amd64_edac.c 83.1 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23 24 25 26 27
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
28
static const struct scrubrate {
29 30 31
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

57 58
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

96 97 98 99
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
100
 * K8: has a single DCT only and no address offsets >= 0x100
101 102 103 104 105
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
106
 * F16h: has only 1 DCT
107 108
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109
 */
110 111
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
112
{
113 114 115 116 117
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
118

119 120 121 122 123 124 125 126 127
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
128

129 130 131
			offset += 0x100;
		}
		break;
132

133 134 135 136 137 138 139 140
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
141

142 143 144 145
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
146

147 148
	default:
		break;
149
	}
150
	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
182
/*
183
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 185
 * issue. If requested is too big, then use last maximum value found.
 */
186
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 188 189 190 191 192 193 194 195
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
196 197 198
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
199
	 */
200
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 202 203 204
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
205
		if (scrubrates[i].scrubval < min_rate)
206 207 208 209 210 211 212 213
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

214 215 216
	if (pvt->fam == 0x17) {
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 218 219 220 221 222 223
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
224

225 226 227
	if (scrubval)
		return scrubrates[i].bandwidth;

228 229 230
	return 0;
}

231
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 233
{
	struct amd64_pvt *pvt = mci->pvt_info;
234
	u32 min_scrubrate = 0x5;
235

236
	if (pvt->fam == 0xf)
237 238
		min_scrubrate = 0x0;

239 240 241 242
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
243

244 245 246 247
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
248 249
}

250
static int get_scrub_rate(struct mem_ctl_info *mci)
251 252
{
	struct amd64_pvt *pvt = mci->pvt_info;
253
	int i, retval = -EINVAL;
254
	u32 scrubval = 0;
255

256 257
	switch (pvt->fam) {
	case 0x15:
258 259 260
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
261

262 263
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
264 265 266 267 268 269 270 271 272 273 274 275 276 277
		break;

	case 0x17:
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
		break;

	default:
278
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279 280
		break;
	}
281 282 283

	scrubval = scrubval & 0x001F;

284
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
285
		if (scrubrates[i].scrubval == scrubval) {
286
			retval = scrubrates[i].bandwidth;
287 288 289
			break;
		}
	}
290
	return retval;
291 292
}

293
/*
294 295
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
296
 */
297
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
298
{
299
	u64 addr;
300 301 302 303 304 305 306 307 308

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

309 310
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
311 312 313 314 315 316 317 318 319 320 321 322
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
323
	u8 node_id;
324 325 326 327 328 329 330 331 332 333 334 335 336
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
337
	intlv_en = dram_intlv_en(pvt, 0);
338 339

	if (intlv_en == 0) {
340
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
341
			if (base_limit_match(pvt, sys_addr, node_id))
342
				goto found;
343
		}
344
		goto err_no_match;
345 346
	}

347 348 349
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
350
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
351 352 353 354 355 356
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
357
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
358 359
			break;	/* intlv_sel field matches */

360
		if (++node_id >= DRAM_RANGES)
361 362 363 364
			goto err_no_match;
	}

	/* sanity test for sys_addr */
365
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
366 367 368
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
369 370 371 372
		return NULL;
	}

found:
373
	return edac_mc_find((int)node_id);
374 375

err_no_match:
376 377
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
378 379 380

	return NULL;
}
381 382

/*
383 384
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
385
 */
386 387
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
388
{
389 390
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
391

392
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
393 394
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
395 396
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
397
		addr_shift	= 4;
398 399

	/*
400 401 402 403 404
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
405 406 407
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

408 409
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
410 411 412

		*mask = ~0ULL;
		/* poke holes for the csmask */
413 414
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
415

416 417
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
418 419

		return;
420 421 422 423
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
424

425
		if (pvt->fam == 0x15)
426 427
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
428
		else
429 430
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
431
	}
432

433
	*base  = (csbase & base_bits) << addr_shift;
434

435 436 437 438 439
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
440 441
}

442 443 444
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

445 446 447
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

448 449 450
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

451 452 453 454 455 456 457 458 459 460 461 462
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

463 464
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
465 466
			continue;

467 468 469
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
470 471

		if ((input_addr & mask) == (base & mask)) {
472 473 474
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
475 476 477 478

			return csrow;
		}
	}
479 480
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
507
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
508 509
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
510 511 512
		return 1;
	}

513
	/* valid for Fam10h and above */
514
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
515
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
516 517 518
		return 1;
	}

519
	if (!dhar_valid(pvt)) {
520 521
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

543 544
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
545

546 547
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
548

549 550 551
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
552 553 554 555 556

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
588
	struct amd64_pvt *pvt = mci->pvt_info;
589
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
590
	int ret;
591

592
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
593 594 595 596

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
597 598
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
599 600 601
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

602 603 604
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
605 606 607 608 609 610 611 612 613 614 615 616 617 618

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
619
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
620

621 622
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
654
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
655
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
656
		      (dram_addr & 0xfff);
657

658 659 660
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
676
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
677
		 (unsigned long)sys_addr, (unsigned long)input_addr);
678 679 680 681 682 683

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
684
						    struct err_info *err)
685
{
686 687
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
705 706
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
707 708
	return csrow;
}
709

710
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
711 712 713 714 715

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
716
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
717
{
718
	u8 bit;
719
	unsigned long edac_cap = EDAC_FLAG_NONE;
720

721
	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
722 723 724
		? 19
		: 17;

725
	if (pvt->dclr0 & BIT(bit))
726 727 728 729 730
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

731
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
732

733
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
734
{
735
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
736

737 738 739 740 741 742 743 744 745 746 747 748 749
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

750

751 752
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
753

754
	if (pvt->fam == 0x10)
755 756
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
757

758 759 760 761 762
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
763 764
}

765
/* Display and decode various NB registers for debug purposes. */
766
static void dump_misc_regs(struct amd64_pvt *pvt)
767
{
768
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
769

770 771
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
772

773 774 775
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
776

777
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
778

779
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
780

781 782
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
783 784
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
785

786
	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
787

788
	debug_display_dimm_sizes(pvt, 0);
789

790
	/* everything below this point is Fam10h and above */
791
	if (pvt->fam == 0xf)
792
		return;
793

794
	debug_display_dimm_sizes(pvt, 1);
795

796
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
797

798
	/* Only if NOT ganged does dclr1 have valid info */
799
	if (!dct_ganging_enabled(pvt))
800
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
801 802
}

803
/*
804
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
805
 */
806
static void prep_chip_selects(struct amd64_pvt *pvt)
807
{
808
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
809 810
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
811
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
812 813
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
814
	} else {
815 816
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
817 818 819 820
	}
}

/*
821
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
822
 */
823
static void read_dct_base_mask(struct amd64_pvt *pvt)
824
{
825
	int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
826

827
	prep_chip_selects(pvt);
828

829 830 831 832 833 834 835 836 837 838 839 840
	if (pvt->umc) {
		base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
		base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
		mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
		mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
	} else {
		base_reg0 = DCSB0;
		base_reg1 = DCSB1;
		mask_reg0 = DCSM0;
		mask_reg1 = DCSM1;
	}

841
	for_each_chip_select(cs, 0, pvt) {
842 843
		int reg0   = base_reg0 + (cs * 4);
		int reg1   = base_reg1 + (cs * 4);
844 845
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
846

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: 0x%x\n",
					 cs, *base0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: 0x%x\n",
					 cs, *base1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
					 cs, *base0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
					 cs, *base1, (pvt->fam == 0x10) ? reg1
866
								: reg0);
867
		}
868 869
	}

870
	for_each_chip_select_mask(cs, 0, pvt) {
871 872
		int reg0   = mask_reg0 + (cs * 4);
		int reg1   = mask_reg1 + (cs * 4);
873 874
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask1, (pvt->fam == 0x10) ? reg1
895
								: reg0);
896
		}
897 898 899
	}
}

900
static void determine_memory_type(struct amd64_pvt *pvt)
901
{
902
	u32 dram_ctrl, dcsm;
903

904 905 906 907 908 909 910 911 912
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
913
		if (pvt->dchr0 & DDR3_MODE)
914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
941
		else
942
			pvt->dram_type = MEM_RDDR3;
943

944 945 946 947 948
		return;

	case 0x16:
		goto ddr3;

949 950 951 952 953 954 955 956 957
	case 0x17:
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

958 959 960 961 962
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
963

964 965
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
966 967
}

968
/* Get the number of DCT channels the memory controller is using. */
969 970
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
971
	int flag;
972

973
	if (pvt->ext_model >= K8_REV_F)
974
		/* RevF (NPT) and later */
975
		flag = pvt->dclr0 & WIDTH_128;
976
	else
977 978 979 980 981 982 983 984 985
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

986
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
987
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
988
{
989 990
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
991 992
	u8 start_bit = 1;
	u8 end_bit   = 47;
993 994 995 996 997 998 999
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1000

1001
	if (pvt->fam == 0xf) {
1002 1003 1004 1005
		start_bit = 3;
		end_bit   = 39;
	}

1006
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1007 1008 1009 1010

	/*
	 * Erratum 637 workaround
	 */
1011
	if (pvt->fam == 0x15) {
1012 1013
		u64 cc6_base, tmp_addr;
		u32 tmp;
1014
		u8 intlv_en;
1015

1016
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1017 1018 1019 1020 1021 1022 1023
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1024
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1025 1026 1027 1028 1029 1030 1031 1032

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1033
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1034 1035 1036 1037

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1038
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1039 1040

		/* OR DramIntlvSel into bits [14:12] */
1041
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1042 1043

		/* add remaining [11:0] bits from original MC4_ADDR */
1044
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1045 1046 1047 1048 1049

		return cc6_base | tmp_addr;
	}

	return addr;
1050 1051
}

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1068
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1069
{
1070
	struct amd_northbridge *nb;
1071 1072
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1073
	int off = range << 3;
1074
	u32 llim;
1075

1076 1077
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1078

1079
	if (pvt->fam == 0xf)
1080
		return;
1081

1082 1083
	if (!dram_rw(pvt, range))
		return;
1084

1085 1086
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1087

1088
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1089
	if (pvt->fam != 0x15)
1090
		return;
1091

1092 1093 1094
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1095

1096 1097 1098 1099 1100 1101
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1102 1103

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1104 1105
	if (WARN_ON(!f1))
		return;
1106

1107
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1108

1109
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1110

1111 1112
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1113

1114
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1115

1116 1117 1118 1119
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1120 1121
}

1122
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1123
				    struct err_info *err)
1124
{
1125
	struct amd64_pvt *pvt = mci->pvt_info;
1126

1127
	error_address_to_page_and_offset(sys_addr, err);
1128 1129 1130 1131 1132

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1133 1134
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1135 1136
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1137
		err->err_code = ERR_NODE;
1138 1139 1140 1141
		return;
	}

	/* Now map the sys_addr to a CSROW */
1142 1143 1144
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1145 1146 1147
		return;
	}

1148
	/* CHIPKILL enabled */
1149
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1150 1151
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1152 1153 1154 1155 1156
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1157
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1158
				      "possible error reporting race\n",
1159 1160
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1172
		err->channel = ((sys_addr & BIT(3)) != 0);
1173 1174 1175
	}
}

1176
static int ddr2_cs_size(unsigned i, bool dct_width)
1177
{
1178
	unsigned shift = 0;
1179

1180 1181 1182 1183
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1184
	else
1185
		shift = (i + 1) >> 1;
1186

1187 1188 1189 1190
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1191
				  unsigned cs_mode, int cs_mask_nr)
1192 1193 1194 1195 1196 1197 1198 1199
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1200
		unsigned diff;
1201 1202
		WARN_ON(cs_mode > 10);

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1230 1231 1232 1233 1234
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1235 1236
}

1237 1238 1239 1240 1241 1242 1243 1244
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1245
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1246
{
1247
	int i, j, channels = 0;
1248

1249
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1250
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1251
		return 2;
1252 1253

	/*
1254 1255 1256
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1257 1258 1259 1260
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1261
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1262

1263 1264 1265 1266 1267
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1268 1269
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1270

1271 1272 1273 1274 1275 1276
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1277 1278
	}

1279 1280 1281
	if (channels > 2)
		channels = 2;

1282
	amd64_info("MCT channel count: %d\n", channels);
1283 1284 1285 1286

	return channels;
}

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
	for (i = 0; i < NUM_UMCS; i++)
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1300
static int ddr3_cs_size(unsigned i, bool dct_width)
1301
{
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1357
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1358
				   unsigned cs_mode, int cs_mask_nr)
1359 1360 1361 1362
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1363 1364

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1365
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1366
	else
1367 1368 1369 1370 1371 1372 1373
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1374
				   unsigned cs_mode, int cs_mask_nr)
1375 1376
{
	WARN_ON(cs_mode > 12);
1377

1378
	return ddr3_cs_size(cs_mode, false);
1379 1380
}

1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1412
/*
1413
 * F16h and F15h model 30h have only limited cs_modes.
1414 1415
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1416
				unsigned cs_mode, int cs_mask_nr)
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
				    unsigned int cs_mode, int csrow_nr)
{
	u32 base_addr = pvt->csels[umc].csbases[csrow_nr];

	/*  Each mask is used for every two base addresses. */
	u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];

	/*  Register [31:1] = Address [39:9]. Size is in kBs here. */
	u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;

	edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);

	/* Return size in MBs. */
	return size >> 10;
}

1444
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1445 1446
{

1447
	if (pvt->fam == 0xf)
1448 1449
		return;

1450
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1451 1452
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1453

1454 1455
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1456 1457

		if (!dct_ganging_enabled(pvt))
1458 1459
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1460

1461 1462 1463
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1464

1465 1466 1467 1468
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1469 1470
	}

1471
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1472 1473
}

1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1502 1503 1504
	return channel;
}

1505
/*
1506
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1507 1508
 * Interleaving Modes.
 */
1509
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1510
				bool hi_range_sel, u8 intlv_en)
1511
{
1512
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1513 1514

	if (dct_ganging_enabled(pvt))
1515
		return 0;
1516

1517 1518
	if (hi_range_sel)
		return dct_sel_high;
1519

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1532
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1533 1534 1535 1536

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1537 1538 1539 1540 1541 1542
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1543 1544 1545 1546 1547
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1548 1549 1550 1551

	return 0;
}

1552
/* Convert the sys_addr to the normalized DCT address */
1553
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1554 1555
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1556 1557
{
	u64 chan_off;
1558 1559
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1560
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1561

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1576
		    dhar_valid(pvt) &&
1577
		    (sys_addr >= BIT_64(32)))
1578
			chan_off = hole_off;
1579 1580 1581
		else
			chan_off = dct_sel_base_off;
	} else {
1582 1583 1584 1585 1586 1587 1588 1589 1590
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1591
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1592
			chan_off = hole_off;
1593
		else
1594
			chan_off = dram_base;
1595 1596
	}

1597
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1598 1599 1600 1601 1602 1603
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1604
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1605
{
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1629
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1630 1631 1632
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1633
	u64 cs_base, cs_mask;
1634 1635 1636
	int cs_found = -EINVAL;
	int csrow;

1637
	mci = edac_mc_find(nid);
1638 1639 1640 1641 1642
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1643
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1644

1645 1646
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1647 1648
			continue;

1649
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1650

1651 1652
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1653

1654
		cs_mask = ~cs_mask;
1655

1656 1657
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1658

1659
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1660 1661 1662 1663
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1664
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1665

1666
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1667 1668 1669 1670 1671 1672
			break;
		}
	}
	return cs_found;
}

1673 1674 1675 1676 1677
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1678
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1679 1680 1681
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1682
	if (pvt->fam == 0x10) {
1683
		/* only revC3 and revE have that feature */
1684
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1685 1686 1687
			return sys_addr;
	}

1688
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1707
/* For a given @dram_range, check if @sys_addr falls within it. */
1708
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1709
				  u64 sys_addr, int *chan_sel)
1710
{
1711
	int cs_found = -EINVAL;
1712
	u64 chan_addr;
1713
	u32 dct_sel_base;
1714
	u8 channel;
1715
	bool high_range = false;
1716

1717
	u8 node_id    = dram_dst_node(pvt, range);
1718
	u8 intlv_en   = dram_intlv_en(pvt, range);
1719
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1720

1721 1722
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1723

1724 1725 1726 1727 1728 1729 1730 1731
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1732
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1733 1734
		return -EINVAL;

1735
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1736

1737 1738 1739 1740 1741 1742 1743 1744 1745
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1746
		high_range = true;
1747

1748
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1749

1750
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1751
					  high_range, dct_sel_base);
1752

1753 1754 1755 1756
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1757

1758
	/* remove channel interleave */
1759 1760 1761
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1776 1777
	}

1778
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1779

1780
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1781

1782
	if (cs_found >= 0)
1783
		*chan_sel = channel;
1784

1785 1786 1787
	return cs_found;
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1825 1826
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1827 1828

	if (!(dct_cont_base_reg & BIT(0)) &&
1829 1830
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1831 1832 1833 1834 1835 1836 1837 1838
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

1839 1840 1841 1842 1843
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
1844 1845

	/* Verify we stay within the MAX number of channels allowed */
1846
	if (channel > 3)
1847 1848 1849 1850 1851 1852 1853 1854
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1855
		chan_offset = dct_base << 27;
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
1885
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
1913
{
1914 1915
	int cs_found = -EINVAL;
	unsigned range;
1916

1917 1918
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
1919 1920
			continue;

1921 1922 1923 1924
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
1925

1926 1927
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
1928
			cs_found = f1x_match_to_this_node(pvt, range,
1929
							  sys_addr, chan_sel);
1930 1931 1932 1933 1934 1935 1936 1937
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1938 1939
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1940
 *
1941 1942
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1943
 */
1944
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1945
				     struct err_info *err)
1946 1947 1948
{
	struct amd64_pvt *pvt = mci->pvt_info;

1949
	error_address_to_page_and_offset(sys_addr, err);
1950

1951 1952 1953
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1954 1955 1956 1957 1958 1959 1960 1961
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1962
	if (dct_ganging_enabled(pvt))
1963
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1964 1965 1966
}

/*
1967
 * debug routine to display the memory sizes of all logical DIMMs and its
1968
 * CSROWs
1969
 */
1970
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1971
{
1972
	int dimm, size0, size1;
1973 1974
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1975

1976
	if (pvt->fam == 0xf) {
1977
		/* K8 families < revF not supported yet */
1978
	       if (pvt->ext_model < K8_REV_F)
1979 1980 1981 1982 1983
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
1994 1995
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
1996

1997 1998
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1999 2000 2001 2002
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2003
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2004 2005 2006 2007 2008
			/* For f15m60h, need multiplier for LRDIMM cs_size
			 * calculation. We pass 'dimm' value to the dbam_to_cs
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2009
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2010 2011
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2012 2013

		size1 = 0;
2014
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2015
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2016 2017
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2018

2019
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2020 2021
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2022 2023 2024
	}
}

2025
static struct amd64_family_type family_types[] = {
2026
	[K8_CPUS] = {
2027
		.ctl_name = "K8",
2028
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2029
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2030
		.ops = {
2031 2032 2033
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2034 2035 2036
		}
	},
	[F10_CPUS] = {
2037
		.ctl_name = "F10h",
2038
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2039
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2040
		.ops = {
2041
			.early_channel_count	= f1x_early_channel_count,
2042
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2043
			.dbam_to_cs		= f10_dbam_to_chip_select,
2044 2045 2046 2047
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2048
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2049
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2050
		.ops = {
2051
			.early_channel_count	= f1x_early_channel_count,
2052
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2053
			.dbam_to_cs		= f15_dbam_to_chip_select,
2054 2055
		}
	},
2056 2057 2058
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2059
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2060 2061 2062 2063 2064 2065
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2066 2067 2068
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2069
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2070 2071 2072 2073 2074 2075
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2076 2077 2078
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2079
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2080 2081 2082 2083 2084 2085
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2086 2087 2088
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2089
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2090 2091 2092 2093 2094 2095
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2096 2097 2098 2099 2100 2101 2102 2103 2104
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_base_addr_to_cs_size,
		}
	},
2105 2106
};

2107
/*
2108 2109 2110
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2111
 *
2112
 * Algorithm courtesy of Ross LaFetra from AMD.
2113
 */
2114
static const u16 x4_vectors[] = {
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2151 2152
};

2153
static const u16 x8_vectors[] = {
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2175
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2176
			   unsigned v_dim)
2177
{
2178 2179 2180 2181
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2182 2183
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2196

2197 2198 2199
					if (!s)
						return err_sym;
				}
2200

2201 2202 2203 2204
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2205 2206
	}

2207
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2208 2209
	return -1;
}
2210

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2253 2254
	int err_sym = -1;

2255
	if (pvt->ecc_sym_sz == 8)
2256 2257
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2258 2259
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2260 2261
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2262
					  pvt->ecc_sym_sz);
2263
	else {
2264
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2265
		return err_sym;
2266
	}
2267

2268
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2269 2270
}

2271
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2272
			    u8 ecc_type)
2273
{
2274 2275
	enum hw_event_mc_err_type err_type;
	const char *string;
2276

2277 2278 2279 2280
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2281 2282
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2283 2284
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2285 2286 2287
		return;
	}

2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
		string = "unknown syndrome - possible error reporting race";
		break;
	default:
		string = "WTF error";
		break;
2304
	}
2305 2306 2307 2308 2309

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2310 2311
}

2312
static inline void decode_bus_error(int node_id, struct mce *m)
2313
{
2314 2315
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2316
	u8 ecc_type = (m->status >> 45) & 0x3;
2317 2318
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2319 2320
	u64 sys_addr;
	struct err_info err;
2321

2322 2323 2324 2325 2326 2327
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2328
	/* Bail out early if this was an 'observed' error */
2329
	if (PP(ec) == NBSL_PP_OBS)
2330
		return;
2331

2332 2333
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2334 2335
		return;

2336 2337
	memset(&err, 0, sizeof(err));

2338
	sys_addr = get_error_address(pvt, m);
2339

2340
	if (ecc_type == 2)
2341 2342 2343 2344
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2345
	__log_ecc_error(mci, &err, ecc_type);
2346 2347
}

2348
/*
2349 2350
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2351
 * Reserve F0 and F6 on systems with a UMC.
2352
 */
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
		amd64_err("error F0 device not found: vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, pci_id1);
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

		amd64_err("error F6 device not found: vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, pci_id2);

			return -ENODEV;
		}
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2381
	/* Reserve the ADDRESS MAP Device */
2382
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2383
	if (!pvt->F1) {
2384 2385
	amd64_err("error address map device not found: vendor %x device 0x%x (broken BIOS?)\n",
		  PCI_VENDOR_ID_AMD, pci_id1);
2386
		return -ENODEV;
2387 2388
	}

2389
	/* Reserve the DCT Device */
2390
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2391
	if (!pvt->F2) {
2392 2393
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2394

2395 2396 2397
	amd64_err("error F2 device not found: vendor %x device 0x%x (broken BIOS?)\n",
		  PCI_VENDOR_ID_AMD, pci_id2);
			return -ENODEV;
2398
	}
2399

2400 2401 2402
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2403 2404 2405 2406

	return 0;
}

2407
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2408
{
2409 2410 2411 2412 2413 2414 2415
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2416 2417
}

2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

		for (i = 0; i < NUM_UMCS; i++) {
			/* Check enabled channels only: */
			if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
			    (pvt->umc[i].ecc_ctrl & BIT(7))) {
				pvt->ecc_sym_sz = 8;
				break;
			}
		}

		return;
	}

	if (pvt->fam >= 0x10) {
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
	for (i = 0; i < NUM_UMCS; i++) {

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
	}
}

2472 2473 2474 2475
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2476
static void read_mc_regs(struct amd64_pvt *pvt)
2477
{
2478
	unsigned int range;
2479 2480 2481 2482
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2483
	 * those are Read-As-Zero.
2484
	 */
2485
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2486
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2487

2488
	/* Check first whether TOP_MEM2 is enabled: */
2489
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2490
	if (msr_val & BIT(21)) {
2491
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2492
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2493
	} else {
2494
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2495 2496 2497 2498 2499 2500 2501 2502
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2503

2504
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2505

2506
	read_dram_ctl_register(pvt);
2507

2508 2509
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2510

2511 2512 2513 2514 2515 2516 2517
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2518 2519 2520 2521
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2522

2523 2524 2525 2526 2527 2528
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2529 2530
	}

2531
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2532
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2533

2534
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2535

2536 2537
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2538

2539
	if (!dct_ganging_enabled(pvt)) {
2540 2541
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2542
	}
2543

2544 2545 2546
skip:
	read_dct_base_mask(pvt);

2547 2548
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2549

2550
	determine_ecc_sym_sz(pvt);
2551

2552
	dump_misc_regs(pvt);
2553 2554 2555 2556 2557 2558
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2559
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2589
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2590
{
2591
	u32 cs_mode, nr_pages;
2592
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2593

2594

2595 2596 2597 2598 2599 2600 2601
	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
B
Borislav Petkov 已提交
2602
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2603

2604 2605
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
							   << (20 - PAGE_SHIFT);
2606

2607 2608 2609
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
		    csrow_nr, dct,  cs_mode);
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2610 2611 2612 2613 2614 2615 2616 2617

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2618
static int init_csrows(struct mem_ctl_info *mci)
2619
{
2620
	struct amd64_pvt *pvt = mci->pvt_info;
2621
	struct csrow_info *csrow;
2622
	struct dimm_info *dimm;
2623
	enum edac_type edac_mode;
2624
	int i, j, empty = 1;
2625
	int nr_pages = 0;
2626
	u32 val;
2627

2628
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2629

2630
	pvt->nbcfg = val;
2631

2632 2633 2634
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2635

2636 2637 2638
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2639
	for_each_chip_select(i, 0, pvt) {
2640 2641
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2642

2643
		if (pvt->fam != 0xf)
2644 2645 2646
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2647 2648
			continue;

2649
		csrow = mci->csrows[i];
2650
		empty = 0;
2651 2652 2653 2654

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2655
		if (row_dct0) {
2656
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2657 2658
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2659

2660
		/* K8 has only one DCT */
2661
		if (pvt->fam != 0xf && row_dct1) {
2662
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2663 2664 2665 2666

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2667

2668
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2669 2670 2671 2672

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2673
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2674 2675
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2676
		else
2677 2678 2679
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2680
			dimm = csrow->channels[j]->dimm;
2681
			dimm->mtype = pvt->dram_type;
2682
			dimm->edac_mode = edac_mode;
2683
		}
2684 2685 2686 2687
	}

	return empty;
}
2688

2689
/* get all cores on this DCT */
2690
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2691 2692 2693 2694 2695 2696 2697 2698 2699
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2700
static bool nb_mce_bank_enabled_on_node(u16 nid)
2701 2702
{
	cpumask_var_t mask;
2703
	int cpu, nbe;
2704 2705 2706
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2707
		amd64_warn("%s: Error allocating mask\n", __func__);
2708 2709 2710 2711 2712 2713 2714 2715
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2716
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2717
		nbe = reg->l & MSR_MCGCTL_NBE;
2718

2719 2720 2721
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2733
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2734 2735
{
	cpumask_var_t cmask;
2736
	int cpu;
2737 2738

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2739
		amd64_warn("%s: error allocating mask\n", __func__);
2740 2741 2742
		return false;
	}

2743
	get_cpus_on_this_dct_cpumask(cmask, nid);
2744 2745 2746 2747 2748

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2749 2750
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2751
		if (on) {
2752
			if (reg->l & MSR_MCGCTL_NBE)
2753
				s->flags.nb_mce_enable = 1;
2754

2755
			reg->l |= MSR_MCGCTL_NBE;
2756 2757
		} else {
			/*
2758
			 * Turn off NB MCE reporting only when it was off before
2759
			 */
2760
			if (!s->flags.nb_mce_enable)
2761
				reg->l &= ~MSR_MCGCTL_NBE;
2762 2763 2764 2765 2766 2767 2768 2769 2770
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2771
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2772
				       struct pci_dev *F3)
2773
{
2774
	bool ret = true;
B
Borislav Petkov 已提交
2775
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2776

2777 2778 2779 2780 2781
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2782
	amd64_read_pci_cfg(F3, NBCTL, &value);
2783

2784 2785
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2786 2787

	value |= mask;
B
Borislav Petkov 已提交
2788
	amd64_write_pci_cfg(F3, NBCTL, value);
2789

2790
	amd64_read_pci_cfg(F3, NBCFG, &value);
2791

2792 2793
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2794

2795
	if (!(value & NBCFG_ECC_ENABLE)) {
2796
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2797

2798
		s->flags.nb_ecc_prev = 0;
2799

2800
		/* Attempt to turn on DRAM ECC Enable */
2801 2802
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2803

2804
		amd64_read_pci_cfg(F3, NBCFG, &value);
2805

2806
		if (!(value & NBCFG_ECC_ENABLE)) {
2807 2808
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2809
			ret = false;
2810
		} else {
2811
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2812
		}
2813
	} else {
2814
		s->flags.nb_ecc_prev = 1;
2815
	}
2816

2817 2818
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2819

2820
	return ret;
2821 2822
}

2823
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2824
					struct pci_dev *F3)
2825
{
B
Borislav Petkov 已提交
2826 2827
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2828
	if (!s->nbctl_valid)
2829 2830
		return;

B
Borislav Petkov 已提交
2831
	amd64_read_pci_cfg(F3, NBCTL, &value);
2832
	value &= ~mask;
2833
	value |= s->old_nbctl;
2834

B
Borislav Petkov 已提交
2835
	amd64_write_pci_cfg(F3, NBCTL, value);
2836

2837 2838
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2839 2840 2841
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2842 2843 2844
	}

	/* restore the NB Enable MCGCTL bit */
2845
	if (toggle_ecc_err_reporting(s, nid, OFF))
2846
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2847 2848 2849
}

/*
2850 2851 2852 2853
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2854
 */
2855 2856 2857 2858 2859
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2860

2861
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2862
{
2863
	bool nb_mce_en = false;
2864 2865
	u8 ecc_en = 0, i;
	u32 value;
2866

2867 2868
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
2869

2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
		for (i = 0; i < NUM_UMCS; i++) {
			u32 base = get_umc_base(i);

			/* Only check enabled UMCs. */
			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
				continue;

			if (!(value & UMC_SDP_INIT))
				continue;

			umc_en_mask |= BIT(i);

			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
				continue;

			if (value & UMC_ECC_ENABLED)
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
		amd64_read_pci_cfg(F3, NBCFG, &value);
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
			amd64_notice("NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
				     MSR_IA32_MCG_CTL, nid);
	}

	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2907

2908 2909 2910 2911 2912
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2913 2914
}

2915 2916
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2917 2918 2919 2920 2921 2922
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2923
	if (pvt->nbcap & NBCAP_SECDED)
2924 2925
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2926
	if (pvt->nbcap & NBCAP_CHIPKILL)
2927 2928
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

2929
	mci->edac_cap		= determine_edac_cap(pvt);
2930 2931
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2932
	mci->ctl_name		= fam->ctl_name;
2933
	mci->dev_name		= pci_name(pvt->F3);
2934 2935 2936
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
2937 2938
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
2939 2940
}

2941 2942 2943
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
2944
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
2945
{
2946 2947
	struct amd64_family_type *fam_type = NULL;

2948
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
2949
	pvt->stepping	= boot_cpu_data.x86_mask;
2950 2951 2952 2953
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
2954
	case 0xf:
2955 2956
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
2957
		break;
2958

2959
	case 0x10:
2960 2961
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
2962 2963 2964
		break;

	case 0x15:
2965
		if (pvt->model == 0x30) {
2966 2967
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
2968
			break;
2969 2970 2971 2972
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
2973 2974
		}

2975 2976
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
2977 2978
		break;

2979
	case 0x16:
2980 2981 2982 2983 2984
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
2985 2986
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
2987 2988
		break;

2989 2990 2991 2992 2993
	case 0x17:
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
		break;

2994
	default:
2995
		amd64_err("Unsupported family!\n");
2996
		return NULL;
2997
	}
2998

2999
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3000
		     (pvt->fam == 0xf ?
3001 3002 3003
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3004
	return fam_type;
3005 3006
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3017
static int init_one_instance(unsigned int nid)
3018
{
3019
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3020
	struct amd64_family_type *fam_type = NULL;
3021
	struct mem_ctl_info *mci = NULL;
3022
	struct edac_mc_layer layers[2];
3023
	struct amd64_pvt *pvt = NULL;
3024
	u16 pci_id1, pci_id2;
3025 3026 3027 3028 3029
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
3030
		goto err_ret;
3031

3032
	pvt->mc_node_id	= nid;
3033
	pvt->F3 = F3;
3034

3035
	ret = -EINVAL;
3036
	fam_type = per_family_init(pvt);
3037
	if (!fam_type)
3038 3039
		goto err_free;

3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054
	if (pvt->fam >= 0x17) {
		pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
		if (!pvt->umc) {
			ret = -ENOMEM;
			goto err_free;
		}

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3055
	if (err)
3056
		goto err_post_init;
3057

3058
	read_mc_regs(pvt);
3059 3060 3061 3062

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3063
	 * tables in the 'mci' structure.
3064
	 */
3065
	ret = -EINVAL;
3066 3067
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3068
		goto err_siblings;
3069 3070

	ret = -ENOMEM;
3071 3072 3073 3074
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3075 3076 3077 3078 3079 3080 3081

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
3082
	layers[1].is_virt_csrow = false;
3083

3084
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3085
	if (!mci)
3086
		goto err_siblings;
3087 3088

	mci->pvt_info = pvt;
3089
	mci->pdev = &pvt->F3->dev;
3090

3091
	setup_mci_misc_attrs(mci, fam_type);
3092 3093

	if (init_csrows(mci))
3094 3095 3096
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3097
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3098
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3099 3100 3101
		goto err_add_mc;
	}

3102 3103 3104 3105
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

3106
	amd_register_ecc_decoder(decode_bus_error);
3107

3108 3109 3110 3111 3112
	return 0;

err_add_mc:
	edac_mc_free(mci);

3113 3114
err_siblings:
	free_mc_sibling_devs(pvt);
3115

3116 3117 3118 3119
err_post_init:
	if (pvt->fam >= 0x17)
		kfree(pvt->umc);

3120 3121
err_free:
	kfree(pvt);
3122

3123
err_ret:
3124 3125 3126
	return ret;
}

3127
static int probe_one_instance(unsigned int nid)
3128
{
3129
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3130
	struct ecc_settings *s;
3131
	int ret;
3132

3133 3134 3135
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3136
		goto err_out;
3137 3138 3139

	ecc_stngs[nid] = s;

3140 3141 3142 3143 3144 3145
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

3146 3147 3148 3149 3150
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3151 3152 3153 3154 3155

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3156
	ret = init_one_instance(nid);
3157
	if (ret < 0) {
3158
		amd64_err("Error probing instance: %d\n", nid);
3159 3160 3161

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3162
	}
3163 3164

	return ret;
3165 3166 3167 3168 3169 3170 3171

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3172 3173
}

3174
static void remove_one_instance(unsigned int nid)
3175
{
3176 3177
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3178 3179
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3180

3181
	mci = find_mci_by_dev(&F3->dev);
3182 3183
	WARN_ON(!mci);

3184
	/* Remove from EDAC CORE tracking list */
3185
	mci = edac_mc_del_mc(&F3->dev);
3186 3187 3188 3189 3190
	if (!mci)
		return;

	pvt = mci->pvt_info;

3191
	restore_ecc_error_reporting(s, nid, F3);
3192

3193
	free_mc_sibling_devs(pvt);
3194

3195 3196
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
3197
	amd_unregister_ecc_decoder(decode_bus_error);
3198

3199 3200
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3201

3202
	/* Free the EDAC CORE resources */
3203 3204 3205
	mci->pvt_info = NULL;

	kfree(pvt);
3206 3207 3208
	edac_mc_free(mci);
}

3209
static void setup_pci_device(void)
3210 3211 3212 3213
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3214
	if (pci_ctl)
3215 3216
		return;

3217
	mci = edac_mc_find(0);
3218 3219
	if (!mci)
		return;
3220

3221
	pvt = mci->pvt_info;
3222 3223 3224 3225
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3226 3227 3228
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3229 3230 3231
	}
}

3232 3233 3234 3235 3236 3237 3238 3239 3240
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3241 3242
static int __init amd64_edac_init(void)
{
3243
	int err = -ENODEV;
3244
	int i;
3245

3246
	if (amd_cache_northbridges() < 0)
3247
		goto err_ret;
3248

3249 3250
	opstate_init();

3251
	err = -ENOMEM;
3252
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
3253
	if (!ecc_stngs)
3254
		goto err_free;
3255

3256
	msrs = msrs_alloc();
3257
	if (!msrs)
3258
		goto err_free;
3259

3260 3261 3262 3263 3264
	for (i = 0; i < amd_nb_num(); i++)
		if (probe_one_instance(i)) {
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3265

3266 3267
			goto err_pci;
		}
3268

3269
	setup_pci_device();
T
Tomasz Pala 已提交
3270 3271 3272 3273 3274

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3275 3276
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3277
	return 0;
3278

3279 3280 3281
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3282

3283 3284 3285 3286
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3287
err_ret:
3288 3289 3290 3291 3292
	return err;
}

static void __exit amd64_edac_exit(void)
{
3293 3294
	int i;

3295 3296
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3297

3298 3299
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3300

3301 3302 3303
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3304 3305
	msrs_free(msrs);
	msrs = NULL;
3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");