amd64_edac.c 93.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "amd64_edac.h"
3
#include <asm/amd_nb.h>
4

5
static struct edac_pci_ctl_info *pci_ctl;
6 7 8 9 10 11 12 13

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

14
static struct msr __percpu *msrs;
15

16 17
static struct amd64_family_type *fam_type;

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23 24 25 26 27
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
28
static const struct scrubrate {
29 30 31
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

57 58
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

96 97 98 99
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
100
 * K8: has a single DCT only and no address offsets >= 0x100
101 102 103 104 105
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
106
 * F16h: has only 1 DCT
107 108
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109
 */
110 111
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
112
{
113 114 115 116 117
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
118

119 120 121 122 123 124 125 126 127
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
128

129 130 131
			offset += 0x100;
		}
		break;
132

133 134 135 136 137 138 139 140
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
141

142 143 144 145
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
146

147 148
	default:
		break;
149
	}
150
	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
182
/*
183
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 185
 * issue. If requested is too big, then use last maximum value found.
 */
186
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 188 189 190 191 192 193 194 195
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
196 197 198
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
199
	 */
200
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 202 203 204
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
205
		if (scrubrates[i].scrubval < min_rate)
206 207 208 209 210 211 212 213
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

214
	if (pvt->umc) {
215 216
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 218 219 220 221 222 223
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
224

225 226 227
	if (scrubval)
		return scrubrates[i].bandwidth;

228 229 230
	return 0;
}

231
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 233
{
	struct amd64_pvt *pvt = mci->pvt_info;
234
	u32 min_scrubrate = 0x5;
235

236
	if (pvt->fam == 0xf)
237 238
		min_scrubrate = 0x0;

239 240 241 242
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
243

244 245 246 247
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
248 249
}

250
static int get_scrub_rate(struct mem_ctl_info *mci)
251 252
{
	struct amd64_pvt *pvt = mci->pvt_info;
253
	int i, retval = -EINVAL;
254
	u32 scrubval = 0;
255

256
	if (pvt->umc) {
257 258 259 260 261 262 263 264
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
265 266 267 268
	} else if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
269

270 271 272
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
	} else {
273
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
274
	}
275 276 277

	scrubval = scrubval & 0x001F;

278
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
279
		if (scrubrates[i].scrubval == scrubval) {
280
			retval = scrubrates[i].bandwidth;
281 282 283
			break;
		}
	}
284
	return retval;
285 286
}

287
/*
288 289
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
290
 */
291
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
292
{
293
	u64 addr;
294 295 296 297 298 299 300 301 302

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

303 304
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
305 306 307 308 309 310 311 312 313 314 315 316
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
317
	u8 node_id;
318 319 320 321 322 323 324 325 326 327 328 329 330
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
331
	intlv_en = dram_intlv_en(pvt, 0);
332 333

	if (intlv_en == 0) {
334
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
335
			if (base_limit_match(pvt, sys_addr, node_id))
336
				goto found;
337
		}
338
		goto err_no_match;
339 340
	}

341 342 343
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
344
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
345 346 347 348 349 350
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
351
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
352 353
			break;	/* intlv_sel field matches */

354
		if (++node_id >= DRAM_RANGES)
355 356 357 358
			goto err_no_match;
	}

	/* sanity test for sys_addr */
359
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
360 361 362
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
363 364 365 366
		return NULL;
	}

found:
367
	return edac_mc_find((int)node_id);
368 369

err_no_match:
370 371
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
372 373 374

	return NULL;
}
375 376

/*
377 378
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
379
 */
380 381
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
382
{
383 384
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
385

386
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
387 388
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
389 390
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
391
		addr_shift	= 4;
392 393

	/*
394 395 396 397 398
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
399 400 401
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

402 403
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
404 405 406

		*mask = ~0ULL;
		/* poke holes for the csmask */
407 408
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
409

410 411
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
412 413

		return;
414 415 416 417
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
418

419
		if (pvt->fam == 0x15)
420 421
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
422
		else
423 424
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
425
	}
426

427
	*base  = (csbase & base_bits) << addr_shift;
428

429 430 431 432 433
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
434 435
}

436 437 438
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

439 440 441
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

442 443 444
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

445
#define for_each_umc(i) \
446
	for (i = 0; i < fam_type->max_mcs; i++)
447

448 449 450 451 452 453 454 455 456 457 458 459
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

460 461
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
462 463
			continue;

464 465 466
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
467 468

		if ((input_addr & mask) == (base & mask)) {
469 470 471
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
472 473 474 475

			return csrow;
		}
	}
476 477
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
504
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
505 506
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
507 508 509
		return 1;
	}

510
	/* valid for Fam10h and above */
511
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
512
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
513 514 515
		return 1;
	}

516
	if (!dhar_valid(pvt)) {
517 518
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

540 541
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
542

543 544
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
545

546 547 548
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
549 550 551 552 553

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
585
	struct amd64_pvt *pvt = mci->pvt_info;
586
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
587
	int ret;
588

589
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
590 591 592 593

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
594 595
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
596 597 598
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

599 600 601
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
602 603 604 605 606 607 608 609 610 611 612 613 614 615

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
616
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
617

618 619
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
651
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
652
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
653
		      (dram_addr & 0xfff);
654

655 656 657
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
673
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
674
		 (unsigned long)sys_addr, (unsigned long)input_addr);
675 676 677 678 679 680

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
681
						    struct err_info *err)
682
{
683 684
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
702 703
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
704 705
	return csrow;
}
706

707
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
708 709 710 711 712

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
713
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
714
{
715
	unsigned long edac_cap = EDAC_FLAG_NONE;
716 717 718 719
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
720

721
		for_each_umc(i) {
722 723
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
724

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
742 743 744 745

	return edac_cap;
}

746
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
747

748
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
749
{
750
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
751

752 753 754 755 756 757 758 759 760 761 762 763 764
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

765

766 767
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
768

769
	if (pvt->fam == 0x10)
770 771
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
772

773 774 775 776 777
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
778 779
}

780 781
#define CS_EVEN_PRIMARY		BIT(0)
#define CS_ODD_PRIMARY		BIT(1)
782 783
#define CS_EVEN_SECONDARY	BIT(2)
#define CS_ODD_SECONDARY	BIT(3)
784

785 786
#define CS_EVEN			(CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
#define CS_ODD			(CS_ODD_PRIMARY | CS_ODD_SECONDARY)
787 788

static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
789
{
790
	int cs_mode = 0;
791

792 793
	if (csrow_enabled(2 * dimm, ctrl, pvt))
		cs_mode |= CS_EVEN_PRIMARY;
794

795 796 797
	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_PRIMARY;

798 799 800 801
	/* Asymmetric dual-rank DIMM support. */
	if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_SECONDARY;

802
	return cs_mode;
803 804
}

805 806
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
807
	int dimm, size0, size1, cs0, cs1, cs_mode;
808 809 810

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

811
	for (dimm = 0; dimm < 2; dimm++) {
812 813 814
		cs0 = dimm * 2;
		cs1 = dimm * 2 + 1;

815 816 817 818
		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);

		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
819 820

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
821 822
				cs0,	size0,
				cs1,	size1);
823 824 825 826 827 828 829 830
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

831
	for_each_umc(i) {
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

870
/* Display and decode various NB registers for debug purposes. */
871
static void __dump_misc_regs(struct amd64_pvt *pvt)
872
{
873
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
874

875 876
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
877

878 879 880
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
881

882
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
883

884
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
885

886 887
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
888 889
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
890

891
	debug_display_dimm_sizes(pvt, 0);
892

893
	/* everything below this point is Fam10h and above */
894
	if (pvt->fam == 0xf)
895
		return;
896

897
	debug_display_dimm_sizes(pvt, 1);
898

899
	/* Only if NOT ganged does dclr1 have valid info */
900
	if (!dct_ganging_enabled(pvt))
901
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
902 903
}

904 905 906 907 908 909 910 911 912 913
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

914
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
915 916
}

917
/*
918
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
919
 */
920
static void prep_chip_selects(struct amd64_pvt *pvt)
921
{
922
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
923 924
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
925
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
926 927
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
928 929 930 931 932 933 934 935
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

936
	} else {
937 938
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
939 940 941
	}
}

942 943
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
944 945 946 947 948 949
	u32 umc_base_reg, umc_base_reg_sec;
	u32 umc_mask_reg, umc_mask_reg_sec;
	u32 base_reg, base_reg_sec;
	u32 mask_reg, mask_reg_sec;
	u32 *base, *base_sec;
	u32 *mask, *mask_sec;
950 951 952 953
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
954
		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
955 956 957

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];
958
			base_sec = &pvt->csels[umc].csbases_sec[cs];
959 960

			base_reg = umc_base_reg + (cs * 4);
961
			base_reg_sec = umc_base_reg_sec + (cs * 4);
962 963 964 965

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
966 967 968 969

			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base_sec, base_reg_sec);
970 971 972
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
973
		umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
974 975 976

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];
977
			mask_sec = &pvt->csels[umc].csmasks_sec[cs];
978 979

			mask_reg = umc_mask_reg + (cs * 4);
980
			mask_reg_sec = umc_mask_reg_sec + (cs * 4);
981 982 983 984

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
985 986 987 988

			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask_sec, mask_reg_sec);
989 990 991 992
		}
	}
}

993
/*
994
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
995
 */
996
static void read_dct_base_mask(struct amd64_pvt *pvt)
997
{
998
	int cs;
999

1000
	prep_chip_selects(pvt);
1001

1002 1003
	if (pvt->umc)
		return read_umc_base_mask(pvt);
1004

1005
	for_each_chip_select(cs, 0, pvt) {
1006 1007
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
1008 1009
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
1010

1011 1012 1013
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1014

1015 1016
		if (pvt->fam == 0xf)
			continue;
1017

1018 1019 1020 1021
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1022 1023
	}

1024
	for_each_chip_select_mask(cs, 0, pvt) {
1025 1026
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1027 1028
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1029

1030 1031 1032
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1033

1034 1035
		if (pvt->fam == 0xf)
			continue;
1036

1037 1038 1039 1040
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1041 1042 1043
	}
}

1044
static void determine_memory_type(struct amd64_pvt *pvt)
1045
{
1046
	u32 dram_ctrl, dcsm;
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
	if (pvt->umc) {
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;
	}

1058 1059 1060 1061 1062 1063 1064 1065 1066
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1067
		if (pvt->dchr0 & DDR3_MODE)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1095
		else
1096
			pvt->dram_type = MEM_RDDR3;
1097

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		return;

	case 0x16:
		goto ddr3;

	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1108

1109 1110
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1111 1112
}

1113
/* Get the number of DCT channels the memory controller is using. */
1114 1115
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1116
	int flag;
1117

1118
	if (pvt->ext_model >= K8_REV_F)
1119
		/* RevF (NPT) and later */
1120
		flag = pvt->dclr0 & WIDTH_128;
1121
	else
1122 1123 1124 1125 1126 1127 1128 1129 1130
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1131
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1132
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1133
{
1134 1135
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1136 1137
	u8 start_bit = 1;
	u8 end_bit   = 47;
1138 1139 1140 1141 1142 1143 1144
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1145

1146
	if (pvt->fam == 0xf) {
1147 1148 1149 1150
		start_bit = 3;
		end_bit   = 39;
	}

1151
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1152 1153 1154 1155

	/*
	 * Erratum 637 workaround
	 */
1156
	if (pvt->fam == 0x15) {
1157 1158
		u64 cc6_base, tmp_addr;
		u32 tmp;
1159
		u8 intlv_en;
1160

1161
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1162 1163 1164 1165 1166 1167 1168
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1169
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1170 1171 1172 1173 1174 1175 1176 1177

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1178
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1179 1180 1181 1182

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1183
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1184 1185

		/* OR DramIntlvSel into bits [14:12] */
1186
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1187 1188

		/* add remaining [11:0] bits from original MC4_ADDR */
1189
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1190 1191 1192 1193 1194

		return cc6_base | tmp_addr;
	}

	return addr;
1195 1196
}

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1213
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1214
{
1215
	struct amd_northbridge *nb;
1216 1217
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1218
	int off = range << 3;
1219
	u32 llim;
1220

1221 1222
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1223

1224
	if (pvt->fam == 0xf)
1225
		return;
1226

1227 1228
	if (!dram_rw(pvt, range))
		return;
1229

1230 1231
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1232

1233
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1234
	if (pvt->fam != 0x15)
1235
		return;
1236

1237 1238 1239
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1240

1241 1242 1243 1244 1245 1246
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1247 1248

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1249 1250
	if (WARN_ON(!f1))
		return;
1251

1252
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1253

1254
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1255

1256 1257
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1258

1259
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1260

1261 1262 1263 1264
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1265 1266
}

1267
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1268
				    struct err_info *err)
1269
{
1270
	struct amd64_pvt *pvt = mci->pvt_info;
1271

1272
	error_address_to_page_and_offset(sys_addr, err);
1273 1274 1275 1276 1277

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1278 1279
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1280 1281
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1282
		err->err_code = ERR_NODE;
1283 1284 1285 1286
		return;
	}

	/* Now map the sys_addr to a CSROW */
1287 1288 1289
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1290 1291 1292
		return;
	}

1293
	/* CHIPKILL enabled */
1294
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1295 1296
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1297 1298 1299 1300 1301
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1302
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1303
				      "possible error reporting race\n",
1304 1305
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1317
		err->channel = ((sys_addr & BIT(3)) != 0);
1318 1319 1320
	}
}

1321
static int ddr2_cs_size(unsigned i, bool dct_width)
1322
{
1323
	unsigned shift = 0;
1324

1325 1326 1327 1328
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1329
	else
1330
		shift = (i + 1) >> 1;
1331

1332 1333 1334 1335
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1336
				  unsigned cs_mode, int cs_mask_nr)
1337 1338 1339 1340 1341 1342 1343 1344
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1345
		unsigned diff;
1346 1347
		WARN_ON(cs_mode > 10);

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1375 1376 1377 1378 1379
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1380 1381
}

1382 1383 1384 1385 1386 1387 1388 1389
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1390
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1391
{
1392
	int i, j, channels = 0;
1393

1394
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1395
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1396
		return 2;
1397 1398

	/*
1399 1400 1401
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1402 1403 1404 1405
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1406
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1407

1408 1409 1410 1411 1412
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1413 1414
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1415

1416 1417 1418 1419 1420 1421
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1422 1423
	}

1424 1425 1426
	if (channels > 2)
		channels = 2;

1427
	amd64_info("MCT channel count: %d\n", channels);
1428 1429 1430 1431

	return channels;
}

1432 1433 1434 1435 1436
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1437
	for_each_umc(i)
1438 1439 1440 1441 1442 1443 1444
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1445
static int ddr3_cs_size(unsigned i, bool dct_width)
1446
{
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1502
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1503
				   unsigned cs_mode, int cs_mask_nr)
1504 1505 1506 1507
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1508 1509

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1510
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1511
	else
1512 1513 1514 1515 1516 1517 1518
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1519
				   unsigned cs_mode, int cs_mask_nr)
1520 1521
{
	WARN_ON(cs_mode > 12);
1522

1523
	return ddr3_cs_size(cs_mode, false);
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1557
/*
1558
 * F16h and F15h model 30h have only limited cs_modes.
1559 1560
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1561
				unsigned cs_mode, int cs_mask_nr)
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1572
static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1573 1574
				    unsigned int cs_mode, int csrow_nr)
{
1575 1576 1577
	u32 addr_mask_orig, addr_mask_deinterleaved;
	u32 msb, weight, num_zero_bits;
	int dimm, size = 0;
1578

1579 1580 1581
	/* No Chip Selects are enabled. */
	if (!cs_mode)
		return size;
1582

1583 1584 1585
	/* Requested size of an even CS but none are enabled. */
	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
		return size;
1586

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	/* Requested size of an odd CS but none are enabled. */
	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
		return size;

	/*
	 * There is one mask per DIMM, and two Chip Selects per DIMM.
	 *	CS0 and CS1 -> DIMM0
	 *	CS2 and CS3 -> DIMM1
	 */
	dimm = csrow_nr >> 1;

1598 1599 1600 1601 1602
	/* Asymmetric dual-rank DIMM support. */
	if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
		addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm];
	else
		addr_mask_orig = pvt->csels[umc].csmasks[dimm];
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	/*
	 * The number of zero bits in the mask is equal to the number of bits
	 * in a full mask minus the number of bits in the current mask.
	 *
	 * The MSB is the number of bits in the full mask because BIT[0] is
	 * always 0.
	 */
	msb = fls(addr_mask_orig) - 1;
	weight = hweight_long(addr_mask_orig);
	num_zero_bits = msb - weight;

	/* Take the number of zero bits off from the top of the mask. */
	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);

	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);

	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
	size = (addr_mask_deinterleaved >> 2) + 1;
1624 1625 1626 1627 1628

	/* Return size in MBs. */
	return size >> 10;
}

1629
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1630 1631
{

1632
	if (pvt->fam == 0xf)
1633 1634
		return;

1635
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1636 1637
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1638

1639 1640
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1641 1642

		if (!dct_ganging_enabled(pvt))
1643 1644
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1645

1646 1647 1648
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1649

1650 1651 1652 1653
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1654 1655
	}

1656
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1657 1658
}

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1687 1688 1689
	return channel;
}

1690
/*
1691
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1692 1693
 * Interleaving Modes.
 */
1694
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1695
				bool hi_range_sel, u8 intlv_en)
1696
{
1697
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1698 1699

	if (dct_ganging_enabled(pvt))
1700
		return 0;
1701

1702 1703
	if (hi_range_sel)
		return dct_sel_high;
1704

1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1717
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1718 1719 1720 1721

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1722 1723 1724 1725 1726 1727
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1728 1729 1730 1731 1732
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1733 1734 1735 1736

	return 0;
}

1737
/* Convert the sys_addr to the normalized DCT address */
1738
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1739 1740
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1741 1742
{
	u64 chan_off;
1743 1744
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1745
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1761
		    dhar_valid(pvt) &&
1762
		    (sys_addr >= BIT_64(32)))
1763
			chan_off = hole_off;
1764 1765 1766
		else
			chan_off = dct_sel_base_off;
	} else {
1767 1768 1769 1770 1771 1772 1773 1774 1775
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1776
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1777
			chan_off = hole_off;
1778
		else
1779
			chan_off = dram_base;
1780 1781
	}

1782
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1783 1784 1785 1786 1787 1788
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1789
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1790
{
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1814
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1815 1816 1817
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1818
	u64 cs_base, cs_mask;
1819 1820 1821
	int cs_found = -EINVAL;
	int csrow;

1822
	mci = edac_mc_find(nid);
1823 1824 1825 1826 1827
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1828
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1829

1830 1831
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1832 1833
			continue;

1834
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1835

1836 1837
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1838

1839
		cs_mask = ~cs_mask;
1840

1841 1842
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1843

1844
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1845 1846 1847 1848
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1849
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1850

1851
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1852 1853 1854 1855 1856 1857
			break;
		}
	}
	return cs_found;
}

1858 1859 1860 1861 1862
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1863
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1864 1865 1866
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1867
	if (pvt->fam == 0x10) {
1868
		/* only revC3 and revE have that feature */
1869
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1870 1871 1872
			return sys_addr;
	}

1873
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1892
/* For a given @dram_range, check if @sys_addr falls within it. */
1893
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1894
				  u64 sys_addr, int *chan_sel)
1895
{
1896
	int cs_found = -EINVAL;
1897
	u64 chan_addr;
1898
	u32 dct_sel_base;
1899
	u8 channel;
1900
	bool high_range = false;
1901

1902
	u8 node_id    = dram_dst_node(pvt, range);
1903
	u8 intlv_en   = dram_intlv_en(pvt, range);
1904
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1905

1906 1907
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1908

1909 1910 1911 1912 1913 1914 1915 1916
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1917
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1918 1919
		return -EINVAL;

1920
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1921

1922 1923 1924 1925 1926 1927 1928 1929 1930
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1931
		high_range = true;
1932

1933
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1934

1935
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1936
					  high_range, dct_sel_base);
1937

1938 1939 1940 1941
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1942

1943
	/* remove channel interleave */
1944 1945 1946
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1961 1962
	}

1963
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1964

1965
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1966

1967
	if (cs_found >= 0)
1968
		*chan_sel = channel;
1969

1970 1971 1972
	return cs_found;
}

1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
2010 2011
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2012 2013

	if (!(dct_cont_base_reg & BIT(0)) &&
2014 2015
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
2016 2017 2018 2019 2020 2021 2022 2023
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

2024 2025 2026 2027 2028
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
2029 2030

	/* Verify we stay within the MAX number of channels allowed */
2031
	if (channel > 3)
2032 2033 2034 2035 2036 2037 2038 2039
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
2040
		chan_offset = dct_base << 27;
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2070
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2098
{
2099 2100
	int cs_found = -EINVAL;
	unsigned range;
2101

2102 2103
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2104 2105
			continue;

2106 2107 2108 2109
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2110

2111 2112
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2113
			cs_found = f1x_match_to_this_node(pvt, range,
2114
							  sys_addr, chan_sel);
2115 2116 2117 2118 2119 2120 2121 2122
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2123 2124
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2125
 *
2126 2127
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2128
 */
2129
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2130
				     struct err_info *err)
2131 2132 2133
{
	struct amd64_pvt *pvt = mci->pvt_info;

2134
	error_address_to_page_and_offset(sys_addr, err);
2135

2136 2137 2138
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2139 2140 2141 2142 2143 2144 2145 2146
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2147
	if (dct_ganging_enabled(pvt))
2148
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2149 2150 2151
}

/*
2152
 * debug routine to display the memory sizes of all logical DIMMs and its
2153
 * CSROWs
2154
 */
2155
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2156
{
2157
	int dimm, size0, size1;
2158 2159
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2160

2161
	if (pvt->fam == 0xf) {
2162
		/* K8 families < revF not supported yet */
2163
	       if (pvt->ext_model < K8_REV_F)
2164 2165 2166 2167 2168
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2179 2180
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2181

2182 2183
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2184 2185 2186 2187
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2188
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2189 2190 2191
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2192 2193 2194
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2195
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2196 2197
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2198 2199

		size1 = 0;
2200
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2201
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2202 2203
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2204

2205
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2206 2207
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2208 2209 2210
	}
}

2211
static struct amd64_family_type family_types[] = {
2212
	[K8_CPUS] = {
2213
		.ctl_name = "K8",
2214
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2215
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2216
		.max_mcs = 2,
2217
		.ops = {
2218 2219 2220
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2221 2222 2223
		}
	},
	[F10_CPUS] = {
2224
		.ctl_name = "F10h",
2225
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2226
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2227
		.max_mcs = 2,
2228
		.ops = {
2229
			.early_channel_count	= f1x_early_channel_count,
2230
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2231
			.dbam_to_cs		= f10_dbam_to_chip_select,
2232 2233 2234 2235
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2236
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2237
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2238
		.max_mcs = 2,
2239
		.ops = {
2240
			.early_channel_count	= f1x_early_channel_count,
2241
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2242
			.dbam_to_cs		= f15_dbam_to_chip_select,
2243 2244
		}
	},
2245 2246 2247
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2248
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2249
		.max_mcs = 2,
2250 2251 2252 2253 2254 2255
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2256 2257 2258
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2259
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2260
		.max_mcs = 2,
2261 2262 2263 2264 2265 2266
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2267 2268 2269
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2270
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2271
		.max_mcs = 2,
2272 2273 2274 2275 2276 2277
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2278 2279 2280
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2281
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2282
		.max_mcs = 2,
2283 2284 2285 2286 2287 2288
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2289 2290 2291 2292
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2293
		.max_mcs = 2,
2294 2295
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2296
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2297 2298
		}
	},
2299 2300 2301 2302
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
2303
		.max_mcs = 2,
2304 2305
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2306
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2307 2308
		}
	},
2309 2310 2311 2312
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
2313
		.max_mcs = 8,
2314 2315
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2316
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2317 2318
		}
	},
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
	[F17_M60H_CPUS] = {
		.ctl_name = "F17h_M60h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F6,
		.max_mcs = 2,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2329 2330 2331 2332
	[F17_M70H_CPUS] = {
		.ctl_name = "F17h_M70h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
2333
		.max_mcs = 2,
2334 2335 2336 2337 2338
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	[F19_CPUS] = {
		.ctl_name = "F19h",
		.f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6,
		.max_mcs = 8,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2349 2350
};

2351
/*
2352 2353 2354
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2355
 *
2356
 * Algorithm courtesy of Ross LaFetra from AMD.
2357
 */
2358
static const u16 x4_vectors[] = {
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2395 2396
};

2397
static const u16 x8_vectors[] = {
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2419
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2420
			   unsigned v_dim)
2421
{
2422 2423 2424 2425
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2426 2427
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2440

2441 2442 2443
					if (!s)
						return err_sym;
				}
2444

2445 2446 2447 2448
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2449 2450
	}

2451
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2452 2453
	return -1;
}
2454

2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2497 2498
	int err_sym = -1;

2499
	if (pvt->ecc_sym_sz == 8)
2500 2501
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2502 2503
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2504 2505
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2506
					  pvt->ecc_sym_sz);
2507
	else {
2508
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2509
		return err_sym;
2510
	}
2511

2512
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2513 2514
}

2515
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2516
			    u8 ecc_type)
2517
{
2518 2519
	enum hw_event_mc_err_type err_type;
	const char *string;
2520

2521 2522 2523 2524
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2525 2526
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2527 2528
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2529 2530 2531
		return;
	}

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2543 2544 2545 2546 2547 2548 2549
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2550 2551 2552 2553
		break;
	default:
		string = "WTF error";
		break;
2554
	}
2555 2556 2557 2558 2559

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2560 2561
}

2562
static inline void decode_bus_error(int node_id, struct mce *m)
2563
{
2564 2565
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2566
	u8 ecc_type = (m->status >> 45) & 0x3;
2567 2568
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2569 2570
	u64 sys_addr;
	struct err_info err;
2571

2572 2573 2574 2575 2576 2577
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2578
	/* Bail out early if this was an 'observed' error */
2579
	if (PP(ec) == NBSL_PP_OBS)
2580
		return;
2581

2582 2583
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2584 2585
		return;

2586 2587
	memset(&err, 0, sizeof(err));

2588
	sys_addr = get_error_address(pvt, m);
2589

2590
	if (ecc_type == 2)
2591 2592 2593 2594
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2595
	__log_ecc_error(mci, &err, ecc_type);
2596 2597
}

2598 2599 2600 2601
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
2602 2603 2604 2605
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
2606
 */
2607
static int find_umc_channel(struct mce *m)
2608
{
2609
	return (m->ipid & GENMASK(31, 0)) >> 20;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

2631
	err.channel = find_umc_channel(m);
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

2649 2650 2651 2652 2653 2654 2655
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

2656 2657 2658 2659
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2660
/*
2661 2662
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2663
 * Reserve F0 and F6 on systems with a UMC.
2664
 */
2665 2666 2667 2668 2669 2670
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2671
			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2672 2673 2674 2675 2676 2677 2678 2679
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2680
			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2681 2682
			return -ENODEV;
		}
2683

2684 2685 2686 2687 2688 2689 2690
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2691
	/* Reserve the ADDRESS MAP Device */
2692
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2693
	if (!pvt->F1) {
2694
		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2695
		return -ENODEV;
2696 2697
	}

2698
	/* Reserve the DCT Device */
2699
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2700
	if (!pvt->F2) {
2701 2702
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2703

2704 2705
		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
		return -ENODEV;
2706
	}
2707

2708 2709 2710
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2711 2712 2713 2714

	return 0;
}

2715
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2716
{
2717 2718 2719 2720 2721 2722 2723
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2724 2725
}

2726 2727 2728 2729 2730 2731 2732
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

2733
		for_each_umc(i) {
2734
			/* Check enabled channels only: */
2735 2736 2737 2738 2739 2740 2741 2742
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
2743 2744
			}
		}
2745
	} else if (pvt->fam >= 0x10) {
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
2769
	for_each_umc(i) {
2770 2771 2772 2773

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2774 2775
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2776 2777
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2778
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2779 2780 2781
	}
}

2782 2783 2784 2785
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2786
static void read_mc_regs(struct amd64_pvt *pvt)
2787
{
2788
	unsigned int range;
2789 2790 2791 2792
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2793
	 * those are Read-As-Zero.
2794
	 */
2795
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2796
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2797

2798
	/* Check first whether TOP_MEM2 is enabled: */
2799
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2800
	if (msr_val & BIT(21)) {
2801
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2802
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2803
	} else {
2804
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2805 2806 2807 2808 2809 2810 2811 2812
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2813

2814
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2815

2816
	read_dram_ctl_register(pvt);
2817

2818 2819
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2820

2821 2822 2823 2824 2825 2826 2827
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2828 2829 2830 2831
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2832

2833 2834 2835 2836 2837 2838
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2839 2840
	}

2841
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2842
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2843

2844
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2845

2846 2847
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2848

2849
	if (!dct_ganging_enabled(pvt)) {
2850 2851
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2852
	}
2853

2854 2855 2856
skip:
	read_dct_base_mask(pvt);

2857 2858
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2859

2860
	determine_ecc_sym_sz(pvt);
2861 2862 2863 2864 2865 2866
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2867
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2897
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2898
{
2899
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2900 2901
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
2902

2903
	if (!pvt->umc) {
2904
		csrow_nr >>= 1;
2905 2906 2907 2908
		cs_mode = DBAM_DIMM(csrow_nr, dbam);
	} else {
		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
	}
2909

2910 2911
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
2912

2913
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2914
		    csrow_nr_orig, dct,  cs_mode);
2915
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2916 2917 2918 2919

	return nr_pages;
}

2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
			dimm->mtype = pvt->dram_type;
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
Y
Yazen Ghannam 已提交
2957
			dimm->grain = 64;
2958 2959 2960 2961 2962 2963
		}
	}

	return empty;
}

2964 2965 2966 2967
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2968
static int init_csrows(struct mem_ctl_info *mci)
2969
{
2970
	struct amd64_pvt *pvt = mci->pvt_info;
2971
	enum edac_type edac_mode = EDAC_NONE;
2972
	struct csrow_info *csrow;
2973
	struct dimm_info *dimm;
2974
	int i, j, empty = 1;
2975
	int nr_pages = 0;
2976
	u32 val;
2977

2978 2979
	if (pvt->umc)
		return init_csrows_df(mci);
2980

2981
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2982

2983 2984 2985 2986 2987
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2988

2989 2990 2991
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2992
	for_each_chip_select(i, 0, pvt) {
2993 2994
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2995

2996
		if (pvt->fam != 0xf)
2997 2998 2999
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
3000 3001
			continue;

3002
		csrow = mci->csrows[i];
3003
		empty = 0;
3004 3005 3006 3007

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

3008
		if (row_dct0) {
3009
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
3010 3011
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
3012

3013
		/* K8 has only one DCT */
3014
		if (pvt->fam != 0xf && row_dct1) {
3015
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
3016 3017 3018 3019

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
3020

3021
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
3022

3023
		/* Determine DIMM ECC mode: */
3024
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
3025 3026 3027 3028
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
3029 3030

		for (j = 0; j < pvt->channel_count; j++) {
3031
			dimm = csrow->channels[j]->dimm;
3032
			dimm->mtype = pvt->dram_type;
3033
			dimm->edac_mode = edac_mode;
Y
Yazen Ghannam 已提交
3034
			dimm->grain = 64;
3035
		}
3036 3037 3038 3039
	}

	return empty;
}
3040

3041
/* get all cores on this DCT */
3042
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3043 3044 3045 3046 3047 3048 3049 3050 3051
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
3052
static bool nb_mce_bank_enabled_on_node(u16 nid)
3053 3054
{
	cpumask_var_t mask;
3055
	int cpu, nbe;
3056 3057 3058
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3059
		amd64_warn("%s: Error allocating mask\n", __func__);
3060 3061 3062 3063 3064 3065 3066 3067
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
3068
		struct msr *reg = per_cpu_ptr(msrs, cpu);
3069
		nbe = reg->l & MSR_MCGCTL_NBE;
3070

3071 3072 3073
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3085
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3086 3087
{
	cpumask_var_t cmask;
3088
	int cpu;
3089 3090

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3091
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3092
		return -ENOMEM;
3093 3094
	}

3095
	get_cpus_on_this_dct_cpumask(cmask, nid);
3096 3097 3098 3099 3100

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3101 3102
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3103
		if (on) {
3104
			if (reg->l & MSR_MCGCTL_NBE)
3105
				s->flags.nb_mce_enable = 1;
3106

3107
			reg->l |= MSR_MCGCTL_NBE;
3108 3109
		} else {
			/*
3110
			 * Turn off NB MCE reporting only when it was off before
3111
			 */
3112
			if (!s->flags.nb_mce_enable)
3113
				reg->l &= ~MSR_MCGCTL_NBE;
3114 3115 3116 3117 3118 3119 3120 3121 3122
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3123
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3124
				       struct pci_dev *F3)
3125
{
3126
	bool ret = true;
B
Borislav Petkov 已提交
3127
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3128

3129 3130 3131 3132 3133
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3134
	amd64_read_pci_cfg(F3, NBCTL, &value);
3135

3136 3137
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3138 3139

	value |= mask;
B
Borislav Petkov 已提交
3140
	amd64_write_pci_cfg(F3, NBCTL, value);
3141

3142
	amd64_read_pci_cfg(F3, NBCFG, &value);
3143

3144 3145
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3146

3147
	if (!(value & NBCFG_ECC_ENABLE)) {
3148
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3149

3150
		s->flags.nb_ecc_prev = 0;
3151

3152
		/* Attempt to turn on DRAM ECC Enable */
3153 3154
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3155

3156
		amd64_read_pci_cfg(F3, NBCFG, &value);
3157

3158
		if (!(value & NBCFG_ECC_ENABLE)) {
3159 3160
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3161
			ret = false;
3162
		} else {
3163
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3164
		}
3165
	} else {
3166
		s->flags.nb_ecc_prev = 1;
3167
	}
3168

3169 3170
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3171

3172
	return ret;
3173 3174
}

3175
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3176
					struct pci_dev *F3)
3177
{
B
Borislav Petkov 已提交
3178 3179
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3180
	if (!s->nbctl_valid)
3181 3182
		return;

B
Borislav Petkov 已提交
3183
	amd64_read_pci_cfg(F3, NBCTL, &value);
3184
	value &= ~mask;
3185
	value |= s->old_nbctl;
3186

B
Borislav Petkov 已提交
3187
	amd64_write_pci_cfg(F3, NBCTL, value);
3188

3189 3190
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3191 3192 3193
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3194 3195 3196
	}

	/* restore the NB Enable MCGCTL bit */
3197
	if (toggle_ecc_err_reporting(s, nid, OFF))
3198
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3199 3200
}

3201
static bool ecc_enabled(struct amd64_pvt *pvt)
3202
{
3203
	u16 nid = pvt->mc_node_id;
3204
	bool nb_mce_en = false;
3205 3206
	u8 ecc_en = 0, i;
	u32 value;
3207

3208 3209
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3210
		struct amd64_umc *umc;
3211

3212
		for_each_umc(i) {
3213
			umc = &pvt->umc[i];
3214 3215

			/* Only check enabled UMCs. */
3216
			if (!(umc->sdp_ctrl & UMC_SDP_INIT))
3217 3218 3219 3220
				continue;

			umc_en_mask |= BIT(i);

3221
			if (umc->umc_cap_hi & UMC_ECC_ENABLED)
3222 3223 3224 3225 3226 3227
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3228 3229
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3230 3231 3232 3233

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
3234
		amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
3235

3236 3237 3238 3239
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3240
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3241 3242 3243
				     MSR_IA32_MCG_CTL, nid);
	}

3244 3245
	amd64_info("Node %d: DRAM ECC %s.\n",
		   nid, (ecc_en ? "enabled" : "disabled"));
3246

3247
	if (!ecc_en || !nb_mce_en)
3248
		return false;
3249 3250
	else
		return true;
3251 3252
}

3253 3254 3255
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3256
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3257

3258
	for_each_umc(i) {
3259 3260 3261
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3262 3263 3264

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3265 3266 3267 3268 3269 3270 3271
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3272 3273 3274 3275
		if (!cpk_en)
			return;

		if (dev_x4)
3276
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3277 3278 3279 3280
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3281 3282 3283
	}
}

3284
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
3285 3286 3287 3288 3289 3290
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3291 3292 3293 3294 3295
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3296

3297 3298 3299
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3300

3301
	mci->edac_cap		= determine_edac_cap(pvt);
3302
	mci->mod_name		= EDAC_MOD_STR;
3303
	mci->ctl_name		= fam_type->ctl_name;
3304
	mci->dev_name		= pci_name(pvt->F3);
3305 3306 3307
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3308 3309
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3310 3311
}

3312 3313 3314
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3315
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3316
{
3317
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3318
	pvt->stepping	= boot_cpu_data.x86_stepping;
3319 3320 3321 3322
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3323
	case 0xf:
3324 3325
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3326
		break;
3327

3328
	case 0x10:
3329 3330
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3331 3332 3333
		break;

	case 0x15:
3334
		if (pvt->model == 0x30) {
3335 3336
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3337
			break;
3338 3339 3340 3341
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3342 3343
		}

3344 3345
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3346 3347
		break;

3348
	case 0x16:
3349 3350 3351 3352 3353
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3354 3355
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3356 3357
		break;

3358
	case 0x17:
3359 3360 3361 3362
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3363 3364 3365 3366
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3367 3368 3369 3370
		} else if (pvt->model >= 0x60 && pvt->model <= 0x6f) {
			fam_type = &family_types[F17_M60H_CPUS];
			pvt->ops = &family_types[F17_M60H_CPUS].ops;
			break;
3371 3372 3373 3374
		} else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			break;
3375
		}
P
Pu Wen 已提交
3376 3377
		/* fall through */
	case 0x18:
3378 3379
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
P
Pu Wen 已提交
3380 3381 3382

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3383 3384
		break;

3385 3386 3387 3388 3389 3390
	case 0x19:
		fam_type	= &family_types[F19_CPUS];
		pvt->ops	= &family_types[F19_CPUS].ops;
		family_types[F19_CPUS].ctl_name = "F19h";
		break;

3391
	default:
3392
		amd64_err("Unsupported family!\n");
3393
		return NULL;
3394
	}
3395

3396
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3397
		     (pvt->fam == 0xf ?
3398 3399 3400
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3401
	return fam_type;
3402 3403
}

3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3414
static int hw_info_get(struct amd64_pvt *pvt)
3415
{
3416
	u16 pci_id1, pci_id2;
3417
	int ret;
3418

3419
	if (pvt->fam >= 0x17) {
3420
		pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
3421 3422
		if (!pvt->umc)
			return -ENOMEM;
3423 3424 3425 3426 3427 3428 3429 3430

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

3431 3432 3433
	ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
	if (ret)
		return ret;
3434

3435
	read_mc_regs(pvt);
3436

3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	return 0;
}

static void hw_info_put(struct amd64_pvt *pvt)
{
	if (pvt->F0 || pvt->F1)
		free_mc_sibling_devs(pvt);

	kfree(pvt->umc);
}

static int init_one_instance(struct amd64_pvt *pvt)
{
	struct mem_ctl_info *mci = NULL;
	struct edac_mc_layer layers[2];
	int ret = -EINVAL;

3454 3455 3456
	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3457
	 * tables in the 'mci' structure.
3458 3459 3460
	 */
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3461
		return ret;
3462 3463

	ret = -ENOMEM;
3464 3465 3466 3467
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3468 3469 3470 3471 3472 3473

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
3474
	layers[1].size = fam_type->max_mcs;
3475
	layers[1].is_virt_csrow = false;
3476

3477
	mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
3478
	if (!mci)
3479
		return ret;
3480 3481

	mci->pvt_info = pvt;
3482
	mci->pdev = &pvt->F3->dev;
3483

3484
	setup_mci_misc_attrs(mci);
3485 3486

	if (init_csrows(mci))
3487 3488 3489
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3490
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3491
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3492 3493
		edac_mc_free(mci);
		return ret;
3494 3495 3496 3497 3498
	}

	return 0;
}

3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
static bool instance_has_memory(struct amd64_pvt *pvt)
{
	bool cs_enabled = false;
	int cs = 0, dct = 0;

	for (dct = 0; dct < fam_type->max_mcs; dct++) {
		for_each_chip_select(cs, dct, pvt)
			cs_enabled |= csrow_enabled(cs, dct, pvt);
	}

	return cs_enabled;
}

3512
static int probe_one_instance(unsigned int nid)
3513
{
3514
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3515
	struct amd64_pvt *pvt = NULL;
3516
	struct ecc_settings *s;
3517
	int ret;
3518

3519 3520 3521
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3522
		goto err_out;
3523 3524 3525

	ecc_stngs[nid] = s;

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
		goto err_settings;

	pvt->mc_node_id	= nid;
	pvt->F3 = F3;

	fam_type = per_family_init(pvt);
	if (!fam_type)
		goto err_enable;

	ret = hw_info_get(pvt);
	if (ret < 0)
		goto err_enable;

3541 3542 3543 3544 3545 3546
	ret = 0;
	if (!instance_has_memory(pvt)) {
		amd64_info("Node %d: No DIMMs detected.\n", nid);
		goto err_enable;
	}

3547
	if (!ecc_enabled(pvt)) {
3548
		ret = -ENODEV;
3549 3550 3551 3552

		if (!ecc_enable_override)
			goto err_enable;

3553 3554 3555 3556 3557
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3558 3559 3560 3561 3562

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3563
	ret = init_one_instance(pvt);
3564
	if (ret < 0) {
3565
		amd64_err("Error probing instance: %d\n", nid);
3566 3567 3568

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3569 3570

		goto err_enable;
3571
	}
3572

3573 3574
	dump_misc_regs(pvt);

3575
	return ret;
3576 3577

err_enable:
3578 3579 3580 3581
	hw_info_put(pvt);
	kfree(pvt);

err_settings:
3582 3583 3584 3585 3586
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3587 3588
}

3589
static void remove_one_instance(unsigned int nid)
3590
{
3591 3592
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3593 3594
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3595 3596

	/* Remove from EDAC CORE tracking list */
3597
	mci = edac_mc_del_mc(&F3->dev);
3598 3599 3600 3601 3602
	if (!mci)
		return;

	pvt = mci->pvt_info;

3603
	restore_ecc_error_reporting(s, nid, F3);
3604

3605 3606
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3607

3608
	/* Free the EDAC CORE resources */
3609 3610
	mci->pvt_info = NULL;

3611
	hw_info_put(pvt);
3612
	kfree(pvt);
3613 3614 3615
	edac_mc_free(mci);
}

3616
static void setup_pci_device(void)
3617 3618 3619 3620
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3621
	if (pci_ctl)
3622 3623
		return;

3624
	mci = edac_mc_find(0);
3625 3626
	if (!mci)
		return;
3627

3628
	pvt = mci->pvt_info;
3629 3630 3631 3632
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3633 3634 3635
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3636 3637 3638
	}
}

3639
static const struct x86_cpu_id amd64_cpuids[] = {
3640 3641 3642 3643 3644 3645 3646
	X86_MATCH_VENDOR_FAM(AMD,	0x0F, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x10, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x15, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x16, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x17, NULL),
	X86_MATCH_VENDOR_FAM(HYGON,	0x18, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x19, NULL),
3647 3648 3649 3650
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3651 3652
static int __init amd64_edac_init(void)
{
3653
	const char *owner;
3654
	int err = -ENODEV;
3655
	int i;
3656

3657 3658 3659 3660
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3661 3662 3663
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3664
	if (amd_cache_northbridges() < 0)
3665
		return -ENODEV;
3666

3667 3668
	opstate_init();

3669
	err = -ENOMEM;
K
Kees Cook 已提交
3670
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3671
	if (!ecc_stngs)
3672
		goto err_free;
3673

3674
	msrs = msrs_alloc();
3675
	if (!msrs)
3676
		goto err_free;
3677

3678 3679 3680
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3681 3682 3683
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3684

3685 3686
			goto err_pci;
		}
3687
	}
3688

3689 3690 3691 3692 3693
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3694 3695 3696 3697 3698 3699
	/* register stuff with EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3700
	setup_pci_device();
T
Tomasz Pala 已提交
3701 3702 3703 3704 3705

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3706 3707
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3708
	return 0;
3709

3710 3711 3712
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3713

3714 3715 3716 3717
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3718 3719 3720 3721 3722
	return err;
}

static void __exit amd64_edac_exit(void)
{
3723 3724
	int i;

3725 3726
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3727

3728 3729 3730 3731 3732 3733
	/* unregister from EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

3734 3735
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3736

3737 3738 3739
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3740 3741
	msrs_free(msrs);
	msrs = NULL;
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");