317 1318 1319 1320 1321
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1322
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1323
{
1324
	int i, j, channels = 0;
1325

1326
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1327
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1328
		return 2;
1329 1330

	/*
1331 1332 1333
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1334 1335 1336 1337
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1338
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1339

1340 1341 1342 1343 1344
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1345 1346
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1347

1348 1349 1350 1351 1352 1353
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1354 1355
	}

1356 1357 1358
	if (channels > 2)
		channels = 2;

1359
	amd64_info("MCT channel count: %d\n", channels);
1360 1361 1362 1363

	return channels;
}

1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
	for (i = 0; i < NUM_UMCS; i++)
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1377
static int ddr3_cs_size(unsigned i, bool dct_width)
1378
{
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1434
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1435
				   unsigned cs_mode, int cs_mask_nr)
1436 1437 1438 1439
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1440 1441

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1442
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1443
	else
1444 1445 1446 1447 1448 1449 1450
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1451
				   unsigned cs_mode, int cs_mask_nr)
1452 1453
{
	WARN_ON(cs_mode > 12);
1454

1455
	return ddr3_cs_size(cs_mode, false);
1456 1457
}

1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1489
/*
1490
 * F16h and F15h model 30h have only limited cs_modes.
1491 1492
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1493
				unsigned cs_mode, int cs_mask_nr)
1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
				    unsigned int cs_mode, int csrow_nr)
{
	u32 base_addr = pvt->csels[umc].csbases[csrow_nr];

	/*  Each mask is used for every two base addresses. */
	u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];

	/*  Register [31:1] = Address [39:9]. Size is in kBs here. */
	u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;

	edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);

	/* Return size in MBs. */
	return size >> 10;
}

1521
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1522 1523
{

1524
	if (pvt->fam == 0xf)
1525 1526
		return;

1527
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1528 1529
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1530

1531 1532
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1533 1534

		if (!dct_ganging_enabled(pvt))
1535 1536
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1537

1538 1539 1540
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1541

1542 1543 1544 1545
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1546 1547
	}

1548
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1549 1550
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1579 1580 1581
	return channel;
}

1582
/*
1583
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1584 1585
 * Interleaving Modes.
 */
1586
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1587
				bool hi_range_sel, u8 intlv_en)
1588
{
1589
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1590 1591

	if (dct_ganging_enabled(pvt))
1592
		return 0;
1593

1594 1595
	if (hi_range_sel)
		return dct_sel_high;
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1609
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1610 1611 1612 1613

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1614 1615 1616 1617 1618 1619
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1620 1621 1622 1623 1624
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1625 1626 1627 1628

	return 0;
}

1629
/* Convert the sys_addr to the normalized DCT address */
1630
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1631 1632
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1633 1634
{
	u64 chan_off;
1635 1636
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1637
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1638

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1653
		    dhar_valid(pvt) &&
1654
		    (sys_addr >= BIT_64(32)))
1655
			chan_off = hole_off;
1656 1657 1658
		else
			chan_off = dct_sel_base_off;
	} else {
1659 1660 1661 1662 1663 1664 1665 1666 1667
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1668
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1669
			chan_off = hole_off;
1670
		else
1671
			chan_off = dram_base;
1672 1673
	}

1674
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1675 1676 1677 1678 1679 1680
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1681
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1682
{
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1706
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1707 1708 1709
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1710
	u64 cs_base, cs_mask;
1711 1712 1713
	int cs_found = -EINVAL;
	int csrow;

1714
	mci = edac_mc_find(nid);
1715 1716 1717 1718 1719
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1720
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1721

1722 1723
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1724 1725
			continue;

1726
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1727

1728 1729
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1730

1731
		cs_mask = ~cs_mask;
1732

1733 1734
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1735

1736
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1737 1738 1739 1740
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1741
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1742

1743
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1744 1745 1746 1747 1748 1749
			break;
		}
	}
	return cs_found;
}

1750 1751 1752 1753 1754
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1755
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1756 1757 1758
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1759
	if (pvt->fam == 0x10) {
1760
		/* only revC3 and revE have that feature */
1761
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1762 1763 1764
			return sys_addr;
	}

1765
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1784
/* For a given @dram_range, check if @sys_addr falls within it. */
1785
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1786
				  u64 sys_addr, int *chan_sel)
1787
{
1788
	int cs_found = -EINVAL;
1789
	u64 chan_addr;
1790
	u32 dct_sel_base;
1791
	u8 channel;
1792
	bool high_range = false;
1793

1794
	u8 node_id    = dram_dst_node(pvt, range);
1795
	u8 intlv_en   = dram_intlv_en(pvt, range);
1796
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1797

1798 1799
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1800

1801 1802 1803 1804 1805 1806 1807 1808
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1809
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1810 1811
		return -EINVAL;

1812
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1813

1814 1815 1816 1817 1818 1819 1820 1821 1822
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1823
		high_range = true;
1824

1825
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1826

1827
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1828
					  high_range, dct_sel_base);
1829

1830 1831 1832 1833
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1834

1835
	/* remove channel interleave */
1836 1837 1838
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1853 1854
	}

1855
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1856

1857
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1858

1859
	if (cs_found >= 0)
1860
		*chan_sel = channel;
1861

1862 1863 1864
	return cs_found;
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1902 1903
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1904 1905

	if (!(dct_cont_base_reg & BIT(0)) &&
1906 1907
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1908 1909 1910 1911 1912 1913 1914 1915
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

1916 1917 1918 1919 1920
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
1921 1922

	/* Verify we stay within the MAX number of channels allowed */
1923
	if (channel > 3)
1924 1925 1926 1927 1928 1929 1930 1931
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1932
		chan_offset = dct_base << 27;
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
1962
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
1990
{
1991 1992
	int cs_found = -EINVAL;
	unsigned range;
1993

1994 1995
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
1996 1997
			continue;

1998 1999 2000 2001
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2002

2003 2004
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2005
			cs_found = f1x_match_to_this_node(pvt, range,
2006
							  sys_addr, chan_sel);
2007 2008 2009 2010 2011 2012 2013 2014
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2015 2016
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2017
 *
2018 2019
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2020
 */
2021
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2022
				     struct err_info *err)
2023 2024 2025
{
	struct amd64_pvt *pvt = mci->pvt_info;

2026
	error_address_to_page_and_offset(sys_addr, err);
2027

2028 2029 2030
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2031 2032 2033 2034 2035 2036 2037 2038
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2039
	if (dct_ganging_enabled(pvt))
2040
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2041 2042 2043
}

/*
2044
 * debug routine to display the memory sizes of all logical DIMMs and its
2045
 * CSROWs
2046
 */
2047
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2048
{
2049
	int dimm, size0, size1;
2050 2051
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2052

2053
	if (pvt->fam == 0xf) {
2054
		/* K8 families < revF not supported yet */
2055
	       if (pvt->ext_model < K8_REV_F)
2056 2057 2058 2059 2060
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2071 2072
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2073

2074 2075
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2076 2077 2078 2079
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2080
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2081 2082 2083
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2084 2085 2086
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2087
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2088 2089
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2090 2091

		size1 = 0;
2092
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2093
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2094 2095
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2096

2097
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2098 2099
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2100 2101 2102
	}
}

2103
static struct amd64_family_type family_types[] = {
2104
	[K8_CPUS] = {
2105
		.ctl_name = "K8",
2106
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2107
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2108
		.ops = {
2109 2110 2111
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2112 2113 2114
		}
	},
	[F10_CPUS] = {
2115
		.ctl_name = "F10h",
2116
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2117
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2118
		.ops = {
2119
			.early_channel_count	= f1x_early_channel_count,
2120
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2121
			.dbam_to_cs		= f10_dbam_to_chip_select,
2122 2123 2124 2125
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2126
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2127
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2128
		.ops = {
2129
			.early_channel_count	= f1x_early_channel_count,
2130
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2131
			.dbam_to_cs		= f15_dbam_to_chip_select,
2132 2133
		}
	},
2134 2135 2136
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2137
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2138 2139 2140 2141 2142 2143
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2144 2145 2146
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2147
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2148 2149 2150 2151 2152 2153
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2154 2155 2156
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2157
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2158 2159 2160 2161 2162 2163
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2164 2165 2166
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2167
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2168 2169 2170 2171 2172 2173
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2174 2175 2176 2177 2178 2179 2180 2181 2182
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_base_addr_to_cs_size,
		}
	},
2183 2184
};

2185
/*
2186 2187 2188
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2189
 *
2190
 * Algorithm courtesy of Ross LaFetra from AMD.
2191
 */
2192
static const u16 x4_vectors[] = {
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2229 2230
};

2231
static const u16 x8_vectors[] = {
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2253
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2254
			   unsigned v_dim)
2255
{
2256 2257 2258 2259
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2260 2261
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2274

2275 2276 2277
					if (!s)
						return err_sym;
				}
2278

2279 2280 2281 2282
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2283 2284
	}

2285
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2286 2287
	return -1;
}
2288

2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2331 2332
	int err_sym = -1;

2333
	if (pvt->ecc_sym_sz == 8)
2334 2335
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2336 2337
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2338 2339
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2340
					  pvt->ecc_sym_sz);
2341
	else {
2342
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2343
		return err_sym;
2344
	}
2345

2346
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2347 2348
}

2349
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2350
			    u8 ecc_type)
2351
{
2352 2353
	enum hw_event_mc_err_type err_type;
	const char *string;
2354

2355 2356 2357 2358
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2359 2360
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2361 2362
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2363 2364 2365
		return;
	}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
		string = "unknown syndrome - possible error reporting race";
		break;
	default:
		string = "WTF error";
		break;
2382
	}
2383 2384 2385 2386 2387

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2388 2389
}

2390
static inline void decode_bus_error(int node_id, struct mce *m)
2391
{
2392 2393
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2394
	u8 ecc_type = (m->status >> 45) & 0x3;
2395 2396
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2397 2398
	u64 sys_addr;
	struct err_info err;
2399

2400 2401 2402 2403 2404 2405
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2406
	/* Bail out early if this was an 'observed' error */
2407
	if (PP(ec) == NBSL_PP_OBS)
2408
		return;
2409

2410 2411
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2412 2413
		return;

2414 2415
	memset(&err, 0, sizeof(err));

2416
	sys_addr = get_error_address(pvt, m);
2417

2418
	if (ecc_type == 2)
2419 2420 2421 2422
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2423
	__log_ecc_error(mci, &err, ecc_type);
2424 2425
}

2426
/*
2427 2428
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2429
 * Reserve F0 and F6 on systems with a UMC.
2430
 */
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
		amd64_err("error F0 device not found: vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, pci_id1);
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

		amd64_err("error F6 device not found: vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, pci_id2);

			return -ENODEV;
		}
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2459
	/* Reserve the ADDRESS MAP Device */
2460
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2461
	if (!pvt->F1) {
2462 2463
	amd64_err("error address map device not found: vendor %x device 0x%x (broken BIOS?)\n",
		  PCI_VENDOR_ID_AMD, pci_id1);
2464
		return -ENODEV;
2465 2466
	}

2467
	/* Reserve the DCT Device */
2468
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2469
	if (!pvt->F2) {
2470 2471
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2472

2473 2474 2475
	amd64_err("error F2 device not found: vendor %x device 0x%x (broken BIOS?)\n",
		  PCI_VENDOR_ID_AMD, pci_id2);
			return -ENODEV;
2476
	}
2477

2478 2479 2480
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2481 2482 2483 2484

	return 0;
}

2485
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2486
{
2487 2488 2489 2490 2491 2492 2493
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2494 2495
}

2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

		for (i = 0; i < NUM_UMCS; i++) {
			/* Check enabled channels only: */
			if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
			    (pvt->umc[i].ecc_ctrl & BIT(7))) {
				pvt->ecc_sym_sz = 8;
				break;
			}
		}

		return;
	}

	if (pvt->fam >= 0x10) {
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
	for (i = 0; i < NUM_UMCS; i++) {

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2544 2545
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2546 2547
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2548
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2549 2550 2551
	}
}

2552 2553 2554 2555
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2556
static void read_mc_regs(struct amd64_pvt *pvt)
2557
{
2558
	unsigned int range;
2559 2560 2561 2562
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2563
	 * those are Read-As-Zero.
2564
	 */
2565
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2566
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2567

2568
	/* Check first whether TOP_MEM2 is enabled: */
2569
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2570
	if (msr_val & BIT(21)) {
2571
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2572
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2573
	} else {
2574
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2575 2576 2577 2578 2579 2580 2581 2582
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2583

2584
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2585

2586
	read_dram_ctl_register(pvt);
2587

2588 2589
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2590

2591 2592 2593 2594 2595 2596 2597
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2598 2599 2600 2601
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2602

2603 2604 2605 2606 2607 2608
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2609 2610
	}

2611
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2612
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2613

2614
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2615

2616 2617
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2618

2619
	if (!dct_ganging_enabled(pvt)) {
2620 2621
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2622
	}
2623

2624 2625 2626
skip:
	read_dct_base_mask(pvt);

2627 2628
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2629

2630
	determine_ecc_sym_sz(pvt);
2631

2632
	dump_misc_regs(pvt);
2633 2634 2635 2636 2637 2638
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2639
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2669
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2670
{
2671
	u32 cs_mode, nr_pages;
2672
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2673

2674

2675 2676 2677 2678 2679 2680 2681
	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
B
Borislav Petkov 已提交
2682
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2683

2684 2685
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
							   << (20 - PAGE_SHIFT);
2686

2687 2688 2689
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
		    csrow_nr, dct,  cs_mode);
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2690 2691 2692 2693 2694 2695 2696 2697

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2698
static int init_csrows(struct mem_ctl_info *mci)
2699
{
2700
	struct amd64_pvt *pvt = mci->pvt_info;
2701
	struct csrow_info *csrow;
2702
	struct dimm_info *dimm;
2703
	enum edac_type edac_mode;
2704
	int i, j, empty = 1;
2705
	int nr_pages = 0;
2706
	u32 val;
2707

2708
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2709

2710
	pvt->nbcfg = val;
2711

2712 2713 2714
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2715

2716 2717 2718
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2719
	for_each_chip_select(i, 0, pvt) {
2720 2721
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2722

2723
		if (pvt->fam != 0xf)
2724 2725 2726
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2727 2728
			continue;

2729
		csrow = mci->csrows[i];
2730
		empty = 0;
2731 2732 2733 2734

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2735
		if (row_dct0) {
2736
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2737 2738
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2739

2740
		/* K8 has only one DCT */
2741
		if (pvt->fam != 0xf && row_dct1) {
2742
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2743 2744 2745 2746

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2747

2748
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2749 2750 2751 2752

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2753
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2754 2755
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2756
		else
2757 2758 2759
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2760
			dimm = csrow->channels[j]->dimm;
2761
			dimm->mtype = pvt->dram_type;
2762
			dimm->edac_mode = edac_mode;
2763
		}
2764 2765 2766 2767
	}

	return empty;
}
2768

2769
/* get all cores on this DCT */
2770
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2771 2772 2773 2774 2775 2776 2777 2778 2779
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2780
static bool nb_mce_bank_enabled_on_node(u16 nid)
2781 2782
{
	cpumask_var_t mask;
2783
	int cpu, nbe;
2784 2785 2786
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2787
		amd64_warn("%s: Error allocating mask\n", __func__);
2788 2789 2790 2791 2792 2793 2794 2795
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2796
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2797
		nbe = reg->l & MSR_MCGCTL_NBE;
2798

2799 2800 2801
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2813
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2814 2815
{
	cpumask_var_t cmask;
2816
	int cpu;
2817 2818

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2819
		amd64_warn("%s: error allocating mask\n", __func__);
2820 2821 2822
		return false;
	}

2823
	get_cpus_on_this_dct_cpumask(cmask, nid);
2824 2825 2826 2827 2828

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2829 2830
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2831
		if (on) {
2832
			if (reg->l & MSR_MCGCTL_NBE)
2833
				s->flags.nb_mce_enable = 1;
2834

2835
			reg->l |= MSR_MCGCTL_NBE;
2836 2837
		} else {
			/*
2838
			 * Turn off NB MCE reporting only when it was off before
2839
			 */
2840
			if (!s->flags.nb_mce_enable)
2841
				reg->l &= ~MSR_MCGCTL_NBE;
2842 2843 2844 2845 2846 2847 2848 2849 2850
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2851
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2852
				       struct pci_dev *F3)
2853
{
2854
	bool ret = true;
B
Borislav Petkov 已提交
2855
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2856

2857 2858 2859 2860 2861
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2862
	amd64_read_pci_cfg(F3, NBCTL, &value);
2863

2864 2865
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2866 2867

	value |= mask;
B
Borislav Petkov 已提交
2868
	amd64_write_pci_cfg(F3, NBCTL, value);
2869

2870
	amd64_read_pci_cfg(F3, NBCFG, &value);
2871

2872 2873
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2874

2875
	if (!(value & NBCFG_ECC_ENABLE)) {
2876
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2877

2878
		s->flags.nb_ecc_prev = 0;
2879

2880
		/* Attempt to turn on DRAM ECC Enable */
2881 2882
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2883

2884
		amd64_read_pci_cfg(F3, NBCFG, &value);
2885

2886
		if (!(value & NBCFG_ECC_ENABLE)) {
2887 2888
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2889
			ret = false;
2890
		} else {
2891
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2892
		}
2893
	} else {
2894
		s->flags.nb_ecc_prev = 1;
2895
	}
2896

2897 2898
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2899

2900
	return ret;
2901 2902
}

2903
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2904
					struct pci_dev *F3)
2905
{
B
Borislav Petkov 已提交
2906 2907
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2908
	if (!s->nbctl_valid)
2909 2910
		return;

B
Borislav Petkov 已提交
2911
	amd64_read_pci_cfg(F3, NBCTL, &value);
2912
	value &= ~mask;
2913
	value |= s->old_nbctl;
2914

B
Borislav Petkov 已提交
2915
	amd64_write_pci_cfg(F3, NBCTL, value);
2916

2917 2918
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2919 2920 2921
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2922 2923 2924
	}

	/* restore the NB Enable MCGCTL bit */
2925
	if (toggle_ecc_err_reporting(s, nid, OFF))
2926
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2927 2928 2929
}

/*
2930 2931 2932 2933
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2934
 */
2935 2936 2937 2938 2939
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2940

2941
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2942
{
2943
	bool nb_mce_en = false;
2944 2945
	u8 ecc_en = 0, i;
	u32 value;
2946

2947 2948
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
		for (i = 0; i < NUM_UMCS; i++) {
			u32 base = get_umc_base(i);

			/* Only check enabled UMCs. */
			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
				continue;

			if (!(value & UMC_SDP_INIT))
				continue;

			umc_en_mask |= BIT(i);

			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
				continue;

			if (value & UMC_ECC_ENABLED)
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
		amd64_read_pci_cfg(F3, NBCFG, &value);
2977

2978 2979 2980 2981 2982 2983 2984 2985 2986
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
			amd64_notice("NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
				     MSR_IA32_MCG_CTL, nid);
	}

	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2987

2988 2989 2990 2991 2992
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2993 2994
}

2995 2996
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2997 2998 2999 3000 3001 3002
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3003
	if (pvt->nbcap & NBCAP_SECDED)
3004 3005
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3006
	if (pvt->nbcap & NBCAP_CHIPKILL)
3007 3008
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

3009
	mci->edac_cap		= determine_edac_cap(pvt);
3010 3011
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
3012
	mci->ctl_name		= fam->ctl_name;
3013
	mci->dev_name		= pci_name(pvt->F3);
3014 3015 3016
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3017 3018
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3019 3020
}

3021 3022 3023
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3024
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3025
{
3026 3027
	struct amd64_family_type *fam_type = NULL;

3028
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3029
	pvt->stepping	= boot_cpu_data.x86_mask;
3030 3031 3032 3033
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3034
	case 0xf:
3035 3036
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3037
		break;
3038

3039
	case 0x10:
3040 3041
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3042 3043 3044
		break;

	case 0x15:
3045
		if (pvt->model == 0x30) {
3046 3047
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3048
			break;
3049 3050 3051 3052
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3053 3054
		}

3055 3056
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3057 3058
		break;

3059
	case 0x16:
3060 3061 3062 3063 3064
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3065 3066
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3067 3068
		break;

3069 3070 3071 3072 3073
	case 0x17:
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
		break;

3074
	default:
3075
		amd64_err("Unsupported family!\n");
3076
		return NULL;
3077
	}
3078

3079
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3080
		     (pvt->fam == 0xf ?
3081 3082 3083
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3084
	return fam_type;
3085 3086
}

3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3097
static int init_one_instance(unsigned int nid)
3098
{
3099
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3100
	struct amd64_family_type *fam_type = NULL;
3101
	struct mem_ctl_info *mci = NULL;
3102
	struct edac_mc_layer layers[2];
3103
	struct amd64_pvt *pvt = NULL;
3104
	u16 pci_id1, pci_id2;
3105 3106 3107 3108 3109
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
3110
		goto err_ret;
3111

3112
	pvt->mc_node_id	= nid;
3113
	pvt->F3 = F3;
3114

3115
	ret = -EINVAL;
3116
	fam_type = per_family_init(pvt);
3117
	if (!fam_type)
3118 3119
		goto err_free;

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	if (pvt->fam >= 0x17) {
		pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
		if (!pvt->umc) {
			ret = -ENOMEM;
			goto err_free;
		}

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3135
	if (err)
3136
		goto err_post_init;
3137

3138
	read_mc_regs(pvt);
3139 3140 3141 3142

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3143
	 * tables in the 'mci' structure.
3144
	 */
3145
	ret = -EINVAL;
3146 3147
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3148
		goto err_siblings;
3149 3150

	ret = -ENOMEM;
3151 3152 3153 3154
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3155 3156 3157 3158 3159 3160 3161

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
3162
	layers[1].is_virt_csrow = false;
3163

3164
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3165
	if (!mci)
3166
		goto err_siblings;
3167 3168

	mci->pvt_info = pvt;
3169
	mci->pdev = &pvt->F3->dev;
3170

3171
	setup_mci_misc_attrs(mci, fam_type);
3172 3173

	if (init_csrows(mci))
3174 3175 3176
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3177
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3178
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3179 3180 3181
		goto err_add_mc;
	}

3182 3183 3184 3185
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

3186
	amd_register_ecc_decoder(decode_bus_error);
3187

3188 3189 3190 3191 3192
	return 0;

err_add_mc:
	edac_mc_free(mci);

3193 3194
err_siblings:
	free_mc_sibling_devs(pvt);
3195

3196 3197 3198 3199
err_post_init:
	if (pvt->fam >= 0x17)
		kfree(pvt->umc);

3200 3201
err_free:
	kfree(pvt);
3202

3203
err_ret:
3204 3205 3206
	return ret;
}

3207
static int probe_one_instance(unsigned int nid)
3208
{
3209
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3210
	struct ecc_settings *s;
3211
	int ret;
3212

3213 3214 3215
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3216
		goto err_out;
3217 3218 3219

	ecc_stngs[nid] = s;

3220 3221 3222 3223 3224 3225
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

3226 3227 3228 3229 3230
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3231 3232 3233 3234 3235

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3236
	ret = init_one_instance(nid);
3237
	if (ret < 0) {
3238
		amd64_err("Error probing instance: %d\n", nid);
3239 3240 3241

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3242
	}
3243 3244

	return ret;
3245 3246 3247 3248 3249 3250 3251

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3252 3253
}

3254
static void remove_one_instance(unsigned int nid)
3255
{
3256 3257
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3258 3259
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3260

3261
	mci = find_mci_by_dev(&F3->dev);
3262 3263
	WARN_ON(!mci);

3264
	/* Remove from EDAC CORE tracking list */
3265
	mci = edac_mc_del_mc(&F3->dev);
3266 3267 3268 3269 3270
	if (!mci)
		return;

	pvt = mci->pvt_info;

3271
	restore_ecc_error_reporting(s, nid, F3);
3272

3273
	free_mc_sibling_devs(pvt);
3274

3275 3276
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
3277
	amd_unregister_ecc_decoder(decode_bus_error);
3278

3279 3280
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3281

3282
	/* Free the EDAC CORE resources */
3283 3284 3285
	mci->pvt_info = NULL;

	kfree(pvt);
3286 3287 3288
	edac_mc_free(mci);
}

3289
static void setup_pci_device(void)
3290 3291 3292 3293
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3294
	if (pci_ctl)
3295 3296
		return;

3297
	mci = edac_mc_find(0);
3298 3299
	if (!mci)
		return;
3300

3301
	pvt = mci->pvt_info;
3302 3303 3304 3305
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3306 3307 3308
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3309 3310 3311
	}
}

3312 3313 3314 3315 3316 3317 3318 3319 3320
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3321 3322
static int __init amd64_edac_init(void)
{
3323
	int err = -ENODEV;
3324
	int i;
3325

3326
	if (amd_cache_northbridges() < 0)
3327
		goto err_ret;
3328

3329 3330
	opstate_init();

3331
	err = -ENOMEM;
3332
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
3333
	if (!ecc_stngs)
3334
		goto err_free;
3335

3336
	msrs = msrs_alloc();
3337
	if (!msrs)
3338
		goto err_free;
3339

3340 3341 3342 3343 3344
	for (i = 0; i < amd_nb_num(); i++)
		if (probe_one_instance(i)) {
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3345

3346 3347
			goto err_pci;
		}
3348

3349
	setup_pci_device();
T
Tomasz Pala 已提交
3350 3351 3352 3353 3354

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3355 3356
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3357
	return 0;
3358

3359 3360 3361
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3362

3363 3364 3365 3366
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3367
err_ret:
3368 3369 3370 3371 3372
	return err;
}

static void __exit amd64_edac_exit(void)
{
3373 3374
	int i;

3375 3376
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3377

3378 3379
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3380

3381 3382 3383
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3384 3385
	msrs_free(msrs);
	msrs = NULL;
3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");