amd64_edac.c 88.9 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23 24 25 26 27
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
28
static const struct scrubrate {
29 30 31
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

57 58
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

96 97 98 99
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
100
 * K8: has a single DCT only and no address offsets >= 0x100
101 102 103 104 105
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
106
 * F16h: has only 1 DCT
107 108
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109
 */
110 111
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
112
{
113 114 115 116 117
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
118

119 120 121 122 123 124 125 126 127
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
128

129 130 131
			offset += 0x100;
		}
		break;
132

133 134 135 136 137 138 139 140
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
141

142 143 144 145
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
146

147 148
	default:
		break;
149
	}
150
	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
182
/*
183
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 185
 * issue. If requested is too big, then use last maximum value found.
 */
186
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 188 189 190 191 192 193 194 195
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
196 197 198
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
199
	 */
200
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 202 203 204
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
205
		if (scrubrates[i].scrubval < min_rate)
206 207 208 209 210 211 212 213
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

P
Pu Wen 已提交
214
	if (pvt->fam == 0x17 || pvt->fam == 0x18) {
215 216
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 218 219 220 221 222 223
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
224

225 226 227
	if (scrubval)
		return scrubrates[i].bandwidth;

228 229 230
	return 0;
}

231
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 233
{
	struct amd64_pvt *pvt = mci->pvt_info;
234
	u32 min_scrubrate = 0x5;
235

236
	if (pvt->fam == 0xf)
237 238
		min_scrubrate = 0x0;

239 240 241 242
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
243

244 245 246 247
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
248 249
}

250
static int get_scrub_rate(struct mem_ctl_info *mci)
251 252
{
	struct amd64_pvt *pvt = mci->pvt_info;
253
	int i, retval = -EINVAL;
254
	u32 scrubval = 0;
255

256 257
	switch (pvt->fam) {
	case 0x15:
258 259 260
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
261

262 263
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
264 265 266
		break;

	case 0x17:
P
Pu Wen 已提交
267
	case 0x18:
268 269 270 271 272 273 274 275 276 277 278
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
		break;

	default:
279
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
280 281
		break;
	}
282 283 284

	scrubval = scrubval & 0x001F;

285
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
286
		if (scrubrates[i].scrubval == scrubval) {
287
			retval = scrubrates[i].bandwidth;
288 289 290
			break;
		}
	}
291
	return retval;
292 293
}

294
/*
295 296
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
297
 */
298
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
299
{
300
	u64 addr;
301 302 303 304 305 306 307 308 309

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

310 311
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
312 313 314 315 316 317 318 319 320 321 322 323
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
324
	u8 node_id;
325 326 327 328 329 330 331 332 333 334 335 336 337
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
338
	intlv_en = dram_intlv_en(pvt, 0);
339 340

	if (intlv_en == 0) {
341
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
342
			if (base_limit_match(pvt, sys_addr, node_id))
343
				goto found;
344
		}
345
		goto err_no_match;
346 347
	}

348 349 350
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
351
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
352 353 354 355 356 357
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
358
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
359 360
			break;	/* intlv_sel field matches */

361
		if (++node_id >= DRAM_RANGES)
362 363 364 365
			goto err_no_match;
	}

	/* sanity test for sys_addr */
366
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
367 368 369
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
370 371 372 373
		return NULL;
	}

found:
374
	return edac_mc_find((int)node_id);
375 376

err_no_match:
377 378
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
379 380 381

	return NULL;
}
382 383

/*
384 385
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
386
 */
387 388
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
389
{
390 391
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
392

393
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
394 395
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
396 397
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
398
		addr_shift	= 4;
399 400

	/*
401 402 403 404 405
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
406 407 408
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

409 410
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
411 412 413

		*mask = ~0ULL;
		/* poke holes for the csmask */
414 415
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
416

417 418
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
419 420

		return;
421 422 423 424
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
425

426
		if (pvt->fam == 0x15)
427 428
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
429
		else
430 431
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
432
	}
433

434
	*base  = (csbase & base_bits) << addr_shift;
435

436 437 438 439 440
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
441 442
}

443 444 445
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

446 447 448
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

449 450 451
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

452 453 454 455 456 457 458 459 460 461 462 463
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

464 465
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
466 467
			continue;

468 469 470
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
471 472

		if ((input_addr & mask) == (base & mask)) {
473 474 475
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
476 477 478 479

			return csrow;
		}
	}
480 481
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
508
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
509 510
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
511 512 513
		return 1;
	}

514
	/* valid for Fam10h and above */
515
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
516
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
517 518 519
		return 1;
	}

520
	if (!dhar_valid(pvt)) {
521 522
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

544 545
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
546

547 548
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
549

550 551 552
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
553 554 555 556 557

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
589
	struct amd64_pvt *pvt = mci->pvt_info;
590
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
591
	int ret;
592

593
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
594 595 596 597

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
598 599
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
600 601 602
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

603 604 605
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
606 607 608 609 610 611 612 613 614 615 616 617 618 619

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
620
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
621

622 623
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
655
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
656
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
657
		      (dram_addr & 0xfff);
658

659 660 661
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
677
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
678
		 (unsigned long)sys_addr, (unsigned long)input_addr);
679 680 681 682 683 684

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
685
						    struct err_info *err)
686
{
687 688
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
706 707
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
708 709
	return csrow;
}
710

711
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
712 713 714 715 716

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
717
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
718
{
719
	unsigned long edac_cap = EDAC_FLAG_NONE;
720 721 722 723
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
724

725 726 727
		for (i = 0; i < NUM_UMCS; i++) {
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
746 747 748 749

	return edac_cap;
}

750
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
751

752
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
753
{
754
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
755

756 757 758 759 760 761 762 763 764 765 766 767 768
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

769

770 771
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
772

773
	if (pvt->fam == 0x10)
774 775
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
776

777 778 779 780 781
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
782 783
}

784 785
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
786
	int dimm, size0, size1, cs0, cs1;
787 788 789 790 791

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

	for (dimm = 0; dimm < 4; dimm++) {
		size0 = 0;
792
		cs0 = dimm * 2;
793

794 795
		if (csrow_enabled(cs0, ctrl, pvt))
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs0);
796 797

		size1 = 0;
798 799 800 801
		cs1 = dimm * 2 + 1;

		if (csrow_enabled(cs1, ctrl, pvt))
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, cs1);
802 803

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
804 805
				cs0,	size0,
				cs1,	size1);
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

	for (i = 0; i < NUM_UMCS; i++) {
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

853
/* Display and decode various NB registers for debug purposes. */
854
static void __dump_misc_regs(struct amd64_pvt *pvt)
855
{
856
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
857

858 859
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
860

861 862 863
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
864

865
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
866

867
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
868

869 870
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
871 872
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
873

874
	debug_display_dimm_sizes(pvt, 0);
875

876
	/* everything below this point is Fam10h and above */
877
	if (pvt->fam == 0xf)
878
		return;
879

880
	debug_display_dimm_sizes(pvt, 1);
881

882
	/* Only if NOT ganged does dclr1 have valid info */
883
	if (!dct_ganging_enabled(pvt))
884
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
885 886
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

	amd64_info("using %s syndromes.\n",
			((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
}

901
/*
902
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
903
 */
904
static void prep_chip_selects(struct amd64_pvt *pvt)
905
{
906
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
907 908
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
909
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
910 911
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
912
	} else {
913 914
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
915 916 917 918
	}
}

/*
919
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
920
 */
921
static void read_dct_base_mask(struct amd64_pvt *pvt)
922
{
923
	int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
924

925
	prep_chip_selects(pvt);
926

927 928 929 930 931 932 933 934 935 936 937 938
	if (pvt->umc) {
		base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
		base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
		mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
		mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
	} else {
		base_reg0 = DCSB0;
		base_reg1 = DCSB1;
		mask_reg0 = DCSM0;
		mask_reg1 = DCSM1;
	}

939
	for_each_chip_select(cs, 0, pvt) {
940 941
		int reg0   = base_reg0 + (cs * 4);
		int reg1   = base_reg1 + (cs * 4);
942 943
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
944

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: 0x%x\n",
					 cs, *base0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: 0x%x\n",
					 cs, *base1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
					 cs, *base0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
					 cs, *base1, (pvt->fam == 0x10) ? reg1
964
								: reg0);
965
		}
966 967
	}

968
	for_each_chip_select_mask(cs, 0, pvt) {
969 970
		int reg0   = mask_reg0 + (cs * 4);
		int reg1   = mask_reg1 + (cs * 4);
971 972
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
973

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask1, (pvt->fam == 0x10) ? reg1
993
								: reg0);
994
		}
995 996 997
	}
}

998
static void determine_memory_type(struct amd64_pvt *pvt)
999
{
1000
	u32 dram_ctrl, dcsm;
1001

1002 1003 1004 1005 1006 1007 1008 1009 1010
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1011
		if (pvt->dchr0 & DDR3_MODE)
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1039
		else
1040
			pvt->dram_type = MEM_RDDR3;
1041

1042 1043 1044 1045 1046
		return;

	case 0x16:
		goto ddr3;

1047
	case 0x17:
P
Pu Wen 已提交
1048
	case 0x18:
1049 1050 1051 1052 1053 1054 1055 1056
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

1057 1058 1059 1060 1061
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1062

1063 1064
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1065 1066
}

1067
/* Get the number of DCT channels the memory controller is using. */
1068 1069
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1070
	int flag;
1071

1072
	if (pvt->ext_model >= K8_REV_F)
1073
		/* RevF (NPT) and later */
1074
		flag = pvt->dclr0 & WIDTH_128;
1075
	else
1076 1077 1078 1079 1080 1081 1082 1083 1084
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1085
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1086
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1087
{
1088 1089
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1090 1091
	u8 start_bit = 1;
	u8 end_bit   = 47;
1092 1093 1094 1095 1096 1097 1098
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1099

1100
	if (pvt->fam == 0xf) {
1101 1102 1103 1104
		start_bit = 3;
		end_bit   = 39;
	}

1105
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1106 1107 1108 1109

	/*
	 * Erratum 637 workaround
	 */
1110
	if (pvt->fam == 0x15) {
1111 1112
		u64 cc6_base, tmp_addr;
		u32 tmp;
1113
		u8 intlv_en;
1114

1115
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1116 1117 1118 1119 1120 1121 1122
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1123
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1124 1125 1126 1127 1128 1129 1130 1131

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1132
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1133 1134 1135 1136

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1137
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1138 1139

		/* OR DramIntlvSel into bits [14:12] */
1140
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1141 1142

		/* add remaining [11:0] bits from original MC4_ADDR */
1143
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1144 1145 1146 1147 1148

		return cc6_base | tmp_addr;
	}

	return addr;
1149 1150
}

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1167
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1168
{
1169
	struct amd_northbridge *nb;
1170 1171
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1172
	int off = range << 3;
1173
	u32 llim;
1174

1175 1176
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1177

1178
	if (pvt->fam == 0xf)
1179
		return;
1180

1181 1182
	if (!dram_rw(pvt, range))
		return;
1183

1184 1185
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1186

1187
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1188
	if (pvt->fam != 0x15)
1189
		return;
1190

1191 1192 1193
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1194

1195 1196 1197 1198 1199 1200
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1201 1202

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1203 1204
	if (WARN_ON(!f1))
		return;
1205

1206
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1207

1208
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1209

1210 1211
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1212

1213
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1214

1215 1216 1217 1218
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1219 1220
}

1221
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1222
				    struct err_info *err)
1223
{
1224
	struct amd64_pvt *pvt = mci->pvt_info;
1225

1226
	error_address_to_page_and_offset(sys_addr, err);
1227 1228 1229 1230 1231

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1232 1233
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1234 1235
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1236
		err->err_code = ERR_NODE;
1237 1238 1239 1240
		return;
	}

	/* Now map the sys_addr to a CSROW */
1241 1242 1243
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1244 1245 1246
		return;
	}

1247
	/* CHIPKILL enabled */
1248
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1249 1250
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1251 1252 1253 1254 1255
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1256
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1257
				      "possible error reporting race\n",
1258 1259
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1271
		err->channel = ((sys_addr & BIT(3)) != 0);
1272 1273 1274
	}
}

1275
static int ddr2_cs_size(unsigned i, bool dct_width)
1276
{
1277
	unsigned shift = 0;
1278

1279 1280 1281 1282
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1283
	else
1284
		shift = (i + 1) >> 1;
1285

1286 1287 1288 1289
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1290
				  unsigned cs_mode, int cs_mask_nr)
1291 1292 1293 1294 1295 1296 1297 1298
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1299
		unsigned diff;
1300 1301
		WARN_ON(cs_mode > 10);

1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1329 1330 1331 1332 1333
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1334 1335
}

1336 1337 1338 1339 1340 1341 1342 1343
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1344
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1345
{
1346
	int i, j, channels = 0;
1347

1348
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1349
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1350
		return 2;
1351 1352

	/*
1353 1354 1355
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1356 1357 1358 1359
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1360
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1361

1362 1363 1364 1365 1366
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1367 1368
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1369

1370 1371 1372 1373 1374 1375
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1376 1377
	}

1378 1379 1380
	if (channels > 2)
		channels = 2;

1381
	amd64_info("MCT channel count: %d\n", channels);
1382 1383 1384 1385

	return channels;
}

1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
	for (i = 0; i < NUM_UMCS; i++)
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1399
static int ddr3_cs_size(unsigned i, bool dct_width)
1400
{
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1456
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1457
				   unsigned cs_mode, int cs_mask_nr)
1458 1459 1460 1461
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1462 1463

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1464
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1465
	else
1466 1467 1468 1469 1470 1471 1472
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1473
				   unsigned cs_mode, int cs_mask_nr)
1474 1475
{
	WARN_ON(cs_mode > 12);
1476

1477
	return ddr3_cs_size(cs_mode, false);
1478 1479
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1511
/*
1512
 * F16h and F15h model 30h have only limited cs_modes.
1513 1514
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1515
				unsigned cs_mode, int cs_mask_nr)
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
				    unsigned int cs_mode, int csrow_nr)
{
	u32 base_addr = pvt->csels[umc].csbases[csrow_nr];

	/*  Each mask is used for every two base addresses. */
	u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];

	/*  Register [31:1] = Address [39:9]. Size is in kBs here. */
	u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;

	edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);

	/* Return size in MBs. */
	return size >> 10;
}

1543
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1544 1545
{

1546
	if (pvt->fam == 0xf)
1547 1548
		return;

1549
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1550 1551
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1552

1553 1554
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1555 1556

		if (!dct_ganging_enabled(pvt))
1557 1558
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1559

1560 1561 1562
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1563

1564 1565 1566 1567
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1568 1569
	}

1570
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1571 1572
}

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1601 1602 1603
	return channel;
}

1604
/*
1605
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1606 1607
 * Interleaving Modes.
 */
1608
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1609
				bool hi_range_sel, u8 intlv_en)
1610
{
1611
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1612 1613

	if (dct_ganging_enabled(pvt))
1614
		return 0;
1615

1616 1617
	if (hi_range_sel)
		return dct_sel_high;
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1631
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1632 1633 1634 1635

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1636 1637 1638 1639 1640 1641
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1642 1643 1644 1645 1646
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1647 1648 1649 1650

	return 0;
}

1651
/* Convert the sys_addr to the normalized DCT address */
1652
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1653 1654
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1655 1656
{
	u64 chan_off;
1657 1658
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1659
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1660

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1675
		    dhar_valid(pvt) &&
1676
		    (sys_addr >= BIT_64(32)))
1677
			chan_off = hole_off;
1678 1679 1680
		else
			chan_off = dct_sel_base_off;
	} else {
1681 1682 1683 1684 1685 1686 1687 1688 1689
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1690
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1691
			chan_off = hole_off;
1692
		else
1693
			chan_off = dram_base;
1694 1695
	}

1696
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1697 1698 1699 1700 1701 1702
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1703
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1704
{
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1728
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1729 1730 1731
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1732
	u64 cs_base, cs_mask;
1733 1734 1735
	int cs_found = -EINVAL;
	int csrow;

1736
	mci = edac_mc_find(nid);
1737 1738 1739 1740 1741
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1742
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1743

1744 1745
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1746 1747
			continue;

1748
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1749

1750 1751
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1752

1753
		cs_mask = ~cs_mask;
1754

1755 1756
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1757

1758
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1759 1760 1761 1762
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1763
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1764

1765
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1766 1767 1768 1769 1770 1771
			break;
		}
	}
	return cs_found;
}

1772 1773 1774 1775 1776
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1777
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1778 1779 1780
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1781
	if (pvt->fam == 0x10) {
1782
		/* only revC3 and revE have that feature */
1783
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1784 1785 1786
			return sys_addr;
	}

1787
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1806
/* For a given @dram_range, check if @sys_addr falls within it. */
1807
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1808
				  u64 sys_addr, int *chan_sel)
1809
{
1810
	int cs_found = -EINVAL;
1811
	u64 chan_addr;
1812
	u32 dct_sel_base;
1813
	u8 channel;
1814
	bool high_range = false;
1815

1816
	u8 node_id    = dram_dst_node(pvt, range);
1817
	u8 intlv_en   = dram_intlv_en(pvt, range);
1818
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1819

1820 1821
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1822

1823 1824 1825 1826 1827 1828 1829 1830
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1831
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1832 1833
		return -EINVAL;

1834
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1845
		high_range = true;
1846

1847
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1848

1849
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1850
					  high_range, dct_sel_base);
1851

1852 1853 1854 1855
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1856

1857
	/* remove channel interleave */
1858 1859 1860
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1875 1876
	}

1877
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1878

1879
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1880

1881
	if (cs_found >= 0)
1882
		*chan_sel = channel;
1883

1884 1885 1886
	return cs_found;
}

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1924 1925
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1926 1927

	if (!(dct_cont_base_reg & BIT(0)) &&
1928 1929
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1930 1931 1932 1933 1934 1935 1936 1937
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

1938 1939 1940 1941 1942
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
1943 1944

	/* Verify we stay within the MAX number of channels allowed */
1945
	if (channel > 3)
1946 1947 1948 1949 1950 1951 1952 1953
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1954
		chan_offset = dct_base << 27;
1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
1984
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2012
{
2013 2014
	int cs_found = -EINVAL;
	unsigned range;
2015

2016 2017
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2018 2019
			continue;

2020 2021 2022 2023
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2024

2025 2026
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2027
			cs_found = f1x_match_to_this_node(pvt, range,
2028
							  sys_addr, chan_sel);
2029 2030 2031 2032 2033 2034 2035 2036
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2037 2038
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2039
 *
2040 2041
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2042
 */
2043
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2044
				     struct err_info *err)
2045 2046 2047
{
	struct amd64_pvt *pvt = mci->pvt_info;

2048
	error_address_to_page_and_offset(sys_addr, err);
2049

2050 2051 2052
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2053 2054 2055 2056 2057 2058 2059 2060
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2061
	if (dct_ganging_enabled(pvt))
2062
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2063 2064 2065
}

/*
2066
 * debug routine to display the memory sizes of all logical DIMMs and its
2067
 * CSROWs
2068
 */
2069
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2070
{
2071
	int dimm, size0, size1;
2072 2073
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2074

2075
	if (pvt->fam == 0xf) {
2076
		/* K8 families < revF not supported yet */
2077
	       if (pvt->ext_model < K8_REV_F)
2078 2079 2080 2081 2082
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2093 2094
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2095

2096 2097
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2098 2099 2100 2101
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2102
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2103 2104 2105
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2106 2107 2108
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2109
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2110 2111
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2112 2113

		size1 = 0;
2114
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2115
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2116 2117
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2118

2119
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2120 2121
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2122 2123 2124
	}
}

2125
static struct amd64_family_type family_types[] = {
2126
	[K8_CPUS] = {
2127
		.ctl_name = "K8",
2128
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2129
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2130
		.ops = {
2131 2132 2133
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2134 2135 2136
		}
	},
	[F10_CPUS] = {
2137
		.ctl_name = "F10h",
2138
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2139
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2140
		.ops = {
2141
			.early_channel_count	= f1x_early_channel_count,
2142
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2143
			.dbam_to_cs		= f10_dbam_to_chip_select,
2144 2145 2146 2147
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2148
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2149
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2150
		.ops = {
2151
			.early_channel_count	= f1x_early_channel_count,
2152
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2153
			.dbam_to_cs		= f15_dbam_to_chip_select,
2154 2155
		}
	},
2156 2157 2158
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2159
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2160 2161 2162 2163 2164 2165
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2166 2167 2168
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2169
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2170 2171 2172 2173 2174 2175
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2176 2177 2178
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2179
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2180 2181 2182 2183 2184 2185
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2186 2187 2188
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2189
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2190 2191 2192 2193 2194 2195
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2196 2197 2198 2199 2200 2201 2202 2203 2204
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_base_addr_to_cs_size,
		}
	},
2205 2206 2207 2208 2209 2210 2211 2212 2213
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_base_addr_to_cs_size,
		}
	},
2214 2215
};

2216
/*
2217 2218 2219
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2220
 *
2221
 * Algorithm courtesy of Ross LaFetra from AMD.
2222
 */
2223
static const u16 x4_vectors[] = {
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2260 2261
};

2262
static const u16 x8_vectors[] = {
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2284
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2285
			   unsigned v_dim)
2286
{
2287 2288 2289 2290
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2291 2292
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2305

2306 2307 2308
					if (!s)
						return err_sym;
				}
2309

2310 2311 2312 2313
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2314 2315
	}

2316
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2317 2318
	return -1;
}
2319

2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2362 2363
	int err_sym = -1;

2364
	if (pvt->ecc_sym_sz == 8)
2365 2366
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2367 2368
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2369 2370
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2371
					  pvt->ecc_sym_sz);
2372
	else {
2373
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2374
		return err_sym;
2375
	}
2376

2377
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2378 2379
}

2380
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2381
			    u8 ecc_type)
2382
{
2383 2384
	enum hw_event_mc_err_type err_type;
	const char *string;
2385

2386 2387 2388 2389
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2390 2391
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2392 2393
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2394 2395 2396
		return;
	}

2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2408 2409 2410 2411 2412 2413 2414
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2415 2416 2417 2418
		break;
	default:
		string = "WTF error";
		break;
2419
	}
2420 2421 2422 2423 2424

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2425 2426
}

2427
static inline void decode_bus_error(int node_id, struct mce *m)
2428
{
2429 2430
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2431
	u8 ecc_type = (m->status >> 45) & 0x3;
2432 2433
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2434 2435
	u64 sys_addr;
	struct err_info err;
2436

2437 2438 2439 2440 2441 2442
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2443
	/* Bail out early if this was an 'observed' error */
2444
	if (PP(ec) == NBSL_PP_OBS)
2445
		return;
2446

2447 2448
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2449 2450
		return;

2451 2452
	memset(&err, 0, sizeof(err));

2453
	sys_addr = get_error_address(pvt, m);
2454

2455
	if (ecc_type == 2)
2456 2457 2458 2459
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2460
	__log_ecc_error(mci, &err, ecc_type);
2461 2462
}

2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
 */
static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
{
	u32 umc_instance_id[] = {0x50f00, 0x150f00};
	u32 instance_id = m->ipid & GENMASK(31, 0);
	int i, channel = -1;

	for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
		if (umc_instance_id[i] == instance_id)
			channel = i;

	return channel;
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

	err.channel = find_umc_channel(pvt, m);
	if (err.channel < 0) {
		err.err_code = ERR_CHANNEL;
		goto log_error;
	}

	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2533
/*
2534 2535
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2536
 * Reserve F0 and F6 on systems with a UMC.
2537
 */
2538 2539 2540 2541 2542 2543
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2544
			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2545 2546 2547 2548 2549 2550 2551 2552
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2553
			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2554 2555
			return -ENODEV;
		}
2556

2557 2558 2559 2560 2561 2562 2563
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2564
	/* Reserve the ADDRESS MAP Device */
2565
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2566
	if (!pvt->F1) {
2567
		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2568
		return -ENODEV;
2569 2570
	}

2571
	/* Reserve the DCT Device */
2572
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2573
	if (!pvt->F2) {
2574 2575
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2576

2577 2578
		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
		return -ENODEV;
2579
	}
2580

2581 2582 2583
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2584 2585 2586 2587

	return 0;
}

2588
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2589
{
2590 2591 2592 2593 2594 2595 2596
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2597 2598
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

		for (i = 0; i < NUM_UMCS; i++) {
			/* Check enabled channels only: */
			if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
			    (pvt->umc[i].ecc_ctrl & BIT(7))) {
				pvt->ecc_sym_sz = 8;
				break;
			}
		}

		return;
	}

	if (pvt->fam >= 0x10) {
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
	for (i = 0; i < NUM_UMCS; i++) {

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2647 2648
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2649 2650
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2651
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2652 2653 2654
	}
}

2655 2656 2657 2658
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2659
static void read_mc_regs(struct amd64_pvt *pvt)
2660
{
2661
	unsigned int range;
2662 2663 2664 2665
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2666
	 * those are Read-As-Zero.
2667
	 */
2668
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2669
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2670

2671
	/* Check first whether TOP_MEM2 is enabled: */
2672
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2673
	if (msr_val & BIT(21)) {
2674
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2675
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2676
	} else {
2677
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2678 2679 2680 2681 2682 2683 2684 2685
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2686

2687
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2688

2689
	read_dram_ctl_register(pvt);
2690

2691 2692
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2693

2694 2695 2696 2697 2698 2699 2700
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2701 2702 2703 2704
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2705

2706 2707 2708 2709 2710 2711
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2712 2713
	}

2714
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2715
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2716

2717
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2718

2719 2720
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2721

2722
	if (!dct_ganging_enabled(pvt)) {
2723 2724
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2725
	}
2726

2727 2728 2729
skip:
	read_dct_base_mask(pvt);

2730 2731
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2732

2733
	determine_ecc_sym_sz(pvt);
2734

2735
	dump_misc_regs(pvt);
2736 2737 2738 2739 2740 2741
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2742
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2772
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2773
{
2774
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2775 2776
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
2777

2778 2779
	if (!pvt->umc)
		csrow_nr >>= 1;
2780

2781
	cs_mode = DBAM_DIMM(csrow_nr, dbam);
2782

2783 2784
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
2785

2786
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2787
		    csrow_nr_orig, dct,  cs_mode);
2788
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2789 2790 2791 2792 2793 2794 2795 2796

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2797
static int init_csrows(struct mem_ctl_info *mci)
2798
{
2799
	struct amd64_pvt *pvt = mci->pvt_info;
2800
	enum edac_type edac_mode = EDAC_NONE;
2801
	struct csrow_info *csrow;
2802
	struct dimm_info *dimm;
2803
	int i, j, empty = 1;
2804
	int nr_pages = 0;
2805
	u32 val;
2806

2807 2808
	if (!pvt->umc) {
		amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2809

2810
		pvt->nbcfg = val;
2811

2812 2813 2814 2815
		edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
			 pvt->mc_node_id, val,
			 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
	}
2816

2817 2818 2819
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2820
	for_each_chip_select(i, 0, pvt) {
2821 2822
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2823

2824
		if (pvt->fam != 0xf)
2825 2826 2827
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2828 2829
			continue;

2830
		csrow = mci->csrows[i];
2831
		empty = 0;
2832 2833 2834 2835

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2836
		if (row_dct0) {
2837
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2838 2839
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2840

2841
		/* K8 has only one DCT */
2842
		if (pvt->fam != 0xf && row_dct1) {
2843
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2844 2845 2846 2847

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2848

2849
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2850

2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
		/* Determine DIMM ECC mode: */
		if (pvt->umc) {
			if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
				edac_mode = EDAC_S4ECD4ED;
			else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
				edac_mode = EDAC_SECDED;

		} else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
2863 2864

		for (j = 0; j < pvt->channel_count; j++) {
2865
			dimm = csrow->channels[j]->dimm;
2866
			dimm->mtype = pvt->dram_type;
2867
			dimm->edac_mode = edac_mode;
2868
		}
2869 2870 2871 2872
	}

	return empty;
}
2873

2874
/* get all cores on this DCT */
2875
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2876 2877 2878 2879 2880 2881 2882 2883 2884
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2885
static bool nb_mce_bank_enabled_on_node(u16 nid)
2886 2887
{
	cpumask_var_t mask;
2888
	int cpu, nbe;
2889 2890 2891
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2892
		amd64_warn("%s: Error allocating mask\n", __func__);
2893 2894 2895 2896 2897 2898 2899 2900
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2901
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2902
		nbe = reg->l & MSR_MCGCTL_NBE;
2903

2904 2905 2906
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2918
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2919 2920
{
	cpumask_var_t cmask;
2921
	int cpu;
2922 2923

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2924
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
2925
		return -ENOMEM;
2926 2927
	}

2928
	get_cpus_on_this_dct_cpumask(cmask, nid);
2929 2930 2931 2932 2933

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2934 2935
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2936
		if (on) {
2937
			if (reg->l & MSR_MCGCTL_NBE)
2938
				s->flags.nb_mce_enable = 1;
2939

2940
			reg->l |= MSR_MCGCTL_NBE;
2941 2942
		} else {
			/*
2943
			 * Turn off NB MCE reporting only when it was off before
2944
			 */
2945
			if (!s->flags.nb_mce_enable)
2946
				reg->l &= ~MSR_MCGCTL_NBE;
2947 2948 2949 2950 2951 2952 2953 2954 2955
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2956
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2957
				       struct pci_dev *F3)
2958
{
2959
	bool ret = true;
B
Borislav Petkov 已提交
2960
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2961

2962 2963 2964 2965 2966
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2967
	amd64_read_pci_cfg(F3, NBCTL, &value);
2968

2969 2970
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2971 2972

	value |= mask;
B
Borislav Petkov 已提交
2973
	amd64_write_pci_cfg(F3, NBCTL, value);
2974

2975
	amd64_read_pci_cfg(F3, NBCFG, &value);
2976

2977 2978
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2979

2980
	if (!(value & NBCFG_ECC_ENABLE)) {
2981
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2982

2983
		s->flags.nb_ecc_prev = 0;
2984

2985
		/* Attempt to turn on DRAM ECC Enable */
2986 2987
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2988

2989
		amd64_read_pci_cfg(F3, NBCFG, &value);
2990

2991
		if (!(value & NBCFG_ECC_ENABLE)) {
2992 2993
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2994
			ret = false;
2995
		} else {
2996
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2997
		}
2998
	} else {
2999
		s->flags.nb_ecc_prev = 1;
3000
	}
3001

3002 3003
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3004

3005
	return ret;
3006 3007
}

3008
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3009
					struct pci_dev *F3)
3010
{
B
Borislav Petkov 已提交
3011 3012
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3013
	if (!s->nbctl_valid)
3014 3015
		return;

B
Borislav Petkov 已提交
3016
	amd64_read_pci_cfg(F3, NBCTL, &value);
3017
	value &= ~mask;
3018
	value |= s->old_nbctl;
3019

B
Borislav Petkov 已提交
3020
	amd64_write_pci_cfg(F3, NBCTL, value);
3021

3022 3023
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3024 3025 3026
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3027 3028 3029
	}

	/* restore the NB Enable MCGCTL bit */
3030
	if (toggle_ecc_err_reporting(s, nid, OFF))
3031
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3032 3033 3034
}

/*
3035 3036 3037 3038
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
3039
 */
3040 3041 3042 3043 3044
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
3045

3046
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3047
{
3048
	bool nb_mce_en = false;
3049 3050
	u8 ecc_en = 0, i;
	u32 value;
3051

3052 3053
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3054

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		for (i = 0; i < NUM_UMCS; i++) {
			u32 base = get_umc_base(i);

			/* Only check enabled UMCs. */
			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
				continue;

			if (!(value & UMC_SDP_INIT))
				continue;

			umc_en_mask |= BIT(i);

			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
				continue;

			if (value & UMC_ECC_ENABLED)
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3077 3078
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3079 3080 3081 3082 3083

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
		amd64_read_pci_cfg(F3, NBCFG, &value);
3084

3085 3086 3087 3088
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3089
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3090 3091 3092
				     MSR_IA32_MCG_CTL, nid);
	}

3093 3094
	amd64_info("Node %d: DRAM ECC %s.\n",
		   nid, (ecc_en ? "enabled" : "disabled"));
3095

3096
	if (!ecc_en || !nb_mce_en) {
3097
		amd64_info("%s", ecc_msg);
3098 3099 3100
		return false;
	}
	return true;
3101 3102
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
	u8 i, ecc_en = 1, cpk_en = 1;

	for (i = 0; i < NUM_UMCS; i++) {
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

		if (cpk_en)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
}

3124 3125
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
3126 3127 3128 3129 3130 3131
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3132 3133 3134 3135 3136
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3137

3138 3139 3140
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3141

3142
	mci->edac_cap		= determine_edac_cap(pvt);
3143
	mci->mod_name		= EDAC_MOD_STR;
3144
	mci->ctl_name		= fam->ctl_name;
3145
	mci->dev_name		= pci_name(pvt->F3);
3146 3147 3148
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3149 3150
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3151 3152
}

3153 3154 3155
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3156
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3157
{
3158 3159
	struct amd64_family_type *fam_type = NULL;

3160
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3161
	pvt->stepping	= boot_cpu_data.x86_stepping;
3162 3163 3164 3165
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3166
	case 0xf:
3167 3168
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3169
		break;
3170

3171
	case 0x10:
3172 3173
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3174 3175 3176
		break;

	case 0x15:
3177
		if (pvt->model == 0x30) {
3178 3179
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3180
			break;
3181 3182 3183 3184
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3185 3186
		}

3187 3188
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3189 3190
		break;

3191
	case 0x16:
3192 3193 3194 3195 3196
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3197 3198
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3199 3200
		break;

3201
	case 0x17:
3202 3203 3204 3205 3206
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
		}
P
Pu Wen 已提交
3207 3208
		/* fall through */
	case 0x18:
3209 3210
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
P
Pu Wen 已提交
3211 3212 3213

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3214 3215
		break;

3216
	default:
3217
		amd64_err("Unsupported family!\n");
3218
		return NULL;
3219
	}
3220

3221
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3222
		     (pvt->fam == 0xf ?
3223 3224 3225
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3226
	return fam_type;
3227 3228
}

3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3239
static int init_one_instance(unsigned int nid)
3240
{
3241
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3242
	struct amd64_family_type *fam_type = NULL;
3243
	struct mem_ctl_info *mci = NULL;
3244
	struct edac_mc_layer layers[2];
3245
	struct amd64_pvt *pvt = NULL;
3246
	u16 pci_id1, pci_id2;
3247 3248 3249 3250 3251
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
3252
		goto err_ret;
3253

3254
	pvt->mc_node_id	= nid;
3255
	pvt->F3 = F3;
3256

3257
	ret = -EINVAL;
3258
	fam_type = per_family_init(pvt);
3259
	if (!fam_type)
3260 3261
		goto err_free;

3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
	if (pvt->fam >= 0x17) {
		pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
		if (!pvt->umc) {
			ret = -ENOMEM;
			goto err_free;
		}

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3277
	if (err)
3278
		goto err_post_init;
3279

3280
	read_mc_regs(pvt);
3281 3282 3283 3284

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3285
	 * tables in the 'mci' structure.
3286
	 */
3287
	ret = -EINVAL;
3288 3289
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3290
		goto err_siblings;
3291 3292

	ret = -ENOMEM;
3293 3294 3295 3296
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3297 3298 3299 3300 3301 3302 3303

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
3304
	layers[1].is_virt_csrow = false;
3305

3306
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3307
	if (!mci)
3308
		goto err_siblings;
3309 3310

	mci->pvt_info = pvt;
3311
	mci->pdev = &pvt->F3->dev;
3312

3313
	setup_mci_misc_attrs(mci, fam_type);
3314 3315

	if (init_csrows(mci))
3316 3317 3318
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3319
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3320
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3321 3322 3323 3324 3325 3326 3327 3328
		goto err_add_mc;
	}

	return 0;

err_add_mc:
	edac_mc_free(mci);

3329 3330
err_siblings:
	free_mc_sibling_devs(pvt);
3331

3332 3333 3334 3335
err_post_init:
	if (pvt->fam >= 0x17)
		kfree(pvt->umc);

3336 3337
err_free:
	kfree(pvt);
3338

3339
err_ret:
3340 3341 3342
	return ret;
}

3343
static int probe_one_instance(unsigned int nid)
3344
{
3345
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3346
	struct ecc_settings *s;
3347
	int ret;
3348

3349 3350 3351
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3352
		goto err_out;
3353 3354 3355

	ecc_stngs[nid] = s;

3356
	if (!ecc_enabled(F3, nid)) {
3357
		ret = 0;
3358 3359 3360 3361

		if (!ecc_enable_override)
			goto err_enable;

3362 3363 3364 3365 3366
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3367 3368 3369 3370 3371

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3372
	ret = init_one_instance(nid);
3373
	if (ret < 0) {
3374
		amd64_err("Error probing instance: %d\n", nid);
3375 3376 3377

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3378 3379

		goto err_enable;
3380
	}
3381 3382

	return ret;
3383 3384 3385 3386 3387 3388 3389

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3390 3391
}

3392
static void remove_one_instance(unsigned int nid)
3393
{
3394 3395
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3396 3397
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3398

3399
	mci = find_mci_by_dev(&F3->dev);
3400 3401
	WARN_ON(!mci);

3402
	/* Remove from EDAC CORE tracking list */
3403
	mci = edac_mc_del_mc(&F3->dev);
3404 3405 3406 3407 3408
	if (!mci)
		return;

	pvt = mci->pvt_info;

3409
	restore_ecc_error_reporting(s, nid, F3);
3410

3411
	free_mc_sibling_devs(pvt);
3412

3413 3414
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3415

3416
	/* Free the EDAC CORE resources */
3417 3418 3419
	mci->pvt_info = NULL;

	kfree(pvt);
3420 3421 3422
	edac_mc_free(mci);
}

3423
static void setup_pci_device(void)
3424 3425 3426 3427
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3428
	if (pci_ctl)
3429 3430
		return;

3431
	mci = edac_mc_find(0);
3432 3433
	if (!mci)
		return;
3434

3435
	pvt = mci->pvt_info;
3436 3437 3438 3439
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3440 3441 3442
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3443 3444 3445
	}
}

3446 3447 3448 3449 3450
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3451
	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
P
Pu Wen 已提交
3452
	{ X86_VENDOR_HYGON, 0x18, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3453 3454 3455 3456
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3457 3458
static int __init amd64_edac_init(void)
{
3459
	const char *owner;
3460
	int err = -ENODEV;
3461
	int i;
3462

3463 3464 3465 3466
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3467 3468 3469
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3470
	if (amd_cache_northbridges() < 0)
3471
		return -ENODEV;
3472

3473 3474
	opstate_init();

3475
	err = -ENOMEM;
K
Kees Cook 已提交
3476
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3477
	if (!ecc_stngs)
3478
		goto err_free;
3479

3480
	msrs = msrs_alloc();
3481
	if (!msrs)
3482
		goto err_free;
3483

3484 3485 3486
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3487 3488 3489
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3490

3491 3492
			goto err_pci;
		}
3493
	}
3494

3495 3496 3497 3498 3499
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3500 3501 3502 3503 3504 3505 3506 3507 3508
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3509
	setup_pci_device();
T
Tomasz Pala 已提交
3510 3511 3512 3513 3514

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3515 3516
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3517
	return 0;
3518

3519 3520 3521
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3522

3523 3524 3525 3526
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3527 3528 3529 3530 3531
	return err;
}

static void __exit amd64_edac_exit(void)
{
3532 3533
	int i;

3534 3535
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3536

3537 3538 3539 3540 3541 3542 3543 3544
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);

	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

3545 3546
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3547

3548 3549 3550
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3551 3552
	msrs_free(msrs);
	msrs = NULL;
3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");