amd64_edac.c 93.1 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "amd64_edac.h"
3
#include <asm/amd_nb.h>
4

5
static struct edac_pci_ctl_info *pci_ctl;
6 7 8 9 10 11 12 13 14 15 16

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

17
static struct msr __percpu *msrs;
18

19
/* Per-node stuff */
20
static struct ecc_settings **ecc_stngs;
21

22 23 24
/* Number of Unified Memory Controllers */
static u8 num_umcs;

25 26 27 28 29 30 31
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
32
static const struct scrubrate {
33 34 35
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

61 62
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

87 88 89 90 91 92 93 94 95 96 97 98 99
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

100 101 102 103
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
104
 * K8: has a single DCT only and no address offsets >= 0x100
105 106 107 108 109
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
110
 * F16h: has only 1 DCT
111 112
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
113
 */
114 115
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
116
{
117 118 119 120 121
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
122

123 124 125 126 127 128 129 130 131
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
132

133 134 135
			offset += 0x100;
		}
		break;
136

137 138 139 140 141 142 143 144
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
145

146 147 148 149
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
150

151 152
	default:
		break;
153
	}
154
	return amd64_read_pci_cfg(pvt->F2, offset, val);
155 156
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
186
/*
187
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
188 189
 * issue. If requested is too big, then use last maximum value found.
 */
190
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
191 192 193 194 195 196 197 198 199
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
200 201 202
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
203
	 */
204
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
205 206 207 208
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
209
		if (scrubrates[i].scrubval < min_rate)
210 211 212 213 214 215 216 217
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

P
Pu Wen 已提交
218
	if (pvt->fam == 0x17 || pvt->fam == 0x18) {
219 220
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
221 222 223 224 225 226 227
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
228

229 230 231
	if (scrubval)
		return scrubrates[i].bandwidth;

232 233 234
	return 0;
}

235
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
236 237
{
	struct amd64_pvt *pvt = mci->pvt_info;
238
	u32 min_scrubrate = 0x5;
239

240
	if (pvt->fam == 0xf)
241 242
		min_scrubrate = 0x0;

243 244 245 246
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
247

248 249 250 251
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
252 253
}

254
static int get_scrub_rate(struct mem_ctl_info *mci)
255 256
{
	struct amd64_pvt *pvt = mci->pvt_info;
257
	int i, retval = -EINVAL;
258
	u32 scrubval = 0;
259

260 261
	switch (pvt->fam) {
	case 0x15:
262 263 264
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
265

266 267
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
268 269 270
		break;

	case 0x17:
P
Pu Wen 已提交
271
	case 0x18:
272 273 274 275 276 277 278 279 280 281 282
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
		break;

	default:
283
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
284 285
		break;
	}
286 287 288

	scrubval = scrubval & 0x001F;

289
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
290
		if (scrubrates[i].scrubval == scrubval) {
291
			retval = scrubrates[i].bandwidth;
292 293 294
			break;
		}
	}
295
	return retval;
296 297
}

298
/*
299 300
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
301
 */
302
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
303
{
304
	u64 addr;
305 306 307 308 309 310 311 312 313

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

314 315
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
316 317 318 319 320 321 322 323 324 325 326 327
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
328
	u8 node_id;
329 330 331 332 333 334 335 336 337 338 339 340 341
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
342
	intlv_en = dram_intlv_en(pvt, 0);
343 344

	if (intlv_en == 0) {
345
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
346
			if (base_limit_match(pvt, sys_addr, node_id))
347
				goto found;
348
		}
349
		goto err_no_match;
350 351
	}

352 353 354
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
355
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
356 357 358 359 360 361
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
362
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
363 364
			break;	/* intlv_sel field matches */

365
		if (++node_id >= DRAM_RANGES)
366 367 368 369
			goto err_no_match;
	}

	/* sanity test for sys_addr */
370
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
371 372 373
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
374 375 376 377
		return NULL;
	}

found:
378
	return edac_mc_find((int)node_id);
379 380

err_no_match:
381 382
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
383 384 385

	return NULL;
}
386 387

/*
388 389
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
390
 */
391 392
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
393
{
394 395
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
396

397
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
398 399
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
400 401
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
402
		addr_shift	= 4;
403 404

	/*
405 406 407 408 409
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
410 411 412
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

413 414
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
415 416 417

		*mask = ~0ULL;
		/* poke holes for the csmask */
418 419
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
420

421 422
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
423 424

		return;
425 426 427 428
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
429

430
		if (pvt->fam == 0x15)
431 432
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
433
		else
434 435
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
436
	}
437

438
	*base  = (csbase & base_bits) << addr_shift;
439

440 441 442 443 444
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
445 446
}

447 448 449
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

450 451 452
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

453 454 455
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

456
#define for_each_umc(i) \
457
	for (i = 0; i < num_umcs; i++)
458

459 460 461 462 463 464 465 466 467 468 469 470
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

471 472
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
473 474
			continue;

475 476 477
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
478 479

		if ((input_addr & mask) == (base & mask)) {
480 481 482
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
483 484 485 486

			return csrow;
		}
	}
487 488
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
515
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
516 517
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
518 519 520
		return 1;
	}

521
	/* valid for Fam10h and above */
522
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
523
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
524 525 526
		return 1;
	}

527
	if (!dhar_valid(pvt)) {
528 529
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

551 552
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
553

554 555
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
556

557 558 559
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
560 561 562 563 564

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
596
	struct amd64_pvt *pvt = mci->pvt_info;
597
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
598
	int ret;
599

600
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
601 602 603 604

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
605 606
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
607 608 609
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

610 611 612
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
613 614 615 616 617 618 619 620 621 622 623 624 625 626

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
627
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
628

629 630
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
662
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
663
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
664
		      (dram_addr & 0xfff);
665

666 667 668
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
684
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
685
		 (unsigned long)sys_addr, (unsigned long)input_addr);
686 687 688 689 690 691

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
692
						    struct err_info *err)
693
{
694 695
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
713 714
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
715 716
	return csrow;
}
717

718
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
719 720 721 722 723

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
724
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
725
{
726
	unsigned long edac_cap = EDAC_FLAG_NONE;
727 728 729 730
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
731

732
		for_each_umc(i) {
733 734
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
735

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
753 754 755 756

	return edac_cap;
}

757
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
758

759
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
760
{
761
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
762

763 764 765 766 767 768 769 770 771 772 773 774 775
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

776

777 778
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
779

780
	if (pvt->fam == 0x10)
781 782
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
783

784 785 786 787 788
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
789 790
}

791 792 793 794 795 796 797
#define CS_EVEN_PRIMARY		BIT(0)
#define CS_ODD_PRIMARY		BIT(1)

#define CS_EVEN			CS_EVEN_PRIMARY
#define CS_ODD			CS_ODD_PRIMARY

static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
798
{
799
	int cs_mode = 0;
800

801 802
	if (csrow_enabled(2 * dimm, ctrl, pvt))
		cs_mode |= CS_EVEN_PRIMARY;
803

804 805 806 807
	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_PRIMARY;

	return cs_mode;
808 809
}

810 811
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
812
	int dimm, size0, size1, cs0, cs1, cs_mode;
813 814 815

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

816
	for (dimm = 0; dimm < 2; dimm++) {
817 818 819
		cs0 = dimm * 2;
		cs1 = dimm * 2 + 1;

820 821 822 823
		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);

		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
824 825

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
826 827
				cs0,	size0,
				cs1,	size1);
828 829 830 831 832 833 834 835
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

836
	for_each_umc(i) {
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

875
/* Display and decode various NB registers for debug purposes. */
876
static void __dump_misc_regs(struct amd64_pvt *pvt)
877
{
878
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
879

880 881
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
882

883 884 885
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
886

887
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
888

889
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
890

891 892
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
893 894
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
895

896
	debug_display_dimm_sizes(pvt, 0);
897

898
	/* everything below this point is Fam10h and above */
899
	if (pvt->fam == 0xf)
900
		return;
901

902
	debug_display_dimm_sizes(pvt, 1);
903

904
	/* Only if NOT ganged does dclr1 have valid info */
905
	if (!dct_ganging_enabled(pvt))
906
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
907 908
}

909 910 911 912 913 914 915 916 917 918
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

919
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
920 921
}

922
/*
923
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
924
 */
925
static void prep_chip_selects(struct amd64_pvt *pvt)
926
{
927
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
928 929
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
930
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
931 932
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
933 934 935 936 937 938 939 940
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

941
	} else {
942 943
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
944 945 946
	}
}

947 948
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
949 950 951 952 953 954
	u32 umc_base_reg, umc_base_reg_sec;
	u32 umc_mask_reg, umc_mask_reg_sec;
	u32 base_reg, base_reg_sec;
	u32 mask_reg, mask_reg_sec;
	u32 *base, *base_sec;
	u32 *mask, *mask_sec;
955 956 957 958
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
959
		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
960 961 962

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];
963
			base_sec = &pvt->csels[umc].csbases_sec[cs];
964 965

			base_reg = umc_base_reg + (cs * 4);
966
			base_reg_sec = umc_base_reg_sec + (cs * 4);
967 968 969 970

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
971 972 973 974

			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base_sec, base_reg_sec);
975 976 977
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
978
		umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
979 980 981

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];
982
			mask_sec = &pvt->csels[umc].csmasks_sec[cs];
983 984

			mask_reg = umc_mask_reg + (cs * 4);
985
			mask_reg_sec = umc_mask_reg_sec + (cs * 4);
986 987 988 989

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
990 991 992 993

			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask_sec, mask_reg_sec);
994 995 996 997
		}
	}
}

998
/*
999
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
1000
 */
1001
static void read_dct_base_mask(struct amd64_pvt *pvt)
1002
{
1003
	int cs;
1004

1005
	prep_chip_selects(pvt);
1006

1007 1008
	if (pvt->umc)
		return read_umc_base_mask(pvt);
1009

1010
	for_each_chip_select(cs, 0, pvt) {
1011 1012
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
1013 1014
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
1015

1016 1017 1018
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1019

1020 1021
		if (pvt->fam == 0xf)
			continue;
1022

1023 1024 1025 1026
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1027 1028
	}

1029
	for_each_chip_select_mask(cs, 0, pvt) {
1030 1031
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1032 1033
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1034

1035 1036 1037
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1038

1039 1040
		if (pvt->fam == 0xf)
			continue;
1041

1042 1043 1044 1045
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1046 1047 1048
	}
}

1049
static void determine_memory_type(struct amd64_pvt *pvt)
1050
{
1051
	u32 dram_ctrl, dcsm;
1052

1053 1054 1055 1056 1057 1058 1059 1060 1061
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1062
		if (pvt->dchr0 & DDR3_MODE)
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1090
		else
1091
			pvt->dram_type = MEM_RDDR3;
1092

1093 1094 1095 1096 1097
		return;

	case 0x16:
		goto ddr3;

1098
	case 0x17:
P
Pu Wen 已提交
1099
	case 0x18:
1100 1101 1102 1103 1104 1105 1106 1107
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

1108 1109 1110 1111 1112
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1113

1114 1115
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1116 1117
}

1118
/* Get the number of DCT channels the memory controller is using. */
1119 1120
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1121
	int flag;
1122

1123
	if (pvt->ext_model >= K8_REV_F)
1124
		/* RevF (NPT) and later */
1125
		flag = pvt->dclr0 & WIDTH_128;
1126
	else
1127 1128 1129 1130 1131 1132 1133 1134 1135
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1136
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1137
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1138
{
1139 1140
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1141 1142
	u8 start_bit = 1;
	u8 end_bit   = 47;
1143 1144 1145 1146 1147 1148 1149
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1150

1151
	if (pvt->fam == 0xf) {
1152 1153 1154 1155
		start_bit = 3;
		end_bit   = 39;
	}

1156
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1157 1158 1159 1160

	/*
	 * Erratum 637 workaround
	 */
1161
	if (pvt->fam == 0x15) {
1162 1163
		u64 cc6_base, tmp_addr;
		u32 tmp;
1164
		u8 intlv_en;
1165

1166
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1167 1168 1169 1170 1171 1172 1173
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1174
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1175 1176 1177 1178 1179 1180 1181 1182

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1183
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1184 1185 1186 1187

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1188
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1189 1190

		/* OR DramIntlvSel into bits [14:12] */
1191
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1192 1193

		/* add remaining [11:0] bits from original MC4_ADDR */
1194
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1195 1196 1197 1198 1199

		return cc6_base | tmp_addr;
	}

	return addr;
1200 1201
}

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1218
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1219
{
1220
	struct amd_northbridge *nb;
1221 1222
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1223
	int off = range << 3;
1224
	u32 llim;
1225

1226 1227
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1228

1229
	if (pvt->fam == 0xf)
1230
		return;
1231

1232 1233
	if (!dram_rw(pvt, range))
		return;
1234

1235 1236
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1237

1238
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1239
	if (pvt->fam != 0x15)
1240
		return;
1241

1242 1243 1244
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1245

1246 1247 1248 1249 1250 1251
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1252 1253

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1254 1255
	if (WARN_ON(!f1))
		return;
1256

1257
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1258

1259
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1260

1261 1262
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1263

1264
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1265

1266 1267 1268 1269
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1270 1271
}

1272
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1273
				    struct err_info *err)
1274
{
1275
	struct amd64_pvt *pvt = mci->pvt_info;
1276

1277
	error_address_to_page_and_offset(sys_addr, err);
1278 1279 1280 1281 1282

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1283 1284
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1285 1286
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1287
		err->err_code = ERR_NODE;
1288 1289 1290 1291
		return;
	}

	/* Now map the sys_addr to a CSROW */
1292 1293 1294
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1295 1296 1297
		return;
	}

1298
	/* CHIPKILL enabled */
1299
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1300 1301
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1302 1303 1304 1305 1306
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1307
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1308
				      "possible error reporting race\n",
1309 1310
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1322
		err->channel = ((sys_addr & BIT(3)) != 0);
1323 1324 1325
	}
}

1326
static int ddr2_cs_size(unsigned i, bool dct_width)
1327
{
1328
	unsigned shift = 0;
1329

1330 1331 1332 1333
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1334
	else
1335
		shift = (i + 1) >> 1;
1336

1337 1338 1339 1340
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1341
				  unsigned cs_mode, int cs_mask_nr)
1342 1343 1344 1345 1346 1347 1348 1349
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1350
		unsigned diff;
1351 1352
		WARN_ON(cs_mode > 10);

1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1380 1381 1382 1383 1384
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1385 1386
}

1387 1388 1389 1390 1391 1392 1393 1394
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1395
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1396
{
1397
	int i, j, channels = 0;
1398

1399
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1400
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1401
		return 2;
1402 1403

	/*
1404 1405 1406
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1407 1408 1409 1410
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1411
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1412

1413 1414 1415 1416 1417
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1418 1419
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1420

1421 1422 1423 1424 1425 1426
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1427 1428
	}

1429 1430 1431
	if (channels > 2)
		channels = 2;

1432
	amd64_info("MCT channel count: %d\n", channels);
1433 1434 1435 1436

	return channels;
}

1437 1438 1439 1440 1441
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1442
	for_each_umc(i)
1443 1444 1445 1446 1447 1448 1449
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1450
static int ddr3_cs_size(unsigned i, bool dct_width)
1451
{
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1507
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1508
				   unsigned cs_mode, int cs_mask_nr)
1509 1510 1511 1512
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1513 1514

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1515
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1516
	else
1517 1518 1519 1520 1521 1522 1523
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1524
				   unsigned cs_mode, int cs_mask_nr)
1525 1526
{
	WARN_ON(cs_mode > 12);
1527

1528
	return ddr3_cs_size(cs_mode, false);
1529 1530
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1562
/*
1563
 * F16h and F15h model 30h have only limited cs_modes.
1564 1565
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1566
				unsigned cs_mode, int cs_mask_nr)
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1577
static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1578 1579
				    unsigned int cs_mode, int csrow_nr)
{
1580 1581 1582
	u32 addr_mask_orig, addr_mask_deinterleaved;
	u32 msb, weight, num_zero_bits;
	int dimm, size = 0;
1583

1584 1585 1586
	/* No Chip Selects are enabled. */
	if (!cs_mode)
		return size;
1587

1588 1589 1590
	/* Requested size of an even CS but none are enabled. */
	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
		return size;
1591

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
	/* Requested size of an odd CS but none are enabled. */
	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
		return size;

	/*
	 * There is one mask per DIMM, and two Chip Selects per DIMM.
	 *	CS0 and CS1 -> DIMM0
	 *	CS2 and CS3 -> DIMM1
	 */
	dimm = csrow_nr >> 1;

	addr_mask_orig = pvt->csels[umc].csmasks[dimm];

	/*
	 * The number of zero bits in the mask is equal to the number of bits
	 * in a full mask minus the number of bits in the current mask.
	 *
	 * The MSB is the number of bits in the full mask because BIT[0] is
	 * always 0.
	 */
	msb = fls(addr_mask_orig) - 1;
	weight = hweight_long(addr_mask_orig);
	num_zero_bits = msb - weight;

	/* Take the number of zero bits off from the top of the mask. */
	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);

	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);

	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
	size = (addr_mask_deinterleaved >> 2) + 1;
1625 1626 1627 1628 1629

	/* Return size in MBs. */
	return size >> 10;
}

1630
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1631 1632
{

1633
	if (pvt->fam == 0xf)
1634 1635
		return;

1636
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1637 1638
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1639

1640 1641
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1642 1643

		if (!dct_ganging_enabled(pvt))
1644 1645
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1646

1647 1648 1649
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1650

1651 1652 1653 1654
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1655 1656
	}

1657
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1658 1659
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1688 1689 1690
	return channel;
}

1691
/*
1692
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1693 1694
 * Interleaving Modes.
 */
1695
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1696
				bool hi_range_sel, u8 intlv_en)
1697
{
1698
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1699 1700

	if (dct_ganging_enabled(pvt))
1701
		return 0;
1702

1703 1704
	if (hi_range_sel)
		return dct_sel_high;
1705

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1718
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1719 1720 1721 1722

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1723 1724 1725 1726 1727 1728
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1729 1730 1731 1732 1733
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1734 1735 1736 1737

	return 0;
}

1738
/* Convert the sys_addr to the normalized DCT address */
1739
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1740 1741
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1742 1743
{
	u64 chan_off;
1744 1745
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1746
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1747

1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1762
		    dhar_valid(pvt) &&
1763
		    (sys_addr >= BIT_64(32)))
1764
			chan_off = hole_off;
1765 1766 1767
		else
			chan_off = dct_sel_base_off;
	} else {
1768 1769 1770 1771 1772 1773 1774 1775 1776
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1777
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1778
			chan_off = hole_off;
1779
		else
1780
			chan_off = dram_base;
1781 1782
	}

1783
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1784 1785 1786 1787 1788 1789
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1790
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1791
{
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1815
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1816 1817 1818
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1819
	u64 cs_base, cs_mask;
1820 1821 1822
	int cs_found = -EINVAL;
	int csrow;

1823
	mci = edac_mc_find(nid);
1824 1825 1826 1827 1828
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1829
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1830

1831 1832
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1833 1834
			continue;

1835
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1836

1837 1838
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1839

1840
		cs_mask = ~cs_mask;
1841

1842 1843
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1844

1845
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1846 1847 1848 1849
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1850
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1851

1852
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1853 1854 1855 1856 1857 1858
			break;
		}
	}
	return cs_found;
}

1859 1860 1861 1862 1863
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1864
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1865 1866 1867
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1868
	if (pvt->fam == 0x10) {
1869
		/* only revC3 and revE have that feature */
1870
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1871 1872 1873
			return sys_addr;
	}

1874
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1893
/* For a given @dram_range, check if @sys_addr falls within it. */
1894
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1895
				  u64 sys_addr, int *chan_sel)
1896
{
1897
	int cs_found = -EINVAL;
1898
	u64 chan_addr;
1899
	u32 dct_sel_base;
1900
	u8 channel;
1901
	bool high_range = false;
1902

1903
	u8 node_id    = dram_dst_node(pvt, range);
1904
	u8 intlv_en   = dram_intlv_en(pvt, range);
1905
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1906

1907 1908
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1909

1910 1911 1912 1913 1914 1915 1916 1917
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1918
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1919 1920
		return -EINVAL;

1921
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1922

1923 1924 1925 1926 1927 1928 1929 1930 1931
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1932
		high_range = true;
1933

1934
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1935

1936
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1937
					  high_range, dct_sel_base);
1938

1939 1940 1941 1942
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1943

1944
	/* remove channel interleave */
1945 1946 1947
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1962 1963
	}

1964
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1965

1966
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1967

1968
	if (cs_found >= 0)
1969
		*chan_sel = channel;
1970

1971 1972 1973
	return cs_found;
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
2011 2012
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2013 2014

	if (!(dct_cont_base_reg & BIT(0)) &&
2015 2016
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
2017 2018 2019 2020 2021 2022 2023 2024
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

2025 2026 2027 2028 2029
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
2030 2031

	/* Verify we stay within the MAX number of channels allowed */
2032
	if (channel > 3)
2033 2034 2035 2036 2037 2038 2039 2040
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
2041
		chan_offset = dct_base << 27;
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2071
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2099
{
2100 2101
	int cs_found = -EINVAL;
	unsigned range;
2102

2103 2104
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2105 2106
			continue;

2107 2108 2109 2110
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2111

2112 2113
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2114
			cs_found = f1x_match_to_this_node(pvt, range,
2115
							  sys_addr, chan_sel);
2116 2117 2118 2119 2120 2121 2122 2123
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2124 2125
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2126
 *
2127 2128
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2129
 */
2130
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2131
				     struct err_info *err)
2132 2133 2134
{
	struct amd64_pvt *pvt = mci->pvt_info;

2135
	error_address_to_page_and_offset(sys_addr, err);
2136

2137 2138 2139
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2140 2141 2142 2143 2144 2145 2146 2147
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2148
	if (dct_ganging_enabled(pvt))
2149
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2150 2151 2152
}

/*
2153
 * debug routine to display the memory sizes of all logical DIMMs and its
2154
 * CSROWs
2155
 */
2156
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2157
{
2158
	int dimm, size0, size1;
2159 2160
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2161

2162
	if (pvt->fam == 0xf) {
2163
		/* K8 families < revF not supported yet */
2164
	       if (pvt->ext_model < K8_REV_F)
2165 2166 2167 2168 2169
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2180 2181
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2182

2183 2184
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2185 2186 2187 2188
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2189
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2190 2191 2192
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2193 2194 2195
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2196
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2197 2198
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2199 2200

		size1 = 0;
2201
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2202
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2203 2204
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2205

2206
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2207 2208
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2209 2210 2211
	}
}

2212
static struct amd64_family_type family_types[] = {
2213
	[K8_CPUS] = {
2214
		.ctl_name = "K8",
2215
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2216
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2217
		.ops = {
2218 2219 2220
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2221 2222 2223
		}
	},
	[F10_CPUS] = {
2224
		.ctl_name = "F10h",
2225
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2226
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2227
		.ops = {
2228
			.early_channel_count	= f1x_early_channel_count,
2229
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2230
			.dbam_to_cs		= f10_dbam_to_chip_select,
2231 2232 2233 2234
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2235
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2236
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2237
		.ops = {
2238
			.early_channel_count	= f1x_early_channel_count,
2239
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2240
			.dbam_to_cs		= f15_dbam_to_chip_select,
2241 2242
		}
	},
2243 2244 2245
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2246
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2247 2248 2249 2250 2251 2252
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2253 2254 2255
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2256
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2257 2258 2259 2260 2261 2262
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2263 2264 2265
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2266
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2267 2268 2269 2270 2271 2272
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2273 2274 2275
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2276
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2277 2278 2279 2280 2281 2282
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2283 2284 2285 2286 2287 2288
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2289
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2290 2291
		}
	},
2292 2293 2294 2295 2296 2297
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2298
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2299 2300
		}
	},
2301 2302 2303 2304 2305 2306
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2307
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2308 2309
		}
	},
2310 2311
};

2312
/*
2313 2314 2315
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2316
 *
2317
 * Algorithm courtesy of Ross LaFetra from AMD.
2318
 */
2319
static const u16 x4_vectors[] = {
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2356 2357
};

2358
static const u16 x8_vectors[] = {
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2380
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2381
			   unsigned v_dim)
2382
{
2383 2384 2385 2386
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2387 2388
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2401

2402 2403 2404
					if (!s)
						return err_sym;
				}
2405

2406 2407 2408 2409
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2410 2411
	}

2412
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2413 2414
	return -1;
}
2415

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2458 2459
	int err_sym = -1;

2460
	if (pvt->ecc_sym_sz == 8)
2461 2462
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2463 2464
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2465 2466
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2467
					  pvt->ecc_sym_sz);
2468
	else {
2469
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2470
		return err_sym;
2471
	}
2472

2473
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2474 2475
}

2476
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2477
			    u8 ecc_type)
2478
{
2479 2480
	enum hw_event_mc_err_type err_type;
	const char *string;
2481

2482 2483 2484 2485
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2486 2487
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2488 2489
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2490 2491 2492
		return;
	}

2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2504 2505 2506 2507 2508 2509 2510
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2511 2512 2513 2514
		break;
	default:
		string = "WTF error";
		break;
2515
	}
2516 2517 2518 2519 2520

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2521 2522
}

2523
static inline void decode_bus_error(int node_id, struct mce *m)
2524
{
2525 2526
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2527
	u8 ecc_type = (m->status >> 45) & 0x3;
2528 2529
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2530 2531
	u64 sys_addr;
	struct err_info err;
2532

2533 2534 2535 2536 2537 2538
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2539
	/* Bail out early if this was an 'observed' error */
2540
	if (PP(ec) == NBSL_PP_OBS)
2541
		return;
2542

2543 2544
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2545 2546
		return;

2547 2548
	memset(&err, 0, sizeof(err));

2549
	sys_addr = get_error_address(pvt, m);
2550

2551
	if (ecc_type == 2)
2552 2553 2554 2555
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2556
	__log_ecc_error(mci, &err, ecc_type);
2557 2558
}

2559 2560 2561 2562
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
2563 2564 2565 2566
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
2567
 */
2568
static int find_umc_channel(struct mce *m)
2569
{
2570
	return (m->ipid & GENMASK(31, 0)) >> 20;
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

2592
	err.channel = find_umc_channel(m);
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

2610 2611 2612 2613 2614 2615 2616
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

2617 2618 2619 2620
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2621
/*
2622 2623
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2624
 * Reserve F0 and F6 on systems with a UMC.
2625
 */
2626 2627 2628 2629 2630 2631
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2632
			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2633 2634 2635 2636 2637 2638 2639 2640
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2641
			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2642 2643
			return -ENODEV;
		}
2644

2645 2646 2647 2648 2649 2650 2651
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2652
	/* Reserve the ADDRESS MAP Device */
2653
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2654
	if (!pvt->F1) {
2655
		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2656
		return -ENODEV;
2657 2658
	}

2659
	/* Reserve the DCT Device */
2660
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2661
	if (!pvt->F2) {
2662 2663
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2664

2665 2666
		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
		return -ENODEV;
2667
	}
2668

2669 2670 2671
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2672 2673 2674 2675

	return 0;
}

2676
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2677
{
2678 2679 2680 2681 2682 2683 2684
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2685 2686
}

2687 2688 2689 2690 2691 2692 2693
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

2694
		for_each_umc(i) {
2695
			/* Check enabled channels only: */
2696 2697 2698 2699 2700 2701 2702 2703
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
2704 2705
			}
		}
2706
	} else if (pvt->fam >= 0x10) {
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
2730
	for_each_umc(i) {
2731 2732 2733 2734

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2735 2736
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2737 2738
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2739
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2740 2741 2742
	}
}

2743 2744 2745 2746
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2747
static void read_mc_regs(struct amd64_pvt *pvt)
2748
{
2749
	unsigned int range;
2750 2751 2752 2753
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2754
	 * those are Read-As-Zero.
2755
	 */
2756
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2757
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2758

2759
	/* Check first whether TOP_MEM2 is enabled: */
2760
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2761
	if (msr_val & BIT(21)) {
2762
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2763
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2764
	} else {
2765
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2766 2767 2768 2769 2770 2771 2772 2773
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2774

2775
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2776

2777
	read_dram_ctl_register(pvt);
2778

2779 2780
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2781

2782 2783 2784 2785 2786 2787 2788
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2789 2790 2791 2792
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2793

2794 2795 2796 2797 2798 2799
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2800 2801
	}

2802
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2803
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2804

2805
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2806

2807 2808
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2809

2810
	if (!dct_ganging_enabled(pvt)) {
2811 2812
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2813
	}
2814

2815 2816 2817
skip:
	read_dct_base_mask(pvt);

2818 2819
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2820

2821
	determine_ecc_sym_sz(pvt);
2822

2823
	dump_misc_regs(pvt);
2824 2825 2826 2827 2828 2829
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2830
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2860
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2861
{
2862
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2863 2864
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
2865

2866
	if (!pvt->umc) {
2867
		csrow_nr >>= 1;
2868 2869 2870 2871
		cs_mode = DBAM_DIMM(csrow_nr, dbam);
	} else {
		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
	}
2872

2873 2874
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
2875

2876
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2877
		    csrow_nr_orig, dct,  cs_mode);
2878
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2879 2880 2881 2882

	return nr_pages;
}

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
			dimm->mtype = pvt->dram_type;
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
		}
	}

	return empty;
}

2926 2927 2928 2929
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2930
static int init_csrows(struct mem_ctl_info *mci)
2931
{
2932
	struct amd64_pvt *pvt = mci->pvt_info;
2933
	enum edac_type edac_mode = EDAC_NONE;
2934
	struct csrow_info *csrow;
2935
	struct dimm_info *dimm;
2936
	int i, j, empty = 1;
2937
	int nr_pages = 0;
2938
	u32 val;
2939

2940 2941
	if (pvt->umc)
		return init_csrows_df(mci);
2942

2943
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2944

2945 2946 2947 2948 2949
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2950

2951 2952 2953
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2954
	for_each_chip_select(i, 0, pvt) {
2955 2956
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2957

2958
		if (pvt->fam != 0xf)
2959 2960 2961
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2962 2963
			continue;

2964
		csrow = mci->csrows[i];
2965
		empty = 0;
2966 2967 2968 2969

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2970
		if (row_dct0) {
2971
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2972 2973
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2974

2975
		/* K8 has only one DCT */
2976
		if (pvt->fam != 0xf && row_dct1) {
2977
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2978 2979 2980 2981

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2982

2983
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2984

2985
		/* Determine DIMM ECC mode: */
2986
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
2987 2988 2989 2990
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
2991 2992

		for (j = 0; j < pvt->channel_count; j++) {
2993
			dimm = csrow->channels[j]->dimm;
2994
			dimm->mtype = pvt->dram_type;
2995
			dimm->edac_mode = edac_mode;
2996
		}
2997 2998 2999 3000
	}

	return empty;
}
3001

3002
/* get all cores on this DCT */
3003
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3004 3005 3006 3007 3008 3009 3010 3011 3012
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
3013
static bool nb_mce_bank_enabled_on_node(u16 nid)
3014 3015
{
	cpumask_var_t mask;
3016
	int cpu, nbe;
3017 3018 3019
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3020
		amd64_warn("%s: Error allocating mask\n", __func__);
3021 3022 3023 3024 3025 3026 3027 3028
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
3029
		struct msr *reg = per_cpu_ptr(msrs, cpu);
3030
		nbe = reg->l & MSR_MCGCTL_NBE;
3031

3032 3033 3034
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3046
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3047 3048
{
	cpumask_var_t cmask;
3049
	int cpu;
3050 3051

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3052
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3053
		return -ENOMEM;
3054 3055
	}

3056
	get_cpus_on_this_dct_cpumask(cmask, nid);
3057 3058 3059 3060 3061

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3062 3063
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3064
		if (on) {
3065
			if (reg->l & MSR_MCGCTL_NBE)
3066
				s->flags.nb_mce_enable = 1;
3067

3068
			reg->l |= MSR_MCGCTL_NBE;
3069 3070
		} else {
			/*
3071
			 * Turn off NB MCE reporting only when it was off before
3072
			 */
3073
			if (!s->flags.nb_mce_enable)
3074
				reg->l &= ~MSR_MCGCTL_NBE;
3075 3076 3077 3078 3079 3080 3081 3082 3083
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3084
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3085
				       struct pci_dev *F3)
3086
{
3087
	bool ret = true;
B
Borislav Petkov 已提交
3088
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3089

3090 3091 3092 3093 3094
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3095
	amd64_read_pci_cfg(F3, NBCTL, &value);
3096

3097 3098
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3099 3100

	value |= mask;
B
Borislav Petkov 已提交
3101
	amd64_write_pci_cfg(F3, NBCTL, value);
3102

3103
	amd64_read_pci_cfg(F3, NBCFG, &value);
3104

3105 3106
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3107

3108
	if (!(value & NBCFG_ECC_ENABLE)) {
3109
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3110

3111
		s->flags.nb_ecc_prev = 0;
3112

3113
		/* Attempt to turn on DRAM ECC Enable */
3114 3115
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3116

3117
		amd64_read_pci_cfg(F3, NBCFG, &value);
3118

3119
		if (!(value & NBCFG_ECC_ENABLE)) {
3120 3121
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3122
			ret = false;
3123
		} else {
3124
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3125
		}
3126
	} else {
3127
		s->flags.nb_ecc_prev = 1;
3128
	}
3129

3130 3131
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3132

3133
	return ret;
3134 3135
}

3136
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3137
					struct pci_dev *F3)
3138
{
B
Borislav Petkov 已提交
3139 3140
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3141
	if (!s->nbctl_valid)
3142 3143
		return;

B
Borislav Petkov 已提交
3144
	amd64_read_pci_cfg(F3, NBCTL, &value);
3145
	value &= ~mask;
3146
	value |= s->old_nbctl;
3147

B
Borislav Petkov 已提交
3148
	amd64_write_pci_cfg(F3, NBCTL, value);
3149

3150 3151
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3152 3153 3154
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3155 3156 3157
	}

	/* restore the NB Enable MCGCTL bit */
3158
	if (toggle_ecc_err_reporting(s, nid, OFF))
3159
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3160 3161 3162
}

/*
3163 3164 3165 3166
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
3167
 */
3168 3169 3170 3171 3172
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
3173

3174
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3175
{
3176
	bool nb_mce_en = false;
3177 3178
	u8 ecc_en = 0, i;
	u32 value;
3179

3180 3181
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3182

3183
		for_each_umc(i) {
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204
			u32 base = get_umc_base(i);

			/* Only check enabled UMCs. */
			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
				continue;

			if (!(value & UMC_SDP_INIT))
				continue;

			umc_en_mask |= BIT(i);

			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
				continue;

			if (value & UMC_ECC_ENABLED)
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3205 3206
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3207 3208 3209 3210 3211

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
		amd64_read_pci_cfg(F3, NBCFG, &value);
3212

3213 3214 3215 3216
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3217
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3218 3219 3220
				     MSR_IA32_MCG_CTL, nid);
	}

3221 3222
	amd64_info("Node %d: DRAM ECC %s.\n",
		   nid, (ecc_en ? "enabled" : "disabled"));
3223

3224
	if (!ecc_en || !nb_mce_en) {
3225
		amd64_info("%s", ecc_msg);
3226 3227 3228
		return false;
	}
	return true;
3229 3230
}

3231 3232 3233
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3234
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3235

3236
	for_each_umc(i) {
3237 3238 3239
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3240 3241 3242

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3243 3244 3245 3246 3247 3248 3249
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3250 3251 3252 3253
		if (!cpk_en)
			return;

		if (dev_x4)
3254
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3255 3256 3257 3258
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3259 3260 3261
	}
}

3262 3263
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
3264 3265 3266 3267 3268 3269
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3270 3271 3272 3273 3274
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3275

3276 3277 3278
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3279

3280
	mci->edac_cap		= determine_edac_cap(pvt);
3281
	mci->mod_name		= EDAC_MOD_STR;
3282
	mci->ctl_name		= fam->ctl_name;
3283
	mci->dev_name		= pci_name(pvt->F3);
3284 3285 3286
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3287 3288
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3289 3290
}

3291 3292 3293
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3294
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3295
{
3296 3297
	struct amd64_family_type *fam_type = NULL;

3298
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3299
	pvt->stepping	= boot_cpu_data.x86_stepping;
3300 3301 3302 3303
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3304
	case 0xf:
3305 3306
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3307
		break;
3308

3309
	case 0x10:
3310 3311
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3312 3313 3314
		break;

	case 0x15:
3315
		if (pvt->model == 0x30) {
3316 3317
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3318
			break;
3319 3320 3321 3322
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3323 3324
		}

3325 3326
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3327 3328
		break;

3329
	case 0x16:
3330 3331 3332 3333 3334
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3335 3336
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3337 3338
		break;

3339
	case 0x17:
3340 3341 3342 3343
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3344 3345 3346 3347
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3348
		}
P
Pu Wen 已提交
3349 3350
		/* fall through */
	case 0x18:
3351 3352
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
P
Pu Wen 已提交
3353 3354 3355

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3356 3357
		break;

3358
	default:
3359
		amd64_err("Unsupported family!\n");
3360
		return NULL;
3361
	}
3362

3363
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3364
		     (pvt->fam == 0xf ?
3365 3366 3367
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3368
	return fam_type;
3369 3370
}

3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
/* Set the number of Unified Memory Controllers in the system. */
static void compute_num_umcs(void)
{
	u8 model = boot_cpu_data.x86_model;

	if (boot_cpu_data.x86 < 0x17)
		return;

	if (model >= 0x30 && model <= 0x3f)
		num_umcs = 8;
	else
		num_umcs = 2;

	edac_dbg(1, "Number of UMCs: %x", num_umcs);
}

3397
static int init_one_instance(unsigned int nid)
3398
{
3399
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3400
	struct amd64_family_type *fam_type = NULL;
3401
	struct mem_ctl_info *mci = NULL;
3402
	struct edac_mc_layer layers[2];
3403
	struct amd64_pvt *pvt = NULL;
3404
	u16 pci_id1, pci_id2;
3405 3406 3407 3408 3409
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
3410
		goto err_ret;
3411

3412
	pvt->mc_node_id	= nid;
3413
	pvt->F3 = F3;
3414

3415
	ret = -EINVAL;
3416
	fam_type = per_family_init(pvt);
3417
	if (!fam_type)
3418 3419
		goto err_free;

3420
	if (pvt->fam >= 0x17) {
3421
		pvt->umc = kcalloc(num_umcs, sizeof(struct amd64_umc), GFP_KERNEL);
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
		if (!pvt->umc) {
			ret = -ENOMEM;
			goto err_free;
		}

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3435
	if (err)
3436
		goto err_post_init;
3437

3438
	read_mc_regs(pvt);
3439 3440 3441 3442

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3443
	 * tables in the 'mci' structure.
3444
	 */
3445
	ret = -EINVAL;
3446 3447
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3448
		goto err_siblings;
3449 3450

	ret = -ENOMEM;
3451 3452 3453 3454
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3455 3456 3457 3458 3459

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
3460 3461 3462
	 *
	 * On Fam17h+, the number of controllers may be greater than two. So set
	 * the size equal to the maximum number of UMCs.
3463
	 */
3464 3465 3466 3467
	if (pvt->fam >= 0x17)
		layers[1].size = num_umcs;
	else
		layers[1].size = 2;
3468
	layers[1].is_virt_csrow = false;
3469

3470
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3471
	if (!mci)
3472
		goto err_siblings;
3473 3474

	mci->pvt_info = pvt;
3475
	mci->pdev = &pvt->F3->dev;
3476

3477
	setup_mci_misc_attrs(mci, fam_type);
3478 3479

	if (init_csrows(mci))
3480 3481 3482
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3483
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3484
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3485 3486 3487 3488 3489 3490 3491 3492
		goto err_add_mc;
	}

	return 0;

err_add_mc:
	edac_mc_free(mci);

3493 3494
err_siblings:
	free_mc_sibling_devs(pvt);
3495

3496 3497 3498 3499
err_post_init:
	if (pvt->fam >= 0x17)
		kfree(pvt->umc);

3500 3501
err_free:
	kfree(pvt);
3502

3503
err_ret:
3504 3505 3506
	return ret;
}

3507
static int probe_one_instance(unsigned int nid)
3508
{
3509
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3510
	struct ecc_settings *s;
3511
	int ret;
3512

3513 3514 3515
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3516
		goto err_out;
3517 3518 3519

	ecc_stngs[nid] = s;

3520
	if (!ecc_enabled(F3, nid)) {
3521
		ret = 0;
3522 3523 3524 3525

		if (!ecc_enable_override)
			goto err_enable;

3526 3527 3528 3529 3530
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3531 3532 3533 3534 3535

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3536
	ret = init_one_instance(nid);
3537
	if (ret < 0) {
3538
		amd64_err("Error probing instance: %d\n", nid);
3539 3540 3541

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3542 3543

		goto err_enable;
3544
	}
3545 3546

	return ret;
3547 3548 3549 3550 3551 3552 3553

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3554 3555
}

3556
static void remove_one_instance(unsigned int nid)
3557
{
3558 3559
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3560 3561
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3562

3563
	mci = find_mci_by_dev(&F3->dev);
3564 3565
	WARN_ON(!mci);

3566
	/* Remove from EDAC CORE tracking list */
3567
	mci = edac_mc_del_mc(&F3->dev);
3568 3569 3570 3571 3572
	if (!mci)
		return;

	pvt = mci->pvt_info;

3573
	restore_ecc_error_reporting(s, nid, F3);
3574

3575
	free_mc_sibling_devs(pvt);
3576

3577 3578
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3579

3580
	/* Free the EDAC CORE resources */
3581 3582 3583
	mci->pvt_info = NULL;

	kfree(pvt);
3584 3585 3586
	edac_mc_free(mci);
}

3587
static void setup_pci_device(void)
3588 3589 3590 3591
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3592
	if (pci_ctl)
3593 3594
		return;

3595
	mci = edac_mc_find(0);
3596 3597
	if (!mci)
		return;
3598

3599
	pvt = mci->pvt_info;
3600 3601 3602 3603
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3604 3605 3606
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3607 3608 3609
	}
}

3610 3611 3612 3613 3614
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3615
	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
P
Pu Wen 已提交
3616
	{ X86_VENDOR_HYGON, 0x18, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3617 3618 3619 3620
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3621 3622
static int __init amd64_edac_init(void)
{
3623
	const char *owner;
3624
	int err = -ENODEV;
3625
	int i;
3626

3627 3628 3629 3630
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3631 3632 3633
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3634
	if (amd_cache_northbridges() < 0)
3635
		return -ENODEV;
3636

3637 3638
	opstate_init();

3639
	err = -ENOMEM;
K
Kees Cook 已提交
3640
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3641
	if (!ecc_stngs)
3642
		goto err_free;
3643

3644
	msrs = msrs_alloc();
3645
	if (!msrs)
3646
		goto err_free;
3647

3648 3649
	compute_num_umcs();

3650 3651 3652
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3653 3654 3655
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3656

3657 3658
			goto err_pci;
		}
3659
	}
3660

3661 3662 3663 3664 3665
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3666 3667 3668 3669 3670 3671 3672 3673 3674
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3675
	setup_pci_device();
T
Tomasz Pala 已提交
3676 3677 3678 3679 3680

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3681 3682
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3683
	return 0;
3684

3685 3686 3687
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3688

3689 3690 3691 3692
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3693 3694 3695 3696 3697
	return err;
}

static void __exit amd64_edac_exit(void)
{
3698 3699
	int i;

3700 3701
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3702

3703 3704 3705 3706 3707 3708 3709 3710
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);

	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

3711 3712
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3713

3714 3715 3716
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3717 3718
	msrs_free(msrs);
	msrs = NULL;
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");