amd64_edac.c 101.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "amd64_edac.h"
3
#include <asm/amd_nb.h>
4

5
static struct edac_pci_ctl_info *pci_ctl;
6 7 8 9 10 11 12 13

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

14
static struct msr __percpu *msrs;
15

16 17
static struct amd64_family_type *fam_type;

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23
/* Device for the PCI component */
static struct device *pci_ctl_dev;

24 25 26 27 28 29 30
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
31
static const struct scrubrate {
32 33 34
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

60 61
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

99 100 101 102
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
103
 * K8: has a single DCT only and no address offsets >= 0x100
104 105 106 107 108
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
109
 * F16h: has only 1 DCT
110 111
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
112
 */
113 114
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
115
{
116 117 118 119 120
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
121

122 123 124 125 126 127 128 129 130
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
131

132 133 134
			offset += 0x100;
		}
		break;
135

136 137 138 139 140 141 142 143
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
144

145 146 147 148
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
149

150 151
	default:
		break;
152
	}
153
	return amd64_read_pci_cfg(pvt->F2, offset, val);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
185
/*
186
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
187 188
 * issue. If requested is too big, then use last maximum value found.
 */
189
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
190 191 192 193 194 195 196 197 198
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
199 200 201
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
202
	 */
203
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
204 205 206 207
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
208
		if (scrubrates[i].scrubval < min_rate)
209 210 211 212 213 214 215 216
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

217
	if (pvt->umc) {
218 219
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
220 221 222 223 224 225 226
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
227

228 229 230
	if (scrubval)
		return scrubrates[i].bandwidth;

231 232 233
	return 0;
}

234
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
235 236
{
	struct amd64_pvt *pvt = mci->pvt_info;
237
	u32 min_scrubrate = 0x5;
238

239
	if (pvt->fam == 0xf)
240 241
		min_scrubrate = 0x0;

242 243 244 245
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
246

247 248 249 250
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
251 252
}

253
static int get_scrub_rate(struct mem_ctl_info *mci)
254 255
{
	struct amd64_pvt *pvt = mci->pvt_info;
256
	int i, retval = -EINVAL;
257
	u32 scrubval = 0;
258

259
	if (pvt->umc) {
260 261 262 263 264 265 266 267
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
268 269 270 271
	} else if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
272

273 274
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
275 276
		else
			amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
277
	} else {
278
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279
	}
280 281 282

	scrubval = scrubval & 0x001F;

283
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
284
		if (scrubrates[i].scrubval == scrubval) {
285
			retval = scrubrates[i].bandwidth;
286 287 288
			break;
		}
	}
289
	return retval;
290 291
}

292
/*
293 294
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
295
 */
296
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
297
{
298
	u64 addr;
299 300 301 302 303 304 305 306 307

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

308 309
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
310 311 312 313 314 315 316 317 318 319 320 321
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
322
	u8 node_id;
323 324 325 326 327 328 329 330 331 332 333 334 335
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
336
	intlv_en = dram_intlv_en(pvt, 0);
337 338

	if (intlv_en == 0) {
339
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
340
			if (base_limit_match(pvt, sys_addr, node_id))
341
				goto found;
342
		}
343
		goto err_no_match;
344 345
	}

346 347 348
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
349
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
350 351 352 353 354 355
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
356
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
357 358
			break;	/* intlv_sel field matches */

359
		if (++node_id >= DRAM_RANGES)
360 361 362 363
			goto err_no_match;
	}

	/* sanity test for sys_addr */
364
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
365 366 367
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
368 369 370 371
		return NULL;
	}

found:
372
	return edac_mc_find((int)node_id);
373 374

err_no_match:
375 376
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
377 378 379

	return NULL;
}
380 381

/*
382 383
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
384
 */
385 386
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
387
{
388 389
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
390

391
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
392 393
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
394 395
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
396
		addr_shift	= 4;
397 398

	/*
399 400 401 402 403
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
404 405 406
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

407 408
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
409 410 411

		*mask = ~0ULL;
		/* poke holes for the csmask */
412 413
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
414

415 416
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
417 418

		return;
419 420 421 422
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
423

424
		if (pvt->fam == 0x15)
425 426
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
427
		else
428 429
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
430
	}
431

432
	*base  = (csbase & base_bits) << addr_shift;
433

434 435 436 437 438
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
439 440
}

441 442 443
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

444 445 446
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

447 448 449
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

450
#define for_each_umc(i) \
451
	for (i = 0; i < fam_type->max_mcs; i++)
452

453 454 455 456 457 458 459 460 461 462 463 464
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

465 466
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
467 468
			continue;

469 470 471
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
472 473

		if ((input_addr & mask) == (base & mask)) {
474 475 476
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
477 478 479 480

			return csrow;
		}
	}
481 482
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
503 504
static int get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			      u64 *hole_offset, u64 *hole_size)
505 506 507 508
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
509
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
510 511
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
512 513 514
		return 1;
	}

515
	/* valid for Fam10h and above */
516
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
517
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
518 519 520
		return 1;
	}

521
	if (!dhar_valid(pvt)) {
522 523
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

545 546
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
547

548 549
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
550

551 552 553
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
554 555 556

	return 0;
}
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610

#ifdef CONFIG_EDAC_DEBUG
#define EDAC_DCT_ATTR_SHOW(reg)						\
static ssize_t reg##_show(struct device *dev,				\
			 struct device_attribute *mattr, char *data)	\
{									\
	struct mem_ctl_info *mci = to_mci(dev);				\
	struct amd64_pvt *pvt = mci->pvt_info;				\
									\
	return sprintf(data, "0x%016llx\n", (u64)pvt->reg);		\
}

EDAC_DCT_ATTR_SHOW(dhar);
EDAC_DCT_ATTR_SHOW(dbam0);
EDAC_DCT_ATTR_SHOW(top_mem);
EDAC_DCT_ATTR_SHOW(top_mem2);

static ssize_t hole_show(struct device *dev, struct device_attribute *mattr,
			 char *data)
{
	struct mem_ctl_info *mci = to_mci(dev);

	u64 hole_base = 0;
	u64 hole_offset = 0;
	u64 hole_size = 0;

	get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);

	return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset,
						 hole_size);
}

/*
 * update NUM_DBG_ATTRS in case you add new members
 */
static DEVICE_ATTR(dhar, S_IRUGO, dhar_show, NULL);
static DEVICE_ATTR(dbam, S_IRUGO, dbam0_show, NULL);
static DEVICE_ATTR(topmem, S_IRUGO, top_mem_show, NULL);
static DEVICE_ATTR(topmem2, S_IRUGO, top_mem2_show, NULL);
static DEVICE_ATTR(dram_hole, S_IRUGO, hole_show, NULL);

static struct attribute *dbg_attrs[] = {
	&dev_attr_dhar.attr,
	&dev_attr_dbam.attr,
	&dev_attr_topmem.attr,
	&dev_attr_topmem2.attr,
	&dev_attr_dram_hole.attr,
	NULL
};

static const struct attribute_group dbg_group = {
	.attrs = dbg_attrs,
};

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
static ssize_t inject_section_show(struct device *dev,
				   struct device_attribute *mattr, char *buf)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	return sprintf(buf, "0x%x\n", pvt->injection.section);
}

/*
 * store error injection section value which refers to one of 4 16-byte sections
 * within a 64-byte cacheline
 *
 * range: 0..3
 */
static ssize_t inject_section_store(struct device *dev,
				    struct device_attribute *mattr,
				    const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	if (value > 3) {
		amd64_warn("%s: invalid section 0x%lx\n", __func__, value);
		return -EINVAL;
	}

	pvt->injection.section = (u32) value;
	return count;
}

static ssize_t inject_word_show(struct device *dev,
				struct device_attribute *mattr, char *buf)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	return sprintf(buf, "0x%x\n", pvt->injection.word);
}

/*
 * store error injection word value which refers to one of 9 16-bit word of the
 * 16-byte (128-bit + ECC bits) section
 *
 * range: 0..8
 */
static ssize_t inject_word_store(struct device *dev,
				 struct device_attribute *mattr,
				 const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	if (value > 8) {
		amd64_warn("%s: invalid word 0x%lx\n", __func__, value);
		return -EINVAL;
	}

	pvt->injection.word = (u32) value;
	return count;
}

static ssize_t inject_ecc_vector_show(struct device *dev,
				      struct device_attribute *mattr,
				      char *buf)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	return sprintf(buf, "0x%x\n", pvt->injection.bit_map);
}

/*
 * store 16 bit error injection vector which enables injecting errors to the
 * corresponding bit within the error injection word above. When used during a
 * DRAM ECC read, it holds the contents of the of the DRAM ECC bits.
 */
static ssize_t inject_ecc_vector_store(struct device *dev,
				       struct device_attribute *mattr,
				       const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 16, &value);
	if (ret < 0)
		return ret;

	if (value & 0xFFFF0000) {
		amd64_warn("%s: invalid EccVector: 0x%lx\n", __func__, value);
		return -EINVAL;
	}

	pvt->injection.bit_map = (u32) value;
	return count;
}

/*
 * Do a DRAM ECC read. Assemble staged values in the pvt area, format into
 * fields needed by the injection registers and read the NB Array Data Port.
 */
static ssize_t inject_read_store(struct device *dev,
				 struct device_attribute *mattr,
				 const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	u32 section, word_bits;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	/* Form value to choose 16-byte section of cacheline */
	section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);

	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);

	word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection);

	/* Issue 'word' and 'bit' along with the READ request */
	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);

	edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);

	return count;
}

/*
 * Do a DRAM ECC write. Assemble staged values in the pvt area and format into
 * fields needed by the injection registers.
 */
static ssize_t inject_write_store(struct device *dev,
				  struct device_attribute *mattr,
				  const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 section, word_bits, tmp;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	/* Form value to choose 16-byte section of cacheline */
	section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);

	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);

	word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection);

	pr_notice_once("Don't forget to decrease MCE polling interval in\n"
			"/sys/bus/machinecheck/devices/machinecheck<CPUNUM>/check_interval\n"
			"so that you can get the error report faster.\n");

	on_each_cpu(disable_caches, NULL, 1);

	/* Issue 'word' and 'bit' along with the READ request */
	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);

 retry:
	/* wait until injection happens */
	amd64_read_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, &tmp);
	if (tmp & F10_NB_ARR_ECC_WR_REQ) {
		cpu_relax();
		goto retry;
	}

	on_each_cpu(enable_caches, NULL, 1);

	edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);

	return count;
}

/*
 * update NUM_INJ_ATTRS in case you add new members
 */

static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
		   inject_section_show, inject_section_store);
static DEVICE_ATTR(inject_word, S_IRUGO | S_IWUSR,
		   inject_word_show, inject_word_store);
static DEVICE_ATTR(inject_ecc_vector, S_IRUGO | S_IWUSR,
		   inject_ecc_vector_show, inject_ecc_vector_store);
static DEVICE_ATTR(inject_write, S_IWUSR,
		   NULL, inject_write_store);
static DEVICE_ATTR(inject_read,  S_IWUSR,
		   NULL, inject_read_store);

static struct attribute *inj_attrs[] = {
	&dev_attr_inject_section.attr,
	&dev_attr_inject_word.attr,
	&dev_attr_inject_ecc_vector.attr,
	&dev_attr_inject_write.attr,
	&dev_attr_inject_read.attr,
	NULL
};

static umode_t inj_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
	struct amd64_pvt *pvt = mci->pvt_info;

831 832 833 834 835
	/* Families which have that injection hw */
	if (pvt->fam >= 0x10 && pvt->fam <= 0x16)
		return attr->mode;

	return 0;
836 837 838 839 840 841 842
}

static const struct attribute_group inj_group = {
	.attrs = inj_attrs,
	.is_visible = inj_is_visible,
};
#endif /* CONFIG_EDAC_DEBUG */
843

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
875
	struct amd64_pvt *pvt = mci->pvt_info;
876
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
877
	int ret;
878

879
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
880

881
	ret = get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
882
	if (!ret) {
883 884
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
885 886 887
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

888 889 890
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
891 892 893 894 895 896 897 898 899 900 901 902 903 904

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
905
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
906

907 908
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
940
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
941
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
942
		      (dram_addr & 0xfff);
943

944 945 946
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
962
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
963
		 (unsigned long)sys_addr, (unsigned long)input_addr);
964 965 966 967 968 969

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
970
						    struct err_info *err)
971
{
972 973
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
991 992
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
993 994
	return csrow;
}
995

996
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
997 998 999 1000 1001

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
1002
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
1003
{
1004
	unsigned long edac_cap = EDAC_FLAG_NONE;
1005 1006 1007 1008
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
1009

1010
		for_each_umc(i) {
1011 1012
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
1013

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
1031 1032 1033 1034

	return edac_cap;
}

1035
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
1036

1037
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
1038
{
1039
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

1054

1055 1056
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
1057

1058
	if (pvt->fam == 0x10)
1059 1060
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
1061

1062 1063 1064 1065 1066
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
1067 1068
}

1069 1070
#define CS_EVEN_PRIMARY		BIT(0)
#define CS_ODD_PRIMARY		BIT(1)
1071 1072
#define CS_EVEN_SECONDARY	BIT(2)
#define CS_ODD_SECONDARY	BIT(3)
1073

1074 1075
#define CS_EVEN			(CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
#define CS_ODD			(CS_ODD_PRIMARY | CS_ODD_SECONDARY)
1076 1077

static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
1078
{
1079
	int cs_mode = 0;
1080

1081 1082
	if (csrow_enabled(2 * dimm, ctrl, pvt))
		cs_mode |= CS_EVEN_PRIMARY;
1083

1084 1085 1086
	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_PRIMARY;

1087 1088 1089 1090
	/* Asymmetric dual-rank DIMM support. */
	if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_SECONDARY;

1091
	return cs_mode;
1092 1093
}

1094 1095
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
1096
	int dimm, size0, size1, cs0, cs1, cs_mode;
1097 1098 1099

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

1100
	for (dimm = 0; dimm < 2; dimm++) {
1101 1102 1103
		cs0 = dimm * 2;
		cs1 = dimm * 2 + 1;

1104 1105 1106 1107
		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);

		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
1108 1109

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1110 1111
				cs0,	size0,
				cs1,	size1);
1112 1113 1114 1115 1116 1117 1118 1119
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

1120
	for_each_umc(i) {
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

1159
/* Display and decode various NB registers for debug purposes. */
1160
static void __dump_misc_regs(struct amd64_pvt *pvt)
1161
{
1162
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
1163

1164 1165
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
1166

1167 1168 1169
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
1170

1171
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
1172

1173
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
1174

1175 1176
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
1177 1178
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
1179

1180
	debug_display_dimm_sizes(pvt, 0);
1181

1182
	/* everything below this point is Fam10h and above */
1183
	if (pvt->fam == 0xf)
1184
		return;
1185

1186
	debug_display_dimm_sizes(pvt, 1);
1187

1188
	/* Only if NOT ganged does dclr1 have valid info */
1189
	if (!dct_ganging_enabled(pvt))
1190
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

1203
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
1204 1205
}

1206
/*
1207
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
1208
 */
1209
static void prep_chip_selects(struct amd64_pvt *pvt)
1210
{
1211
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
1212 1213
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
1214
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
1215 1216
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
1217 1218 1219 1220 1221 1222 1223 1224
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

1225
	} else {
1226 1227
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
1228 1229 1230
	}
}

1231 1232
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
1233 1234 1235 1236 1237 1238
	u32 umc_base_reg, umc_base_reg_sec;
	u32 umc_mask_reg, umc_mask_reg_sec;
	u32 base_reg, base_reg_sec;
	u32 mask_reg, mask_reg_sec;
	u32 *base, *base_sec;
	u32 *mask, *mask_sec;
1239 1240 1241 1242
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
1243
		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
1244 1245 1246

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];
1247
			base_sec = &pvt->csels[umc].csbases_sec[cs];
1248 1249

			base_reg = umc_base_reg + (cs * 4);
1250
			base_reg_sec = umc_base_reg_sec + (cs * 4);
1251 1252 1253 1254

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
1255 1256 1257 1258

			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base_sec, base_reg_sec);
1259 1260 1261
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
1262
		umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
1263 1264 1265

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];
1266
			mask_sec = &pvt->csels[umc].csmasks_sec[cs];
1267 1268

			mask_reg = umc_mask_reg + (cs * 4);
1269
			mask_reg_sec = umc_mask_reg_sec + (cs * 4);
1270 1271 1272 1273

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
1274 1275 1276 1277

			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask_sec, mask_reg_sec);
1278 1279 1280 1281
		}
	}
}

1282
/*
1283
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
1284
 */
1285
static void read_dct_base_mask(struct amd64_pvt *pvt)
1286
{
1287
	int cs;
1288

1289
	prep_chip_selects(pvt);
1290

1291 1292
	if (pvt->umc)
		return read_umc_base_mask(pvt);
1293

1294
	for_each_chip_select(cs, 0, pvt) {
1295 1296
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
1297 1298
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
1299

1300 1301 1302
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1303

1304 1305
		if (pvt->fam == 0xf)
			continue;
1306

1307 1308 1309 1310
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1311 1312
	}

1313
	for_each_chip_select_mask(cs, 0, pvt) {
1314 1315
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1316 1317
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1318

1319 1320 1321
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1322

1323 1324
		if (pvt->fam == 0xf)
			continue;
1325

1326 1327 1328 1329
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1330 1331 1332
	}
}

1333
static void determine_memory_type(struct amd64_pvt *pvt)
1334
{
1335
	u32 dram_ctrl, dcsm;
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	if (pvt->umc) {
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;
	}

1347 1348 1349 1350 1351 1352 1353 1354 1355
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1356
		if (pvt->dchr0 & DDR3_MODE)
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1384
		else
1385
			pvt->dram_type = MEM_RDDR3;
1386

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
		return;

	case 0x16:
		goto ddr3;

	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1397

1398 1399
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1400 1401
}

1402
/* Get the number of DCT channels the memory controller is using. */
1403 1404
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1405
	int flag;
1406

1407
	if (pvt->ext_model >= K8_REV_F)
1408
		/* RevF (NPT) and later */
1409
		flag = pvt->dclr0 & WIDTH_128;
1410
	else
1411 1412 1413 1414 1415 1416 1417 1418 1419
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1420
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1421
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1422
{
1423
	u16 mce_nid = topology_die_id(m->extcpu);
1424
	struct mem_ctl_info *mci;
1425 1426
	u8 start_bit = 1;
	u8 end_bit   = 47;
1427 1428 1429 1430 1431 1432 1433
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1434

1435
	if (pvt->fam == 0xf) {
1436 1437 1438 1439
		start_bit = 3;
		end_bit   = 39;
	}

1440
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1441 1442 1443 1444

	/*
	 * Erratum 637 workaround
	 */
1445
	if (pvt->fam == 0x15) {
1446 1447
		u64 cc6_base, tmp_addr;
		u32 tmp;
1448
		u8 intlv_en;
1449

1450
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1451 1452 1453 1454 1455 1456 1457
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1458
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1459 1460 1461 1462 1463 1464 1465 1466

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1467
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1468 1469 1470 1471

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1472
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1473 1474

		/* OR DramIntlvSel into bits [14:12] */
1475
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1476 1477

		/* add remaining [11:0] bits from original MC4_ADDR */
1478
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1479 1480 1481 1482 1483

		return cc6_base | tmp_addr;
	}

	return addr;
1484 1485
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1502
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1503
{
1504
	struct amd_northbridge *nb;
1505 1506
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1507
	int off = range << 3;
1508
	u32 llim;
1509

1510 1511
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1512

1513
	if (pvt->fam == 0xf)
1514
		return;
1515

1516 1517
	if (!dram_rw(pvt, range))
		return;
1518

1519 1520
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1521

1522
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1523
	if (pvt->fam != 0x15)
1524
		return;
1525

1526 1527 1528
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1529

1530 1531 1532 1533 1534 1535
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1536 1537

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1538 1539
	if (WARN_ON(!f1))
		return;
1540

1541
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1542

1543
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1544

1545 1546
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1547

1548
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1549

1550 1551 1552 1553
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1554 1555
}

1556
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1557
				    struct err_info *err)
1558
{
1559
	struct amd64_pvt *pvt = mci->pvt_info;
1560

1561
	error_address_to_page_and_offset(sys_addr, err);
1562 1563 1564 1565 1566

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1567 1568
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1569 1570
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1571
		err->err_code = ERR_NODE;
1572 1573 1574 1575
		return;
	}

	/* Now map the sys_addr to a CSROW */
1576 1577 1578
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1579 1580 1581
		return;
	}

1582
	/* CHIPKILL enabled */
1583
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1584 1585
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1586 1587 1588 1589 1590
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1591
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1592
				      "possible error reporting race\n",
1593 1594
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1606
		err->channel = ((sys_addr & BIT(3)) != 0);
1607 1608 1609
	}
}

1610
static int ddr2_cs_size(unsigned i, bool dct_width)
1611
{
1612
	unsigned shift = 0;
1613

1614 1615 1616 1617
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1618
	else
1619
		shift = (i + 1) >> 1;
1620

1621 1622 1623 1624
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1625
				  unsigned cs_mode, int cs_mask_nr)
1626 1627 1628 1629 1630 1631 1632 1633
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1634
		unsigned diff;
1635 1636
		WARN_ON(cs_mode > 10);

1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1664 1665 1666 1667 1668
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1669 1670
}

1671 1672 1673 1674 1675 1676 1677 1678
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1679
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1680
{
1681
	int i, j, channels = 0;
1682

1683
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1684
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1685
		return 2;
1686 1687

	/*
1688 1689 1690
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1691 1692 1693 1694
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1695
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1696

1697 1698 1699 1700 1701
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1702 1703
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1704

1705 1706 1707 1708 1709 1710
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1711 1712
	}

1713 1714 1715
	if (channels > 2)
		channels = 2;

1716
	amd64_info("MCT channel count: %d\n", channels);
1717 1718 1719 1720

	return channels;
}

1721 1722 1723 1724 1725
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1726
	for_each_umc(i)
1727 1728 1729 1730 1731 1732 1733
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1734
static int ddr3_cs_size(unsigned i, bool dct_width)
1735
{
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1791
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1792
				   unsigned cs_mode, int cs_mask_nr)
1793 1794 1795 1796
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1797 1798

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1799
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1800
	else
1801 1802 1803 1804 1805 1806 1807
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1808
				   unsigned cs_mode, int cs_mask_nr)
1809 1810
{
	WARN_ON(cs_mode > 12);
1811

1812
	return ddr3_cs_size(cs_mode, false);
1813 1814
}

1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1846
/*
1847
 * F16h and F15h model 30h have only limited cs_modes.
1848 1849
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1850
				unsigned cs_mode, int cs_mask_nr)
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1861
static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1862 1863
				    unsigned int cs_mode, int csrow_nr)
{
1864 1865 1866
	u32 addr_mask_orig, addr_mask_deinterleaved;
	u32 msb, weight, num_zero_bits;
	int dimm, size = 0;
1867

1868 1869 1870
	/* No Chip Selects are enabled. */
	if (!cs_mode)
		return size;
1871

1872 1873 1874
	/* Requested size of an even CS but none are enabled. */
	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
		return size;
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
	/* Requested size of an odd CS but none are enabled. */
	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
		return size;

	/*
	 * There is one mask per DIMM, and two Chip Selects per DIMM.
	 *	CS0 and CS1 -> DIMM0
	 *	CS2 and CS3 -> DIMM1
	 */
	dimm = csrow_nr >> 1;

1887 1888 1889 1890 1891
	/* Asymmetric dual-rank DIMM support. */
	if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
		addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm];
	else
		addr_mask_orig = pvt->csels[umc].csmasks[dimm];
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912

	/*
	 * The number of zero bits in the mask is equal to the number of bits
	 * in a full mask minus the number of bits in the current mask.
	 *
	 * The MSB is the number of bits in the full mask because BIT[0] is
	 * always 0.
	 */
	msb = fls(addr_mask_orig) - 1;
	weight = hweight_long(addr_mask_orig);
	num_zero_bits = msb - weight;

	/* Take the number of zero bits off from the top of the mask. */
	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);

	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);

	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
	size = (addr_mask_deinterleaved >> 2) + 1;
1913 1914 1915 1916 1917

	/* Return size in MBs. */
	return size >> 10;
}

1918
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1919 1920
{

1921
	if (pvt->fam == 0xf)
1922 1923
		return;

1924
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1925 1926
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1927

1928 1929
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1930 1931

		if (!dct_ganging_enabled(pvt))
1932 1933
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1934

1935 1936 1937
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1938

1939 1940 1941 1942
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1943 1944
	}

1945
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1946 1947
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1976 1977 1978
	return channel;
}

1979
/*
1980
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1981 1982
 * Interleaving Modes.
 */
1983
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1984
				bool hi_range_sel, u8 intlv_en)
1985
{
1986
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1987 1988

	if (dct_ganging_enabled(pvt))
1989
		return 0;
1990

1991 1992
	if (hi_range_sel)
		return dct_sel_high;
1993

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
2006
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
2007 2008 2009 2010

			return ((sys_addr >> shift) & 1) ^ temp;
		}

2011 2012 2013 2014 2015 2016
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

2017 2018 2019 2020 2021
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
2022 2023 2024 2025

	return 0;
}

2026
/* Convert the sys_addr to the normalized DCT address */
2027
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
2028 2029
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
2030 2031
{
	u64 chan_off;
2032 2033
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
2034
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
2050
		    dhar_valid(pvt) &&
2051
		    (sys_addr >= BIT_64(32)))
2052
			chan_off = hole_off;
2053 2054 2055
		else
			chan_off = dct_sel_base_off;
	} else {
2056 2057 2058 2059 2060 2061 2062 2063 2064
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
2065
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
2066
			chan_off = hole_off;
2067
		else
2068
			chan_off = dram_base;
2069 2070
	}

2071
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
2072 2073 2074 2075 2076 2077
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
2078
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
2079
{
2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
2103
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
2104 2105 2106
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2107
	u64 cs_base, cs_mask;
2108 2109 2110
	int cs_found = -EINVAL;
	int csrow;

2111
	mci = edac_mc_find(nid);
2112 2113 2114 2115 2116
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

2117
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
2118

2119 2120
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
2121 2122
			continue;

2123
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
2124

2125 2126
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
2127

2128
		cs_mask = ~cs_mask;
2129

2130 2131
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
2132

2133
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
2134 2135 2136 2137
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
2138
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
2139

2140
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
2141 2142 2143 2144 2145 2146
			break;
		}
	}
	return cs_found;
}

2147 2148 2149 2150 2151
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
2152
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
2153 2154 2155
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

2156
	if (pvt->fam == 0x10) {
2157
		/* only revC3 and revE have that feature */
2158
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
2159 2160 2161
			return sys_addr;
	}

2162
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

2181
/* For a given @dram_range, check if @sys_addr falls within it. */
2182
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
2183
				  u64 sys_addr, int *chan_sel)
2184
{
2185
	int cs_found = -EINVAL;
2186
	u64 chan_addr;
2187
	u32 dct_sel_base;
2188
	u8 channel;
2189
	bool high_range = false;
2190

2191
	u8 node_id    = dram_dst_node(pvt, range);
2192
	u8 intlv_en   = dram_intlv_en(pvt, range);
2193
	u32 intlv_sel = dram_intlv_sel(pvt, range);
2194

2195 2196
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
2197

2198 2199 2200 2201 2202 2203 2204 2205
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

2206
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
2207 2208
		return -EINVAL;

2209
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
2210

2211 2212 2213 2214 2215 2216 2217 2218 2219
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
2220
		high_range = true;
2221

2222
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
2223

2224
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
2225
					  high_range, dct_sel_base);
2226

2227 2228 2229 2230
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
2231

2232
	/* remove channel interleave */
2233 2234 2235
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
2250 2251
	}

2252
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
2253

2254
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
2255

2256
	if (cs_found >= 0)
2257
		*chan_sel = channel;
2258

2259 2260 2261
	return cs_found;
}

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
2299 2300
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2301 2302

	if (!(dct_cont_base_reg & BIT(0)) &&
2303 2304
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
2305 2306 2307 2308 2309 2310 2311 2312
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

2313 2314 2315 2316 2317
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
2318 2319

	/* Verify we stay within the MAX number of channels allowed */
2320
	if (channel > 3)
2321 2322 2323 2324 2325 2326 2327 2328
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
2329
		chan_offset = dct_base << 27;
2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2359
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2387
{
2388 2389
	int cs_found = -EINVAL;
	unsigned range;
2390

2391 2392
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2393 2394
			continue;

2395 2396 2397 2398
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2399

2400 2401
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2402
			cs_found = f1x_match_to_this_node(pvt, range,
2403
							  sys_addr, chan_sel);
2404 2405 2406 2407 2408 2409 2410 2411
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2412 2413
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2414
 *
2415 2416
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2417
 */
2418
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2419
				     struct err_info *err)
2420 2421 2422
{
	struct amd64_pvt *pvt = mci->pvt_info;

2423
	error_address_to_page_and_offset(sys_addr, err);
2424

2425 2426 2427
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2428 2429 2430 2431 2432 2433 2434 2435
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2436
	if (dct_ganging_enabled(pvt))
2437
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2438 2439 2440
}

/*
2441
 * debug routine to display the memory sizes of all logical DIMMs and its
2442
 * CSROWs
2443
 */
2444
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2445
{
2446
	int dimm, size0, size1;
2447 2448
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2449

2450
	if (pvt->fam == 0xf) {
2451
		/* K8 families < revF not supported yet */
2452
	       if (pvt->ext_model < K8_REV_F)
2453 2454 2455 2456 2457
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2468 2469
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2470

2471 2472
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2473 2474 2475 2476
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2477
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2478 2479 2480
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2481 2482 2483
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2484
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2485 2486
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2487 2488

		size1 = 0;
2489
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2490
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2491 2492
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2493

2494
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2495 2496
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2497 2498 2499
	}
}

2500
static struct amd64_family_type family_types[] = {
2501
	[K8_CPUS] = {
2502
		.ctl_name = "K8",
2503
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2504
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2505
		.max_mcs = 2,
2506
		.ops = {
2507 2508 2509
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2510 2511 2512
		}
	},
	[F10_CPUS] = {
2513
		.ctl_name = "F10h",
2514
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2515
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2516
		.max_mcs = 2,
2517
		.ops = {
2518
			.early_channel_count	= f1x_early_channel_count,
2519
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2520
			.dbam_to_cs		= f10_dbam_to_chip_select,
2521 2522 2523 2524
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2525
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2526
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2527
		.max_mcs = 2,
2528
		.ops = {
2529
			.early_channel_count	= f1x_early_channel_count,
2530
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2531
			.dbam_to_cs		= f15_dbam_to_chip_select,
2532 2533
		}
	},
2534 2535 2536
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2537
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2538
		.max_mcs = 2,
2539 2540 2541 2542 2543 2544
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2545 2546 2547
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2548
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2549
		.max_mcs = 2,
2550 2551 2552 2553 2554 2555
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2556 2557 2558
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2559
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2560
		.max_mcs = 2,
2561 2562 2563 2564 2565 2566
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2567 2568 2569
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2570
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2571
		.max_mcs = 2,
2572 2573 2574 2575 2576 2577
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2578 2579 2580 2581
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2582
		.max_mcs = 2,
2583 2584
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2585
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2586 2587
		}
	},
2588 2589 2590 2591
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
2592
		.max_mcs = 2,
2593 2594
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2595
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2596 2597
		}
	},
2598 2599 2600 2601
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
2602
		.max_mcs = 8,
2603 2604
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2605
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2606 2607
		}
	},
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
	[F17_M60H_CPUS] = {
		.ctl_name = "F17h_M60h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F6,
		.max_mcs = 2,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2618 2619 2620 2621
	[F17_M70H_CPUS] = {
		.ctl_name = "F17h_M70h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
2622
		.max_mcs = 2,
2623 2624 2625 2626 2627
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637
	[F19_CPUS] = {
		.ctl_name = "F19h",
		.f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6,
		.max_mcs = 8,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2638 2639
};

2640
/*
2641 2642 2643
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2644
 *
2645
 * Algorithm courtesy of Ross LaFetra from AMD.
2646
 */
2647
static const u16 x4_vectors[] = {
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2684 2685
};

2686
static const u16 x8_vectors[] = {
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2708
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2709
			   unsigned v_dim)
2710
{
2711 2712 2713 2714
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2715 2716
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2729

2730 2731 2732
					if (!s)
						return err_sym;
				}
2733

2734 2735 2736 2737
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2738 2739
	}

2740
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2741 2742
	return -1;
}
2743

2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
		case 0x22:
		case 0x23:
			return 1;
		default:
			return err_sym >> 4;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
		case 0x11:
			return 0;
		case 0x12:
			return 1;
		default:
			return err_sym >> 3;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2778 2779
	int err_sym = -1;

2780
	if (pvt->ecc_sym_sz == 8)
2781 2782
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2783 2784
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2785 2786
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2787
					  pvt->ecc_sym_sz);
2788
	else {
2789
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2790
		return err_sym;
2791
	}
2792

2793
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2794 2795
}

2796
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2797
			    u8 ecc_type)
2798
{
2799 2800
	enum hw_event_mc_err_type err_type;
	const char *string;
2801

2802 2803 2804 2805
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2806 2807
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2808 2809
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2810 2811 2812
		return;
	}

2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2824 2825 2826 2827 2828 2829 2830
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2831 2832 2833 2834
		break;
	default:
		string = "WTF error";
		break;
2835
	}
2836 2837 2838 2839 2840

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2841 2842
}

2843
static inline void decode_bus_error(int node_id, struct mce *m)
2844
{
2845 2846
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2847
	u8 ecc_type = (m->status >> 45) & 0x3;
2848 2849
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2850 2851
	u64 sys_addr;
	struct err_info err;
2852

2853 2854 2855 2856 2857 2858
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2859
	/* Bail out early if this was an 'observed' error */
2860
	if (PP(ec) == NBSL_PP_OBS)
2861
		return;
2862

2863 2864
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2865 2866
		return;

2867 2868
	memset(&err, 0, sizeof(err));

2869
	sys_addr = get_error_address(pvt, m);
2870

2871
	if (ecc_type == 2)
2872 2873 2874 2875
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2876
	__log_ecc_error(mci, &err, ecc_type);
2877 2878
}

2879 2880 2881 2882
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
2883 2884 2885 2886
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
2887
 */
2888
static int find_umc_channel(struct mce *m)
2889
{
2890
	return (m->ipid & GENMASK(31, 0)) >> 20;
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

2912
	err.channel = find_umc_channel(m);
2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

2930 2931 2932 2933 2934 2935 2936
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

2937 2938 2939 2940
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2941
/*
2942 2943
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2944
 * Reserve F0 and F6 on systems with a UMC.
2945
 */
2946 2947 2948 2949 2950 2951
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2952
			edac_dbg(1, "F0 not found, device 0x%x\n", pci_id1);
2953 2954 2955 2956 2957 2958 2959 2960
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2961
			edac_dbg(1, "F6 not found: device 0x%x\n", pci_id2);
2962 2963
			return -ENODEV;
		}
2964

2965 2966 2967
		if (!pci_ctl_dev)
			pci_ctl_dev = &pvt->F0->dev;

2968 2969 2970 2971 2972 2973 2974
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2975
	/* Reserve the ADDRESS MAP Device */
2976
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2977
	if (!pvt->F1) {
2978
		edac_dbg(1, "F1 not found: device 0x%x\n", pci_id1);
2979
		return -ENODEV;
2980 2981
	}

2982
	/* Reserve the DCT Device */
2983
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2984
	if (!pvt->F2) {
2985 2986
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2987

2988
		edac_dbg(1, "F2 not found: device 0x%x\n", pci_id2);
2989
		return -ENODEV;
2990
	}
2991

2992 2993 2994
	if (!pci_ctl_dev)
		pci_ctl_dev = &pvt->F2->dev;

2995 2996 2997
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2998 2999 3000 3001

	return 0;
}

3002
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
3003
{
3004 3005 3006 3007 3008 3009 3010
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
3011 3012
}

3013 3014 3015 3016 3017 3018 3019
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

3020
		for_each_umc(i) {
3021
			/* Check enabled channels only: */
3022 3023 3024 3025 3026 3027 3028 3029
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
3030 3031
			}
		}
3032
	} else if (pvt->fam >= 0x10) {
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
3056
	for_each_umc(i) {
3057 3058 3059 3060

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

3061 3062
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
3063 3064
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
3065
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
3066 3067 3068
	}
}

3069 3070 3071 3072
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
3073
static void read_mc_regs(struct amd64_pvt *pvt)
3074
{
3075
	unsigned int range;
3076 3077 3078 3079
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
3080
	 * those are Read-As-Zero.
3081
	 */
3082
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
3083
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
3084

3085
	/* Check first whether TOP_MEM2 is enabled: */
3086
	rdmsrl(MSR_K8_SYSCFG, msr_val);
3087
	if (msr_val & BIT(21)) {
3088
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
3089
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
3090
	} else {
3091
		edac_dbg(0, "  TOP_MEM2 disabled\n");
3092 3093 3094 3095 3096 3097 3098 3099
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
3100

3101
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
3102

3103
	read_dram_ctl_register(pvt);
3104

3105 3106
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
3107

3108 3109 3110 3111 3112 3113 3114
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

3115 3116 3117 3118
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
3119

3120 3121 3122 3123 3124 3125
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
3126 3127
	}

3128
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
3129
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
3130

3131
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
3132

3133 3134
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
3135

3136
	if (!dct_ganging_enabled(pvt)) {
3137 3138
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
3139
	}
3140

3141 3142 3143
skip:
	read_dct_base_mask(pvt);

3144 3145
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
3146

3147
	determine_ecc_sym_sz(pvt);
3148 3149 3150 3151 3152 3153
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
3154
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
3184
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
3185
{
3186
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
3187 3188
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
3189

3190
	if (!pvt->umc) {
3191
		csrow_nr >>= 1;
3192 3193 3194 3195
		cs_mode = DBAM_DIMM(csrow_nr, dbam);
	} else {
		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
	}
3196

3197 3198
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
3199

3200
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
3201
		    csrow_nr_orig, dct,  cs_mode);
3202
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
3203 3204 3205 3206

	return nr_pages;
}

3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
			dimm->mtype = pvt->dram_type;
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
Y
Yazen Ghannam 已提交
3244
			dimm->grain = 64;
3245 3246 3247 3248 3249 3250
		}
	}

	return empty;
}

3251 3252 3253 3254
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
3255
static int init_csrows(struct mem_ctl_info *mci)
3256
{
3257
	struct amd64_pvt *pvt = mci->pvt_info;
3258
	enum edac_type edac_mode = EDAC_NONE;
3259
	struct csrow_info *csrow;
3260
	struct dimm_info *dimm;
3261
	int i, j, empty = 1;
3262
	int nr_pages = 0;
3263
	u32 val;
3264

3265 3266
	if (pvt->umc)
		return init_csrows_df(mci);
3267

3268
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
3269

3270 3271 3272 3273 3274
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
3275

3276 3277 3278
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
3279
	for_each_chip_select(i, 0, pvt) {
3280 3281
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
3282

3283
		if (pvt->fam != 0xf)
3284 3285 3286
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
3287 3288
			continue;

3289
		csrow = mci->csrows[i];
3290
		empty = 0;
3291 3292 3293 3294

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

3295
		if (row_dct0) {
3296
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
3297 3298
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
3299

3300
		/* K8 has only one DCT */
3301
		if (pvt->fam != 0xf && row_dct1) {
3302
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
3303 3304 3305 3306

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
3307

3308
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
3309

3310
		/* Determine DIMM ECC mode: */
3311
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
3312 3313 3314 3315
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
3316 3317

		for (j = 0; j < pvt->channel_count; j++) {
3318
			dimm = csrow->channels[j]->dimm;
3319
			dimm->mtype = pvt->dram_type;
3320
			dimm->edac_mode = edac_mode;
Y
Yazen Ghannam 已提交
3321
			dimm->grain = 64;
3322
		}
3323 3324 3325 3326
	}

	return empty;
}
3327

3328
/* get all cores on this DCT */
3329
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3330 3331 3332 3333
{
	int cpu;

	for_each_online_cpu(cpu)
3334
		if (topology_die_id(cpu) == nid)
3335 3336 3337 3338
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
3339
static bool nb_mce_bank_enabled_on_node(u16 nid)
3340 3341
{
	cpumask_var_t mask;
3342
	int cpu, nbe;
3343 3344 3345
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3346
		amd64_warn("%s: Error allocating mask\n", __func__);
3347 3348 3349 3350 3351 3352 3353 3354
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
3355
		struct msr *reg = per_cpu_ptr(msrs, cpu);
3356
		nbe = reg->l & MSR_MCGCTL_NBE;
3357

3358 3359 3360
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3372
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3373 3374
{
	cpumask_var_t cmask;
3375
	int cpu;
3376 3377

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3378
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3379
		return -ENOMEM;
3380 3381
	}

3382
	get_cpus_on_this_dct_cpumask(cmask, nid);
3383 3384 3385 3386 3387

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3388 3389
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3390
		if (on) {
3391
			if (reg->l & MSR_MCGCTL_NBE)
3392
				s->flags.nb_mce_enable = 1;
3393

3394
			reg->l |= MSR_MCGCTL_NBE;
3395 3396
		} else {
			/*
3397
			 * Turn off NB MCE reporting only when it was off before
3398
			 */
3399
			if (!s->flags.nb_mce_enable)
3400
				reg->l &= ~MSR_MCGCTL_NBE;
3401 3402 3403 3404 3405 3406 3407 3408 3409
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3410
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3411
				       struct pci_dev *F3)
3412
{
3413
	bool ret = true;
B
Borislav Petkov 已提交
3414
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3415

3416 3417 3418 3419 3420
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3421
	amd64_read_pci_cfg(F3, NBCTL, &value);
3422

3423 3424
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3425 3426

	value |= mask;
B
Borislav Petkov 已提交
3427
	amd64_write_pci_cfg(F3, NBCTL, value);
3428

3429
	amd64_read_pci_cfg(F3, NBCFG, &value);
3430

3431 3432
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3433

3434
	if (!(value & NBCFG_ECC_ENABLE)) {
3435
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3436

3437
		s->flags.nb_ecc_prev = 0;
3438

3439
		/* Attempt to turn on DRAM ECC Enable */
3440 3441
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3442

3443
		amd64_read_pci_cfg(F3, NBCFG, &value);
3444

3445
		if (!(value & NBCFG_ECC_ENABLE)) {
3446 3447
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3448
			ret = false;
3449
		} else {
3450
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3451
		}
3452
	} else {
3453
		s->flags.nb_ecc_prev = 1;
3454
	}
3455

3456 3457
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3458

3459
	return ret;
3460 3461
}

3462
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3463
					struct pci_dev *F3)
3464
{
B
Borislav Petkov 已提交
3465 3466
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3467
	if (!s->nbctl_valid)
3468 3469
		return;

B
Borislav Petkov 已提交
3470
	amd64_read_pci_cfg(F3, NBCTL, &value);
3471
	value &= ~mask;
3472
	value |= s->old_nbctl;
3473

B
Borislav Petkov 已提交
3474
	amd64_write_pci_cfg(F3, NBCTL, value);
3475

3476 3477
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3478 3479 3480
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3481 3482 3483
	}

	/* restore the NB Enable MCGCTL bit */
3484
	if (toggle_ecc_err_reporting(s, nid, OFF))
3485
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3486 3487
}

3488
static bool ecc_enabled(struct amd64_pvt *pvt)
3489
{
3490
	u16 nid = pvt->mc_node_id;
3491
	bool nb_mce_en = false;
3492 3493
	u8 ecc_en = 0, i;
	u32 value;
3494

3495 3496
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3497
		struct amd64_umc *umc;
3498

3499
		for_each_umc(i) {
3500
			umc = &pvt->umc[i];
3501 3502

			/* Only check enabled UMCs. */
3503
			if (!(umc->sdp_ctrl & UMC_SDP_INIT))
3504 3505 3506 3507
				continue;

			umc_en_mask |= BIT(i);

3508
			if (umc->umc_cap_hi & UMC_ECC_ENABLED)
3509 3510 3511 3512 3513 3514
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3515 3516
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3517 3518 3519 3520

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
3521
		amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
3522

3523 3524 3525 3526
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3527
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3528 3529 3530
				     MSR_IA32_MCG_CTL, nid);
	}

3531 3532
	amd64_info("Node %d: DRAM ECC %s.\n",
		   nid, (ecc_en ? "enabled" : "disabled"));
3533

3534
	if (!ecc_en || !nb_mce_en)
3535
		return false;
3536 3537
	else
		return true;
3538 3539
}

3540 3541 3542
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3543
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3544

3545
	for_each_umc(i) {
3546 3547 3548
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3549 3550 3551

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3552 3553 3554 3555 3556 3557 3558
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3559 3560 3561 3562
		if (!cpk_en)
			return;

		if (dev_x4)
3563
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3564 3565 3566 3567
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3568 3569 3570
	}
}

3571
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
3572 3573 3574 3575 3576 3577
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3578 3579 3580 3581 3582
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3583

3584 3585 3586
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3587

3588
	mci->edac_cap		= determine_edac_cap(pvt);
3589
	mci->mod_name		= EDAC_MOD_STR;
3590
	mci->ctl_name		= fam_type->ctl_name;
3591
	mci->dev_name		= pci_name(pvt->F3);
3592 3593 3594
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3595 3596
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3597 3598
}

3599 3600 3601
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3602
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3603
{
3604
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3605
	pvt->stepping	= boot_cpu_data.x86_stepping;
3606 3607 3608 3609
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3610
	case 0xf:
3611 3612
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3613
		break;
3614

3615
	case 0x10:
3616 3617
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3618 3619 3620
		break;

	case 0x15:
3621
		if (pvt->model == 0x30) {
3622 3623
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3624
			break;
3625 3626 3627 3628
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3629 3630 3631 3632 3633 3634
		/* Richland is only client */
		} else if (pvt->model == 0x13) {
			return NULL;
		} else {
			fam_type	= &family_types[F15_CPUS];
			pvt->ops	= &family_types[F15_CPUS].ops;
3635
		}
3636 3637
		break;

3638
	case 0x16:
3639 3640 3641 3642 3643
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3644 3645
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3646 3647
		break;

3648
	case 0x17:
3649 3650 3651 3652
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3653 3654 3655 3656
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3657 3658 3659 3660
		} else if (pvt->model >= 0x60 && pvt->model <= 0x6f) {
			fam_type = &family_types[F17_M60H_CPUS];
			pvt->ops = &family_types[F17_M60H_CPUS].ops;
			break;
3661 3662 3663 3664
		} else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			break;
3665
		}
3666
		fallthrough;
P
Pu Wen 已提交
3667
	case 0x18:
3668 3669
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
P
Pu Wen 已提交
3670 3671 3672

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3673 3674
		break;

3675
	case 0x19:
3676 3677 3678 3679 3680 3681
		if (pvt->model >= 0x20 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			fam_type->ctl_name = "F19h_M20h";
			break;
		}
3682 3683 3684 3685 3686
		fam_type	= &family_types[F19_CPUS];
		pvt->ops	= &family_types[F19_CPUS].ops;
		family_types[F19_CPUS].ctl_name = "F19h";
		break;

3687
	default:
3688
		amd64_err("Unsupported family!\n");
3689
		return NULL;
3690
	}
3691

3692
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3693
		     (pvt->fam == 0xf ?
3694 3695 3696
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3697
	return fam_type;
3698 3699
}

3700 3701
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
3702
	&dbg_group,
3703
	&inj_group,
3704 3705 3706 3707
#endif
	NULL
};

3708
static int hw_info_get(struct amd64_pvt *pvt)
3709
{
3710
	u16 pci_id1, pci_id2;
3711
	int ret;
3712

3713
	if (pvt->fam >= 0x17) {
3714
		pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
3715 3716
		if (!pvt->umc)
			return -ENOMEM;
3717 3718 3719 3720 3721 3722 3723 3724

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

3725 3726 3727
	ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
	if (ret)
		return ret;
3728

3729
	read_mc_regs(pvt);
3730

3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
	return 0;
}

static void hw_info_put(struct amd64_pvt *pvt)
{
	if (pvt->F0 || pvt->F1)
		free_mc_sibling_devs(pvt);

	kfree(pvt->umc);
}

static int init_one_instance(struct amd64_pvt *pvt)
{
	struct mem_ctl_info *mci = NULL;
	struct edac_mc_layer layers[2];
	int ret = -EINVAL;

3748 3749 3750
	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3751
	 * tables in the 'mci' structure.
3752 3753 3754
	 */
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3755
		return ret;
3756 3757

	ret = -ENOMEM;
3758 3759 3760 3761
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3762 3763 3764 3765 3766 3767

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
3768
	layers[1].size = fam_type->max_mcs;
3769
	layers[1].is_virt_csrow = false;
3770

3771
	mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
3772
	if (!mci)
3773
		return ret;
3774 3775

	mci->pvt_info = pvt;
3776
	mci->pdev = &pvt->F3->dev;
3777

3778
	setup_mci_misc_attrs(mci);
3779 3780

	if (init_csrows(mci))
3781 3782 3783
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3784
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3785
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3786 3787
		edac_mc_free(mci);
		return ret;
3788 3789 3790 3791 3792
	}

	return 0;
}

3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
static bool instance_has_memory(struct amd64_pvt *pvt)
{
	bool cs_enabled = false;
	int cs = 0, dct = 0;

	for (dct = 0; dct < fam_type->max_mcs; dct++) {
		for_each_chip_select(cs, dct, pvt)
			cs_enabled |= csrow_enabled(cs, dct, pvt);
	}

	return cs_enabled;
}

3806
static int probe_one_instance(unsigned int nid)
3807
{
3808
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3809
	struct amd64_pvt *pvt = NULL;
3810
	struct ecc_settings *s;
3811
	int ret;
3812

3813 3814 3815
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3816
		goto err_out;
3817 3818 3819

	ecc_stngs[nid] = s;

3820 3821 3822 3823 3824 3825 3826
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
		goto err_settings;

	pvt->mc_node_id	= nid;
	pvt->F3 = F3;

3827
	ret = -ENODEV;
3828 3829 3830 3831 3832 3833 3834 3835
	fam_type = per_family_init(pvt);
	if (!fam_type)
		goto err_enable;

	ret = hw_info_get(pvt);
	if (ret < 0)
		goto err_enable;

3836 3837 3838 3839 3840 3841
	ret = 0;
	if (!instance_has_memory(pvt)) {
		amd64_info("Node %d: No DIMMs detected.\n", nid);
		goto err_enable;
	}

3842
	if (!ecc_enabled(pvt)) {
3843
		ret = -ENODEV;
3844 3845 3846 3847

		if (!ecc_enable_override)
			goto err_enable;

3848 3849 3850 3851 3852
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3853 3854 3855 3856 3857

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3858
	ret = init_one_instance(pvt);
3859
	if (ret < 0) {
3860
		amd64_err("Error probing instance: %d\n", nid);
3861 3862 3863

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3864 3865

		goto err_enable;
3866
	}
3867

3868 3869
	dump_misc_regs(pvt);

3870
	return ret;
3871 3872

err_enable:
3873 3874 3875 3876
	hw_info_put(pvt);
	kfree(pvt);

err_settings:
3877 3878 3879 3880 3881
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3882 3883
}

3884
static void remove_one_instance(unsigned int nid)
3885
{
3886 3887
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3888 3889
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3890 3891

	/* Remove from EDAC CORE tracking list */
3892
	mci = edac_mc_del_mc(&F3->dev);
3893 3894 3895 3896 3897
	if (!mci)
		return;

	pvt = mci->pvt_info;

3898
	restore_ecc_error_reporting(s, nid, F3);
3899

3900 3901
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3902

3903
	/* Free the EDAC CORE resources */
3904 3905
	mci->pvt_info = NULL;

3906
	hw_info_put(pvt);
3907
	kfree(pvt);
3908 3909 3910
	edac_mc_free(mci);
}

3911
static void setup_pci_device(void)
3912
{
3913
	if (pci_ctl)
3914 3915
		return;

3916
	pci_ctl = edac_pci_create_generic_ctl(pci_ctl_dev, EDAC_MOD_STR);
3917 3918 3919
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3920 3921 3922
	}
}

3923
static const struct x86_cpu_id amd64_cpuids[] = {
3924 3925 3926 3927 3928 3929 3930
	X86_MATCH_VENDOR_FAM(AMD,	0x0F, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x10, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x15, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x16, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x17, NULL),
	X86_MATCH_VENDOR_FAM(HYGON,	0x18, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x19, NULL),
3931 3932 3933 3934
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3935 3936
static int __init amd64_edac_init(void)
{
3937
	const char *owner;
3938
	int err = -ENODEV;
3939
	int i;
3940

3941 3942 3943 3944
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3945 3946 3947
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3948
	if (amd_cache_northbridges() < 0)
3949
		return -ENODEV;
3950

3951 3952
	opstate_init();

3953
	err = -ENOMEM;
K
Kees Cook 已提交
3954
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3955
	if (!ecc_stngs)
3956
		goto err_free;
3957

3958
	msrs = msrs_alloc();
3959
	if (!msrs)
3960
		goto err_free;
3961

3962 3963 3964
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3965 3966 3967
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3968

3969 3970
			goto err_pci;
		}
3971
	}
3972

3973 3974 3975 3976 3977
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3978 3979 3980 3981 3982 3983
	/* register stuff with EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3984
	setup_pci_device();
T
Tomasz Pala 已提交
3985 3986 3987 3988 3989

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3990 3991
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3992
	return 0;
3993

3994
err_pci:
3995 3996
	pci_ctl_dev = NULL;

3997 3998
	msrs_free(msrs);
	msrs = NULL;
3999

4000 4001 4002 4003
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

4004 4005 4006 4007 4008
	return err;
}

static void __exit amd64_edac_exit(void)
{
4009 4010
	int i;

4011 4012
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
4013

4014 4015 4016 4017 4018 4019
	/* unregister from EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

4020 4021
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
4022

4023 4024 4025
	kfree(ecc_stngs);
	ecc_stngs = NULL;

4026 4027
	pci_ctl_dev = NULL;

4028 4029
	msrs_free(msrs);
	msrs = NULL;
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");