amd64_edac.c 82.3 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23 24 25 26 27
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
28
static const struct scrubrate {
29 30 31
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

57 58
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

96 97 98 99
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
100
 * K8: has a single DCT only and no address offsets >= 0x100
101 102 103 104 105
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
106
 * F16h: has only 1 DCT
107 108
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109
 */
110 111
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
112
{
113 114 115 116 117
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
118

119 120 121 122 123 124 125 126 127
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
128

129 130 131
			offset += 0x100;
		}
		break;
132

133 134 135 136 137 138 139 140
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
141

142 143 144 145
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
146

147 148
	default:
		break;
149
	}
150
	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

/*
 * scan the scrub rate mapping table for a close or matching bandwidth value to
 * issue. If requested is too big, then use last maximum value found.
 */
171
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
172 173 174 175 176 177 178 179 180
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
181 182 183
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
184
	 */
185
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
186 187 188 189
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
190
		if (scrubrates[i].scrubval < min_rate)
191 192 193 194 195 196 197 198
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

199 200 201 202 203 204 205 206
	if (pvt->fam == 0x15 && pvt->model == 0x60) {
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
207

208 209 210
	if (scrubval)
		return scrubrates[i].bandwidth;

211 212 213
	return 0;
}

214
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
215 216
{
	struct amd64_pvt *pvt = mci->pvt_info;
217
	u32 min_scrubrate = 0x5;
218

219
	if (pvt->fam == 0xf)
220 221
		min_scrubrate = 0x0;

222 223 224 225
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
226

227 228 229 230
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
231 232
}

233
static int get_scrub_rate(struct mem_ctl_info *mci)
234 235 236
{
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 scrubval = 0;
237
	int i, retval = -EINVAL;
238

239 240 241 242
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
243

244 245 246 247
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
	} else
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
248 249 250

	scrubval = scrubval & 0x001F;

251
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
252
		if (scrubrates[i].scrubval == scrubval) {
253
			retval = scrubrates[i].bandwidth;
254 255 256
			break;
		}
	}
257
	return retval;
258 259
}

260
/*
261 262
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
263
 */
264
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
265
{
266
	u64 addr;
267 268 269 270 271 272 273 274 275

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

276 277
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
278 279 280 281 282 283 284 285 286 287 288 289
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
290
	u8 node_id;
291 292 293 294 295 296 297 298 299 300 301 302 303
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
304
	intlv_en = dram_intlv_en(pvt, 0);
305 306

	if (intlv_en == 0) {
307
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
308
			if (base_limit_match(pvt, sys_addr, node_id))
309
				goto found;
310
		}
311
		goto err_no_match;
312 313
	}

314 315 316
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
317
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
318 319 320 321 322 323
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
324
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
325 326
			break;	/* intlv_sel field matches */

327
		if (++node_id >= DRAM_RANGES)
328 329 330 331
			goto err_no_match;
	}

	/* sanity test for sys_addr */
332
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
333 334 335
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
336 337 338 339
		return NULL;
	}

found:
340
	return edac_mc_find((int)node_id);
341 342

err_no_match:
343 344
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
345 346 347

	return NULL;
}
348 349

/*
350 351
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
352
 */
353 354
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
355
{
356 357
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
358

359
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
360 361
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
362 363
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
364
		addr_shift	= 4;
365 366

	/*
367 368 369 370 371
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
372 373 374
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

375 376
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
377 378 379

		*mask = ~0ULL;
		/* poke holes for the csmask */
380 381
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
382

383 384
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
385 386

		return;
387 388 389 390
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
391

392
		if (pvt->fam == 0x15)
393 394
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
395
		else
396 397
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
398
	}
399

400
	*base  = (csbase & base_bits) << addr_shift;
401

402 403 404 405 406
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
407 408
}

409 410 411
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

412 413 414
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

415 416 417
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

418 419 420 421 422 423 424 425 426 427 428 429
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

430 431
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
432 433
			continue;

434 435 436
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
437 438

		if ((input_addr & mask) == (base & mask)) {
439 440 441
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
442 443 444 445

			return csrow;
		}
	}
446 447
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
474
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
475 476
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
477 478 479
		return 1;
	}

480
	/* valid for Fam10h and above */
481
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
482
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
483 484 485
		return 1;
	}

486
	if (!dhar_valid(pvt)) {
487 488
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

510 511
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
512

513 514
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
515

516 517 518
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
519 520 521 522 523

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
555
	struct amd64_pvt *pvt = mci->pvt_info;
556
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
557
	int ret;
558

559
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
560 561 562 563

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
564 565
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
566 567 568
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

569 570 571
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
572 573 574 575 576 577 578 579 580 581 582 583 584 585

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
586
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
587

588 589
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
621
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
622
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
623
		      (dram_addr & 0xfff);
624

625 626 627
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
643
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
644
		 (unsigned long)sys_addr, (unsigned long)input_addr);
645 646 647 648 649 650

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
651
						    struct err_info *err)
652
{
653 654
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
672 673
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
674 675
	return csrow;
}
676

677
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
678 679 680 681 682

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
683
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
684
{
685
	u8 bit;
686
	unsigned long edac_cap = EDAC_FLAG_NONE;
687

688
	bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
689 690 691
		? 19
		: 17;

692
	if (pvt->dclr0 & BIT(bit))
693 694 695 696 697
		edac_cap = EDAC_FLAG_SECDED;

	return edac_cap;
}

698
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
699

700
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
701
{
702
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
703

704 705 706 707 708 709 710 711 712 713 714 715 716
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

717

718 719
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
720

721
	if (pvt->fam == 0x10)
722 723
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
724

725 726 727 728 729
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
730 731
}

732
/* Display and decode various NB registers for debug purposes. */
733
static void dump_misc_regs(struct amd64_pvt *pvt)
734
{
735
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
736

737 738
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
739

740 741 742
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
743

744
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
745

746
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
747

748 749
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
750 751
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
752

753
	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
754

755
	debug_display_dimm_sizes(pvt, 0);
756

757
	/* everything below this point is Fam10h and above */
758
	if (pvt->fam == 0xf)
759
		return;
760

761
	debug_display_dimm_sizes(pvt, 1);
762

763
	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
764

765
	/* Only if NOT ganged does dclr1 have valid info */
766
	if (!dct_ganging_enabled(pvt))
767
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
768 769
}

770
/*
771
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
772
 */
773
static void prep_chip_selects(struct amd64_pvt *pvt)
774
{
775
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
776 777
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
778
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
779 780
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
781
	} else {
782 783
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
784 785 786 787
	}
}

/*
788
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
789
 */
790
static void read_dct_base_mask(struct amd64_pvt *pvt)
791
{
792
	int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
793

794
	prep_chip_selects(pvt);
795

796 797 798 799 800 801 802 803 804 805 806 807
	if (pvt->umc) {
		base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
		base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
		mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
		mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
	} else {
		base_reg0 = DCSB0;
		base_reg1 = DCSB1;
		mask_reg0 = DCSM0;
		mask_reg1 = DCSM1;
	}

808
	for_each_chip_select(cs, 0, pvt) {
809 810
		int reg0   = base_reg0 + (cs * 4);
		int reg1   = base_reg1 + (cs * 4);
811 812
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: 0x%x\n",
					 cs, *base0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: 0x%x\n",
					 cs, *base1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
					 cs, *base0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
					 cs, *base1, (pvt->fam == 0x10) ? reg1
833
								: reg0);
834
		}
835 836
	}

837
	for_each_chip_select_mask(cs, 0, pvt) {
838 839
		int reg0   = mask_reg0 + (cs * 4);
		int reg1   = mask_reg1 + (cs * 4);
840 841
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
842

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask1, (pvt->fam == 0x10) ? reg1
862
								: reg0);
863
		}
864 865 866
	}
}

867
static void determine_memory_type(struct amd64_pvt *pvt)
868
{
869
	u32 dram_ctrl, dcsm;
870

871 872 873 874 875 876 877 878 879
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
880
		if (pvt->dchr0 & DDR3_MODE)
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
908
		else
909
			pvt->dram_type = MEM_RDDR3;
910

911 912 913 914 915
		return;

	case 0x16:
		goto ddr3;

916 917 918 919 920 921 922 923 924
	case 0x17:
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

925 926 927 928 929
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
930

931 932
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
933 934
}

935
/* Get the number of DCT channels the memory controller is using. */
936 937
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
938
	int flag;
939

940
	if (pvt->ext_model >= K8_REV_F)
941
		/* RevF (NPT) and later */
942
		flag = pvt->dclr0 & WIDTH_128;
943
	else
944 945 946 947 948 949 950 951 952
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

953
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
954
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
955
{
956 957
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
958 959
	u8 start_bit = 1;
	u8 end_bit   = 47;
960 961 962 963 964 965 966
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
967

968
	if (pvt->fam == 0xf) {
969 970 971 972
		start_bit = 3;
		end_bit   = 39;
	}

973
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
974 975 976 977

	/*
	 * Erratum 637 workaround
	 */
978
	if (pvt->fam == 0x15) {
979 980
		u64 cc6_base, tmp_addr;
		u32 tmp;
981
		u8 intlv_en;
982

983
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
984 985 986 987 988 989 990
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
991
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
992 993 994 995 996 997 998 999

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1000
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1001 1002 1003 1004

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1005
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1006 1007

		/* OR DramIntlvSel into bits [14:12] */
1008
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1009 1010

		/* add remaining [11:0] bits from original MC4_ADDR */
1011
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1012 1013 1014 1015 1016

		return cc6_base | tmp_addr;
	}

	return addr;
1017 1018
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1035
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1036
{
1037
	struct amd_northbridge *nb;
1038 1039
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1040
	int off = range << 3;
1041
	u32 llim;
1042

1043 1044
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1045

1046
	if (pvt->fam == 0xf)
1047
		return;
1048

1049 1050
	if (!dram_rw(pvt, range))
		return;
1051

1052 1053
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1054

1055
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1056
	if (pvt->fam != 0x15)
1057
		return;
1058

1059 1060 1061
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1062

1063 1064 1065 1066 1067 1068
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1069 1070

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1071 1072
	if (WARN_ON(!f1))
		return;
1073

1074
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1075

1076
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1077

1078 1079
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1080

1081
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1082

1083 1084 1085 1086
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1087 1088
}

1089
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1090
				    struct err_info *err)
1091
{
1092
	struct amd64_pvt *pvt = mci->pvt_info;
1093

1094
	error_address_to_page_and_offset(sys_addr, err);
1095 1096 1097 1098 1099

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1100 1101
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1102 1103
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1104
		err->err_code = ERR_NODE;
1105 1106 1107 1108
		return;
	}

	/* Now map the sys_addr to a CSROW */
1109 1110 1111
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1112 1113 1114
		return;
	}

1115
	/* CHIPKILL enabled */
1116
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1117 1118
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1119 1120 1121 1122 1123
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1124
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1125
				      "possible error reporting race\n",
1126 1127
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1139
		err->channel = ((sys_addr & BIT(3)) != 0);
1140 1141 1142
	}
}

1143
static int ddr2_cs_size(unsigned i, bool dct_width)
1144
{
1145
	unsigned shift = 0;
1146

1147 1148 1149 1150
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1151
	else
1152
		shift = (i + 1) >> 1;
1153

1154 1155 1156 1157
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1158
				  unsigned cs_mode, int cs_mask_nr)
1159 1160 1161 1162 1163 1164 1165 1166
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1167
		unsigned diff;
1168 1169
		WARN_ON(cs_mode > 10);

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1197 1198 1199 1200 1201
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1202 1203
}

1204 1205 1206 1207 1208 1209 1210 1211
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1212
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1213
{
1214
	int i, j, channels = 0;
1215

1216
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1217
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1218
		return 2;
1219 1220

	/*
1221 1222 1223
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1224 1225 1226 1227
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1228
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1229

1230 1231 1232 1233 1234
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1235 1236
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1237

1238 1239 1240 1241 1242 1243
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1244 1245
	}

1246 1247 1248
	if (channels > 2)
		channels = 2;

1249
	amd64_info("MCT channel count: %d\n", channels);
1250 1251 1252 1253

	return channels;
}

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
	for (i = 0; i < NUM_UMCS; i++)
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1267
static int ddr3_cs_size(unsigned i, bool dct_width)
1268
{
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1324
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1325
				   unsigned cs_mode, int cs_mask_nr)
1326 1327 1328 1329
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1330 1331

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1332
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1333
	else
1334 1335 1336 1337 1338 1339 1340
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1341
				   unsigned cs_mode, int cs_mask_nr)
1342 1343
{
	WARN_ON(cs_mode > 12);
1344

1345
	return ddr3_cs_size(cs_mode, false);
1346 1347
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1379
/*
1380
 * F16h and F15h model 30h have only limited cs_modes.
1381 1382
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1383
				unsigned cs_mode, int cs_mask_nr)
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
				    unsigned int cs_mode, int csrow_nr)
{
	u32 base_addr = pvt->csels[umc].csbases[csrow_nr];

	/*  Each mask is used for every two base addresses. */
	u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];

	/*  Register [31:1] = Address [39:9]. Size is in kBs here. */
	u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;

	edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);

	/* Return size in MBs. */
	return size >> 10;
}

1411
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1412 1413
{

1414
	if (pvt->fam == 0xf)
1415 1416
		return;

1417
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1418 1419
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1420

1421 1422
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1423 1424

		if (!dct_ganging_enabled(pvt))
1425 1426
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1427

1428 1429 1430
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1431

1432 1433 1434 1435
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1436 1437
	}

1438
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1439 1440
}

1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1469 1470 1471
	return channel;
}

1472
/*
1473
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1474 1475
 * Interleaving Modes.
 */
1476
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1477
				bool hi_range_sel, u8 intlv_en)
1478
{
1479
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1480 1481

	if (dct_ganging_enabled(pvt))
1482
		return 0;
1483

1484 1485
	if (hi_range_sel)
		return dct_sel_high;
1486

1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1499
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1500 1501 1502 1503

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1504 1505 1506 1507 1508 1509
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1510 1511 1512 1513 1514
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1515 1516 1517 1518

	return 0;
}

1519
/* Convert the sys_addr to the normalized DCT address */
1520
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1521 1522
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1523 1524
{
	u64 chan_off;
1525 1526
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1527
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1543
		    dhar_valid(pvt) &&
1544
		    (sys_addr >= BIT_64(32)))
1545
			chan_off = hole_off;
1546 1547 1548
		else
			chan_off = dct_sel_base_off;
	} else {
1549 1550 1551 1552 1553 1554 1555 1556 1557
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1558
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1559
			chan_off = hole_off;
1560
		else
1561
			chan_off = dram_base;
1562 1563
	}

1564
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1565 1566 1567 1568 1569 1570
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1571
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1572
{
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1596
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1597 1598 1599
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1600
	u64 cs_base, cs_mask;
1601 1602 1603
	int cs_found = -EINVAL;
	int csrow;

1604
	mci = edac_mc_find(nid);
1605 1606 1607 1608 1609
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1610
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1611

1612 1613
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1614 1615
			continue;

1616
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1617

1618 1619
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1620

1621
		cs_mask = ~cs_mask;
1622

1623 1624
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1625

1626
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1627 1628 1629 1630
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1631
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1632

1633
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1634 1635 1636 1637 1638 1639
			break;
		}
	}
	return cs_found;
}

1640 1641 1642 1643 1644
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1645
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1646 1647 1648
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1649
	if (pvt->fam == 0x10) {
1650
		/* only revC3 and revE have that feature */
1651
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1652 1653 1654
			return sys_addr;
	}

1655
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1674
/* For a given @dram_range, check if @sys_addr falls within it. */
1675
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1676
				  u64 sys_addr, int *chan_sel)
1677
{
1678
	int cs_found = -EINVAL;
1679
	u64 chan_addr;
1680
	u32 dct_sel_base;
1681
	u8 channel;
1682
	bool high_range = false;
1683

1684
	u8 node_id    = dram_dst_node(pvt, range);
1685
	u8 intlv_en   = dram_intlv_en(pvt, range);
1686
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1687

1688 1689
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1690

1691 1692 1693 1694 1695 1696 1697 1698
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1699
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1700 1701
		return -EINVAL;

1702
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1703

1704 1705 1706 1707 1708 1709 1710 1711 1712
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1713
		high_range = true;
1714

1715
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1716

1717
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1718
					  high_range, dct_sel_base);
1719

1720 1721 1722 1723
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1724

1725
	/* remove channel interleave */
1726 1727 1728
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1743 1744
	}

1745
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1746

1747
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1748

1749
	if (cs_found >= 0)
1750
		*chan_sel = channel;
1751

1752 1753 1754
	return cs_found;
}

1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1792 1793
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1794 1795

	if (!(dct_cont_base_reg & BIT(0)) &&
1796 1797
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1798 1799 1800 1801 1802 1803 1804 1805
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

1806 1807 1808 1809 1810
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
1811 1812

	/* Verify we stay within the MAX number of channels allowed */
1813
	if (channel > 3)
1814 1815 1816 1817 1818 1819 1820 1821
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1822
		chan_offset = dct_base << 27;
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
1852
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
1880
{
1881 1882
	int cs_found = -EINVAL;
	unsigned range;
1883

1884 1885
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
1886 1887
			continue;

1888 1889 1890 1891
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
1892

1893 1894
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
1895
			cs_found = f1x_match_to_this_node(pvt, range,
1896
							  sys_addr, chan_sel);
1897 1898 1899 1900 1901 1902 1903 1904
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
1905 1906
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1907
 *
1908 1909
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
1910
 */
1911
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1912
				     struct err_info *err)
1913 1914 1915
{
	struct amd64_pvt *pvt = mci->pvt_info;

1916
	error_address_to_page_and_offset(sys_addr, err);
1917

1918 1919 1920
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1921 1922 1923 1924 1925 1926 1927 1928
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
1929
	if (dct_ganging_enabled(pvt))
1930
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1931 1932 1933
}

/*
1934
 * debug routine to display the memory sizes of all logical DIMMs and its
1935
 * CSROWs
1936
 */
1937
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
1938
{
1939
	int dimm, size0, size1;
1940 1941
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
1942

1943
	if (pvt->fam == 0xf) {
1944
		/* K8 families < revF not supported yet */
1945
	       if (pvt->ext_model < K8_REV_F)
1946 1947 1948 1949 1950
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
1961 1962
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
1963

1964 1965
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

1966 1967 1968 1969
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
1970
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1971 1972 1973 1974 1975
			/* For f15m60h, need multiplier for LRDIMM cs_size
			 * calculation. We pass 'dimm' value to the dbam_to_cs
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
1976
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1977 1978
						     DBAM_DIMM(dimm, dbam),
						     dimm);
1979 1980

		size1 = 0;
1981
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1982
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1983 1984
						     DBAM_DIMM(dimm, dbam),
						     dimm);
1985

1986
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1987 1988
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
1989 1990 1991
	}
}

1992
static struct amd64_family_type family_types[] = {
1993
	[K8_CPUS] = {
1994
		.ctl_name = "K8",
1995
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1996
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
1997
		.ops = {
1998 1999 2000
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2001 2002 2003
		}
	},
	[F10_CPUS] = {
2004
		.ctl_name = "F10h",
2005
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2006
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2007
		.ops = {
2008
			.early_channel_count	= f1x_early_channel_count,
2009
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2010
			.dbam_to_cs		= f10_dbam_to_chip_select,
2011 2012 2013 2014
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2015
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2016
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2017
		.ops = {
2018
			.early_channel_count	= f1x_early_channel_count,
2019
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2020
			.dbam_to_cs		= f15_dbam_to_chip_select,
2021 2022
		}
	},
2023 2024 2025
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2026
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2027 2028 2029 2030 2031 2032
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2033 2034 2035
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2036
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2037 2038 2039 2040 2041 2042
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2043 2044 2045
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2046
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2047 2048 2049 2050 2051 2052
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2053 2054 2055
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2056
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2057 2058 2059 2060 2061 2062
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2063 2064 2065 2066 2067 2068 2069 2070 2071
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_base_addr_to_cs_size,
		}
	},
2072 2073
};

2074
/*
2075 2076 2077
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2078
 *
2079
 * Algorithm courtesy of Ross LaFetra from AMD.
2080
 */
2081
static const u16 x4_vectors[] = {
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2118 2119
};

2120
static const u16 x8_vectors[] = {
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2142
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2143
			   unsigned v_dim)
2144
{
2145 2146 2147 2148
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2149 2150
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2163

2164 2165 2166
					if (!s)
						return err_sym;
				}
2167

2168 2169 2170 2171
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2172 2173
	}

2174
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2175 2176
	return -1;
}
2177

2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2220 2221
	int err_sym = -1;

2222
	if (pvt->ecc_sym_sz == 8)
2223 2224
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2225 2226
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2227 2228
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2229
					  pvt->ecc_sym_sz);
2230
	else {
2231
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2232
		return err_sym;
2233
	}
2234

2235
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2236 2237
}

2238
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2239
			    u8 ecc_type)
2240
{
2241 2242
	enum hw_event_mc_err_type err_type;
	const char *string;
2243

2244 2245 2246 2247
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2248 2249
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2250 2251
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2252 2253 2254
		return;
	}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
		string = "unknown syndrome - possible error reporting race";
		break;
	default:
		string = "WTF error";
		break;
2271
	}
2272 2273 2274 2275 2276

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2277 2278
}

2279
static inline void decode_bus_error(int node_id, struct mce *m)
2280
{
2281 2282
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2283
	u8 ecc_type = (m->status >> 45) & 0x3;
2284 2285
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2286 2287
	u64 sys_addr;
	struct err_info err;
2288

2289 2290 2291 2292 2293 2294
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2295
	/* Bail out early if this was an 'observed' error */
2296
	if (PP(ec) == NBSL_PP_OBS)
2297
		return;
2298

2299 2300
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2301 2302
		return;

2303 2304
	memset(&err, 0, sizeof(err));

2305
	sys_addr = get_error_address(pvt, m);
2306

2307
	if (ecc_type == 2)
2308 2309 2310 2311
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2312
	__log_ecc_error(mci, &err, ecc_type);
2313 2314
}

2315
/*
2316 2317
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2318
 * Reserve F0 and F6 on systems with a UMC.
2319
 */
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
		amd64_err("error F0 device not found: vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, pci_id1);
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

		amd64_err("error F6 device not found: vendor %x device 0x%x (broken BIOS?)\n",
			  PCI_VENDOR_ID_AMD, pci_id2);

			return -ENODEV;
		}
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2348
	/* Reserve the ADDRESS MAP Device */
2349
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2350
	if (!pvt->F1) {
2351 2352
	amd64_err("error address map device not found: vendor %x device 0x%x (broken BIOS?)\n",
		  PCI_VENDOR_ID_AMD, pci_id1);
2353
		return -ENODEV;
2354 2355
	}

2356
	/* Reserve the DCT Device */
2357
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2358
	if (!pvt->F2) {
2359 2360
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2361

2362 2363 2364
	amd64_err("error F2 device not found: vendor %x device 0x%x (broken BIOS?)\n",
		  PCI_VENDOR_ID_AMD, pci_id2);
			return -ENODEV;
2365
	}
2366

2367 2368 2369
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2370 2371 2372 2373

	return 0;
}

2374
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2375
{
2376 2377 2378 2379 2380 2381 2382
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2383 2384
}

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

		for (i = 0; i < NUM_UMCS; i++) {
			/* Check enabled channels only: */
			if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
			    (pvt->umc[i].ecc_ctrl & BIT(7))) {
				pvt->ecc_sym_sz = 8;
				break;
			}
		}

		return;
	}

	if (pvt->fam >= 0x10) {
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
	for (i = 0; i < NUM_UMCS; i++) {

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
	}
}

2439 2440 2441 2442
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2443
static void read_mc_regs(struct amd64_pvt *pvt)
2444
{
2445
	unsigned int range;
2446 2447 2448 2449
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2450
	 * those are Read-As-Zero.
2451
	 */
2452
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2453
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2454

2455
	/* Check first whether TOP_MEM2 is enabled: */
2456
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2457
	if (msr_val & BIT(21)) {
2458
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2459
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2460
	} else {
2461
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2462 2463 2464 2465 2466 2467 2468 2469
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2470

2471
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2472

2473
	read_dram_ctl_register(pvt);
2474

2475 2476
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2477

2478 2479 2480 2481 2482 2483 2484
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2485 2486 2487 2488
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2489

2490 2491 2492 2493 2494 2495
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2496 2497
	}

2498
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2499
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2500

2501
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2502

2503 2504
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2505

2506
	if (!dct_ganging_enabled(pvt)) {
2507 2508
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2509
	}
2510

2511 2512 2513
skip:
	read_dct_base_mask(pvt);

2514 2515
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2516

2517
	determine_ecc_sym_sz(pvt);
2518

2519
	dump_misc_regs(pvt);
2520 2521 2522 2523 2524 2525
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2526
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2556
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2557
{
2558
	u32 cs_mode, nr_pages;
2559
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2560

2561

2562 2563 2564 2565 2566 2567 2568
	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
B
Borislav Petkov 已提交
2569
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2570

2571 2572
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
							   << (20 - PAGE_SHIFT);
2573

2574 2575 2576
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
		    csrow_nr, dct,  cs_mode);
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2577 2578 2579 2580 2581 2582 2583 2584

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2585
static int init_csrows(struct mem_ctl_info *mci)
2586
{
2587
	struct amd64_pvt *pvt = mci->pvt_info;
2588
	struct csrow_info *csrow;
2589
	struct dimm_info *dimm;
2590
	enum edac_type edac_mode;
2591
	int i, j, empty = 1;
2592
	int nr_pages = 0;
2593
	u32 val;
2594

2595
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2596

2597
	pvt->nbcfg = val;
2598

2599 2600 2601
	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2602

2603 2604 2605
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2606
	for_each_chip_select(i, 0, pvt) {
2607 2608
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2609

2610
		if (pvt->fam != 0xf)
2611 2612 2613
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2614 2615
			continue;

2616
		csrow = mci->csrows[i];
2617
		empty = 0;
2618 2619 2620 2621

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2622
		if (row_dct0) {
2623
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2624 2625
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2626

2627
		/* K8 has only one DCT */
2628
		if (pvt->fam != 0xf && row_dct1) {
2629
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2630 2631 2632 2633

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2634

2635
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2636 2637 2638 2639

		/*
		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
		 */
2640
		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2641 2642
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
				    EDAC_S4ECD4ED : EDAC_SECDED;
2643
		else
2644 2645 2646
			edac_mode = EDAC_NONE;

		for (j = 0; j < pvt->channel_count; j++) {
2647
			dimm = csrow->channels[j]->dimm;
2648
			dimm->mtype = pvt->dram_type;
2649
			dimm->edac_mode = edac_mode;
2650
		}
2651 2652 2653 2654
	}

	return empty;
}
2655

2656
/* get all cores on this DCT */
2657
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2658 2659 2660 2661 2662 2663 2664 2665 2666
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2667
static bool nb_mce_bank_enabled_on_node(u16 nid)
2668 2669
{
	cpumask_var_t mask;
2670
	int cpu, nbe;
2671 2672 2673
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2674
		amd64_warn("%s: Error allocating mask\n", __func__);
2675 2676 2677 2678 2679 2680 2681 2682
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2683
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2684
		nbe = reg->l & MSR_MCGCTL_NBE;
2685

2686 2687 2688
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2700
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2701 2702
{
	cpumask_var_t cmask;
2703
	int cpu;
2704 2705

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2706
		amd64_warn("%s: error allocating mask\n", __func__);
2707 2708 2709
		return false;
	}

2710
	get_cpus_on_this_dct_cpumask(cmask, nid);
2711 2712 2713 2714 2715

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2716 2717
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2718
		if (on) {
2719
			if (reg->l & MSR_MCGCTL_NBE)
2720
				s->flags.nb_mce_enable = 1;
2721

2722
			reg->l |= MSR_MCGCTL_NBE;
2723 2724
		} else {
			/*
2725
			 * Turn off NB MCE reporting only when it was off before
2726
			 */
2727
			if (!s->flags.nb_mce_enable)
2728
				reg->l &= ~MSR_MCGCTL_NBE;
2729 2730 2731 2732 2733 2734 2735 2736 2737
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2738
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2739
				       struct pci_dev *F3)
2740
{
2741
	bool ret = true;
B
Borislav Petkov 已提交
2742
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2743

2744 2745 2746 2747 2748
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2749
	amd64_read_pci_cfg(F3, NBCTL, &value);
2750

2751 2752
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2753 2754

	value |= mask;
B
Borislav Petkov 已提交
2755
	amd64_write_pci_cfg(F3, NBCTL, value);
2756

2757
	amd64_read_pci_cfg(F3, NBCFG, &value);
2758

2759 2760
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2761

2762
	if (!(value & NBCFG_ECC_ENABLE)) {
2763
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2764

2765
		s->flags.nb_ecc_prev = 0;
2766

2767
		/* Attempt to turn on DRAM ECC Enable */
2768 2769
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2770

2771
		amd64_read_pci_cfg(F3, NBCFG, &value);
2772

2773
		if (!(value & NBCFG_ECC_ENABLE)) {
2774 2775
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2776
			ret = false;
2777
		} else {
2778
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2779
		}
2780
	} else {
2781
		s->flags.nb_ecc_prev = 1;
2782
	}
2783

2784 2785
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2786

2787
	return ret;
2788 2789
}

2790
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2791
					struct pci_dev *F3)
2792
{
B
Borislav Petkov 已提交
2793 2794
	u32 value, mask = 0x3;		/* UECC/CECC enable */

2795
	if (!s->nbctl_valid)
2796 2797
		return;

B
Borislav Petkov 已提交
2798
	amd64_read_pci_cfg(F3, NBCTL, &value);
2799
	value &= ~mask;
2800
	value |= s->old_nbctl;
2801

B
Borislav Petkov 已提交
2802
	amd64_write_pci_cfg(F3, NBCTL, value);
2803

2804 2805
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
2806 2807 2808
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2809 2810 2811
	}

	/* restore the NB Enable MCGCTL bit */
2812
	if (toggle_ecc_err_reporting(s, nid, OFF))
2813
		amd64_warn("Error restoring NB MCGCTL settings!\n");
2814 2815 2816
}

/*
2817 2818 2819 2820
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
2821
 */
2822 2823 2824 2825 2826
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
2827

2828
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
2829
{
2830
	bool nb_mce_en = false;
2831 2832
	u8 ecc_en = 0, i;
	u32 value;
2833

2834 2835
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
2836

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
		for (i = 0; i < NUM_UMCS; i++) {
			u32 base = get_umc_base(i);

			/* Only check enabled UMCs. */
			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
				continue;

			if (!(value & UMC_SDP_INIT))
				continue;

			umc_en_mask |= BIT(i);

			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
				continue;

			if (value & UMC_ECC_ENABLED)
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
		amd64_read_pci_cfg(F3, NBCFG, &value);
2864

2865 2866 2867 2868 2869 2870 2871 2872 2873
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
			amd64_notice("NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
				     MSR_IA32_MCG_CTL, nid);
	}

	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2874

2875 2876 2877 2878 2879
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
2880 2881
}

2882 2883
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
2884 2885 2886 2887 2888 2889
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

2890
	if (pvt->nbcap & NBCAP_SECDED)
2891 2892
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

2893
	if (pvt->nbcap & NBCAP_CHIPKILL)
2894 2895
		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;

2896
	mci->edac_cap		= determine_edac_cap(pvt);
2897 2898
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
2899
	mci->ctl_name		= fam->ctl_name;
2900
	mci->dev_name		= pci_name(pvt->F3);
2901 2902 2903
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
2904 2905
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
2906 2907
}

2908 2909 2910
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
2911
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
2912
{
2913 2914
	struct amd64_family_type *fam_type = NULL;

2915
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
2916
	pvt->stepping	= boot_cpu_data.x86_mask;
2917 2918 2919 2920
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
2921
	case 0xf:
2922 2923
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
2924
		break;
2925

2926
	case 0x10:
2927 2928
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
2929 2930 2931
		break;

	case 0x15:
2932
		if (pvt->model == 0x30) {
2933 2934
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
2935
			break;
2936 2937 2938 2939
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
2940 2941
		}

2942 2943
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
2944 2945
		break;

2946
	case 0x16:
2947 2948 2949 2950 2951
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
2952 2953
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
2954 2955
		break;

2956 2957 2958 2959 2960
	case 0x17:
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
		break;

2961
	default:
2962
		amd64_err("Unsupported family!\n");
2963
		return NULL;
2964
	}
2965

2966
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
2967
		     (pvt->fam == 0xf ?
2968 2969 2970
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
2971
	return fam_type;
2972 2973
}

2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

2984
static int init_one_instance(unsigned int nid)
2985
{
2986
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2987
	struct amd64_family_type *fam_type = NULL;
2988
	struct mem_ctl_info *mci = NULL;
2989
	struct edac_mc_layer layers[2];
2990
	struct amd64_pvt *pvt = NULL;
2991
	u16 pci_id1, pci_id2;
2992 2993 2994 2995 2996
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
2997
		goto err_ret;
2998

2999
	pvt->mc_node_id	= nid;
3000
	pvt->F3 = F3;
3001

3002
	ret = -EINVAL;
3003
	fam_type = per_family_init(pvt);
3004
	if (!fam_type)
3005 3006
		goto err_free;

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
	if (pvt->fam >= 0x17) {
		pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
		if (!pvt->umc) {
			ret = -ENOMEM;
			goto err_free;
		}

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3022
	if (err)
3023
		goto err_post_init;
3024

3025
	read_mc_regs(pvt);
3026 3027 3028 3029

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3030
	 * tables in the 'mci' structure.
3031
	 */
3032
	ret = -EINVAL;
3033 3034
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3035
		goto err_siblings;
3036 3037

	ret = -ENOMEM;
3038 3039 3040 3041
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3042 3043 3044 3045 3046 3047 3048

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
3049
	layers[1].is_virt_csrow = false;
3050

3051
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3052
	if (!mci)
3053
		goto err_siblings;
3054 3055

	mci->pvt_info = pvt;
3056
	mci->pdev = &pvt->F3->dev;
3057

3058
	setup_mci_misc_attrs(mci, fam_type);
3059 3060

	if (init_csrows(mci))
3061 3062 3063
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3064
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3065
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3066 3067 3068
		goto err_add_mc;
	}

3069 3070 3071 3072
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

3073
	amd_register_ecc_decoder(decode_bus_error);
3074

3075 3076 3077 3078 3079
	return 0;

err_add_mc:
	edac_mc_free(mci);

3080 3081
err_siblings:
	free_mc_sibling_devs(pvt);
3082

3083 3084 3085 3086
err_post_init:
	if (pvt->fam >= 0x17)
		kfree(pvt->umc);

3087 3088
err_free:
	kfree(pvt);
3089

3090
err_ret:
3091 3092 3093
	return ret;
}

3094
static int probe_one_instance(unsigned int nid)
3095
{
3096
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3097
	struct ecc_settings *s;
3098
	int ret;
3099

3100 3101 3102
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3103
		goto err_out;
3104 3105 3106

	ecc_stngs[nid] = s;

3107 3108 3109 3110 3111 3112
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

3113 3114 3115 3116 3117
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3118 3119 3120 3121 3122

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3123
	ret = init_one_instance(nid);
3124
	if (ret < 0) {
3125
		amd64_err("Error probing instance: %d\n", nid);
3126 3127 3128

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3129
	}
3130 3131

	return ret;
3132 3133 3134 3135 3136 3137 3138

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3139 3140
}

3141
static void remove_one_instance(unsigned int nid)
3142
{
3143 3144
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3145 3146
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3147

3148
	mci = find_mci_by_dev(&F3->dev);
3149 3150
	WARN_ON(!mci);

3151
	/* Remove from EDAC CORE tracking list */
3152
	mci = edac_mc_del_mc(&F3->dev);
3153 3154 3155 3156 3157
	if (!mci)
		return;

	pvt = mci->pvt_info;

3158
	restore_ecc_error_reporting(s, nid, F3);
3159

3160
	free_mc_sibling_devs(pvt);
3161

3162 3163
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
3164
	amd_unregister_ecc_decoder(decode_bus_error);
3165

3166 3167
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3168

3169
	/* Free the EDAC CORE resources */
3170 3171 3172
	mci->pvt_info = NULL;

	kfree(pvt);
3173 3174 3175
	edac_mc_free(mci);
}

3176
static void setup_pci_device(void)
3177 3178 3179 3180
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3181
	if (pci_ctl)
3182 3183
		return;

3184
	mci = edac_mc_find(0);
3185 3186
	if (!mci)
		return;
3187

3188
	pvt = mci->pvt_info;
3189 3190 3191 3192
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3193 3194 3195
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3196 3197 3198
	}
}

3199 3200 3201 3202 3203 3204 3205 3206 3207
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3208 3209
static int __init amd64_edac_init(void)
{
3210
	int err = -ENODEV;
3211
	int i;
3212

3213
	if (amd_cache_northbridges() < 0)
3214
		goto err_ret;
3215

3216 3217
	opstate_init();

3218
	err = -ENOMEM;
3219
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
3220
	if (!ecc_stngs)
3221
		goto err_free;
3222

3223
	msrs = msrs_alloc();
3224
	if (!msrs)
3225
		goto err_free;
3226

3227 3228 3229 3230 3231
	for (i = 0; i < amd_nb_num(); i++)
		if (probe_one_instance(i)) {
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3232

3233 3234
			goto err_pci;
		}
3235

3236
	setup_pci_device();
T
Tomasz Pala 已提交
3237 3238 3239 3240 3241

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3242 3243
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3244
	return 0;
3245

3246 3247 3248
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3249

3250 3251 3252 3253
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3254
err_ret:
3255 3256 3257 3258 3259
	return err;
}

static void __exit amd64_edac_exit(void)
{
3260 3261
	int i;

3262 3263
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3264

3265 3266
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3267

3268 3269 3270
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3271 3272
	msrs_free(msrs);
	msrs = NULL;
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");