amd64_edac.c 88.2 KB
Newer Older
1
#include "amd64_edac.h"
2
#include <asm/amd_nb.h>
3

4
static struct edac_pci_ctl_info *pci_ctl;
5 6 7 8 9 10 11 12 13 14 15

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

16
static struct msr __percpu *msrs;
17

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23 24 25 26 27
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
28
static const struct scrubrate {
29 30 31
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

57 58
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

96 97 98 99
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
100
 * K8: has a single DCT only and no address offsets >= 0x100
101 102 103 104 105
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
106
 * F16h: has only 1 DCT
107 108
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109
 */
110 111
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
112
{
113 114 115 116 117
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
118

119 120 121 122 123 124 125 126 127
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
128

129 130 131
			offset += 0x100;
		}
		break;
132

133 134 135 136 137 138 139 140
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
141

142 143 144 145
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
146

147 148
	default:
		break;
149
	}
150
	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
182
/*
183
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 185
 * issue. If requested is too big, then use last maximum value found.
 */
186
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 188 189 190 191 192 193 194 195
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
196 197 198
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
199
	 */
200
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 202 203 204
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
205
		if (scrubrates[i].scrubval < min_rate)
206 207 208 209 210 211 212 213
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

214 215 216
	if (pvt->fam == 0x17) {
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 218 219 220 221 222 223
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
224

225 226 227
	if (scrubval)
		return scrubrates[i].bandwidth;

228 229 230
	return 0;
}

231
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 233
{
	struct amd64_pvt *pvt = mci->pvt_info;
234
	u32 min_scrubrate = 0x5;
235

236
	if (pvt->fam == 0xf)
237 238
		min_scrubrate = 0x0;

239 240 241 242
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
243

244 245 246 247
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
248 249
}

250
static int get_scrub_rate(struct mem_ctl_info *mci)
251 252
{
	struct amd64_pvt *pvt = mci->pvt_info;
253
	int i, retval = -EINVAL;
254
	u32 scrubval = 0;
255

256 257
	switch (pvt->fam) {
	case 0x15:
258 259 260
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
261

262 263
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
264 265 266 267 268 269 270 271 272 273 274 275 276 277
		break;

	case 0x17:
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
		break;

	default:
278
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279 280
		break;
	}
281 282 283

	scrubval = scrubval & 0x001F;

284
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
285
		if (scrubrates[i].scrubval == scrubval) {
286
			retval = scrubrates[i].bandwidth;
287 288 289
			break;
		}
	}
290
	return retval;
291 292
}

293
/*
294 295
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
296
 */
297
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
298
{
299
	u64 addr;
300 301 302 303 304 305 306 307 308

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

309 310
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
311 312 313 314 315 316 317 318 319 320 321 322
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
323
	u8 node_id;
324 325 326 327 328 329 330 331 332 333 334 335 336
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
337
	intlv_en = dram_intlv_en(pvt, 0);
338 339

	if (intlv_en == 0) {
340
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
341
			if (base_limit_match(pvt, sys_addr, node_id))
342
				goto found;
343
		}
344
		goto err_no_match;
345 346
	}

347 348 349
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
350
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
351 352 353 354 355 356
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
357
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
358 359
			break;	/* intlv_sel field matches */

360
		if (++node_id >= DRAM_RANGES)
361 362 363 364
			goto err_no_match;
	}

	/* sanity test for sys_addr */
365
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
366 367 368
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
369 370 371 372
		return NULL;
	}

found:
373
	return edac_mc_find((int)node_id);
374 375

err_no_match:
376 377
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
378 379 380

	return NULL;
}
381 382

/*
383 384
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
385
 */
386 387
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
388
{
389 390
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
391

392
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
393 394
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
395 396
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
397
		addr_shift	= 4;
398 399

	/*
400 401 402 403 404
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
405 406 407
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

408 409
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
410 411 412

		*mask = ~0ULL;
		/* poke holes for the csmask */
413 414
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
415

416 417
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
418 419

		return;
420 421 422 423
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
424

425
		if (pvt->fam == 0x15)
426 427
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
428
		else
429 430
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
431
	}
432

433
	*base  = (csbase & base_bits) << addr_shift;
434

435 436 437 438 439
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
440 441
}

442 443 444
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

445 446 447
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

448 449 450
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

451 452 453 454 455 456 457 458 459 460 461 462
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

463 464
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
465 466
			continue;

467 468 469
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
470 471

		if ((input_addr & mask) == (base & mask)) {
472 473 474
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
475 476 477 478

			return csrow;
		}
	}
479 480
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
507
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
508 509
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
510 511 512
		return 1;
	}

513
	/* valid for Fam10h and above */
514
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
515
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
516 517 518
		return 1;
	}

519
	if (!dhar_valid(pvt)) {
520 521
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

543 544
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
545

546 547
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
548

549 550 551
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
552 553 554 555 556

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
588
	struct amd64_pvt *pvt = mci->pvt_info;
589
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
590
	int ret;
591

592
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
593 594 595 596

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
597 598
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
599 600 601
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

602 603 604
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
605 606 607 608 609 610 611 612 613 614 615 616 617 618

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
619
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
620

621 622
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
654
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
655
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
656
		      (dram_addr & 0xfff);
657

658 659 660
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
676
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
677
		 (unsigned long)sys_addr, (unsigned long)input_addr);
678 679 680 681 682 683

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
684
						    struct err_info *err)
685
{
686 687
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
705 706
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
707 708
	return csrow;
}
709

710
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
711 712 713 714 715

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
716
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
717
{
718
	unsigned long edac_cap = EDAC_FLAG_NONE;
719 720 721 722
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
723

724 725 726
		for (i = 0; i < NUM_UMCS; i++) {
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
727

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
745 746 747 748

	return edac_cap;
}

749
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
750

751
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
752
{
753
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
754

755 756 757 758 759 760 761 762 763 764 765 766 767
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

768

769 770
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
771

772
	if (pvt->fam == 0x10)
773 774
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
775

776 777 778 779 780
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
781 782
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	int dimm, size0, size1;

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

	for (dimm = 0; dimm < 4; dimm++) {
		size0 = 0;

		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);

		size1 = 0;
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl, 0, dimm);

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

	for (i = 0; i < NUM_UMCS; i++) {
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

850
/* Display and decode various NB registers for debug purposes. */
851
static void __dump_misc_regs(struct amd64_pvt *pvt)
852
{
853
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
854

855 856
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
857

858 859 860
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
861

862
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
863

864
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
865

866 867
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
868 869
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
870

871
	debug_display_dimm_sizes(pvt, 0);
872

873
	/* everything below this point is Fam10h and above */
874
	if (pvt->fam == 0xf)
875
		return;
876

877
	debug_display_dimm_sizes(pvt, 1);
878

879
	/* Only if NOT ganged does dclr1 have valid info */
880
	if (!dct_ganging_enabled(pvt))
881
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

	amd64_info("using %s syndromes.\n",
			((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
}

898
/*
899
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
900
 */
901
static void prep_chip_selects(struct amd64_pvt *pvt)
902
{
903
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
904 905
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
906
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
907 908
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
909
	} else {
910 911
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
912 913 914 915
	}
}

/*
916
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
917
 */
918
static void read_dct_base_mask(struct amd64_pvt *pvt)
919
{
920
	int base_reg0, base_reg1, mask_reg0, mask_reg1, cs;
921

922
	prep_chip_selects(pvt);
923

924 925 926 927 928 929 930 931 932 933 934 935
	if (pvt->umc) {
		base_reg0 = get_umc_base(0) + UMCCH_BASE_ADDR;
		base_reg1 = get_umc_base(1) + UMCCH_BASE_ADDR;
		mask_reg0 = get_umc_base(0) + UMCCH_ADDR_MASK;
		mask_reg1 = get_umc_base(1) + UMCCH_ADDR_MASK;
	} else {
		base_reg0 = DCSB0;
		base_reg1 = DCSB1;
		mask_reg0 = DCSM0;
		mask_reg1 = DCSM1;
	}

936
	for_each_chip_select(cs, 0, pvt) {
937 938
		int reg0   = base_reg0 + (cs * 4);
		int reg1   = base_reg1 + (cs * 4);
939 940
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
941

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: 0x%x\n",
					 cs, *base0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: 0x%x\n",
					 cs, *base1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
				edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
					 cs, *base0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
				edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
					 cs, *base1, (pvt->fam == 0x10) ? reg1
961
								: reg0);
962
		}
963 964
	}

965
	for_each_chip_select_mask(cs, 0, pvt) {
966 967
		int reg0   = mask_reg0 + (cs * 4);
		int reg1   = mask_reg1 + (cs * 4);
968 969
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
970

971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		if (pvt->umc) {
			if (!amd_smn_read(pvt->mc_node_id, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask0, reg0);

			if (!amd_smn_read(pvt->mc_node_id, reg1, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: 0x%x\n",
					 cs, *mask1, reg1);
		} else {
			if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
				edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask0, reg0);

			if (pvt->fam == 0xf)
				continue;

			if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
				edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
					 cs, *mask1, (pvt->fam == 0x10) ? reg1
990
								: reg0);
991
		}
992 993 994
	}
}

995
static void determine_memory_type(struct amd64_pvt *pvt)
996
{
997
	u32 dram_ctrl, dcsm;
998

999 1000 1001 1002 1003 1004 1005 1006 1007
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1008
		if (pvt->dchr0 & DDR3_MODE)
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1036
		else
1037
			pvt->dram_type = MEM_RDDR3;
1038

1039 1040 1041 1042 1043
		return;

	case 0x16:
		goto ddr3;

1044 1045 1046 1047 1048 1049 1050 1051 1052
	case 0x17:
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

1053 1054 1055 1056 1057
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1058

1059 1060
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1061 1062
}

1063
/* Get the number of DCT channels the memory controller is using. */
1064 1065
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1066
	int flag;
1067

1068
	if (pvt->ext_model >= K8_REV_F)
1069
		/* RevF (NPT) and later */
1070
		flag = pvt->dclr0 & WIDTH_128;
1071
	else
1072 1073 1074 1075 1076 1077 1078 1079 1080
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1081
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1082
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1083
{
1084 1085
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1086 1087
	u8 start_bit = 1;
	u8 end_bit   = 47;
1088 1089 1090 1091 1092 1093 1094
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1095

1096
	if (pvt->fam == 0xf) {
1097 1098 1099 1100
		start_bit = 3;
		end_bit   = 39;
	}

1101
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1102 1103 1104 1105

	/*
	 * Erratum 637 workaround
	 */
1106
	if (pvt->fam == 0x15) {
1107 1108
		u64 cc6_base, tmp_addr;
		u32 tmp;
1109
		u8 intlv_en;
1110

1111
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1112 1113 1114 1115 1116 1117 1118
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1119
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1120 1121 1122 1123 1124 1125 1126 1127

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1128
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1129 1130 1131 1132

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1133
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1134 1135

		/* OR DramIntlvSel into bits [14:12] */
1136
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1137 1138

		/* add remaining [11:0] bits from original MC4_ADDR */
1139
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1140 1141 1142 1143 1144

		return cc6_base | tmp_addr;
	}

	return addr;
1145 1146
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1163
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1164
{
1165
	struct amd_northbridge *nb;
1166 1167
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1168
	int off = range << 3;
1169
	u32 llim;
1170

1171 1172
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1173

1174
	if (pvt->fam == 0xf)
1175
		return;
1176

1177 1178
	if (!dram_rw(pvt, range))
		return;
1179

1180 1181
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1182

1183
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1184
	if (pvt->fam != 0x15)
1185
		return;
1186

1187 1188 1189
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1190

1191 1192 1193 1194 1195 1196
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1197 1198

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1199 1200
	if (WARN_ON(!f1))
		return;
1201

1202
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1203

1204
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1205

1206 1207
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1208

1209
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1210

1211 1212 1213 1214
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1215 1216
}

1217
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1218
				    struct err_info *err)
1219
{
1220
	struct amd64_pvt *pvt = mci->pvt_info;
1221

1222
	error_address_to_page_and_offset(sys_addr, err);
1223 1224 1225 1226 1227

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1228 1229
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1230 1231
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1232
		err->err_code = ERR_NODE;
1233 1234 1235 1236
		return;
	}

	/* Now map the sys_addr to a CSROW */
1237 1238 1239
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1240 1241 1242
		return;
	}

1243
	/* CHIPKILL enabled */
1244
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1245 1246
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1247 1248 1249 1250 1251
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1252
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1253
				      "possible error reporting race\n",
1254 1255
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1267
		err->channel = ((sys_addr & BIT(3)) != 0);
1268 1269 1270
	}
}

1271
static int ddr2_cs_size(unsigned i, bool dct_width)
1272
{
1273
	unsigned shift = 0;
1274

1275 1276 1277 1278
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1279
	else
1280
		shift = (i + 1) >> 1;
1281

1282 1283 1284 1285
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1286
				  unsigned cs_mode, int cs_mask_nr)
1287 1288 1289 1290 1291 1292 1293 1294
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1295
		unsigned diff;
1296 1297
		WARN_ON(cs_mode > 10);

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1325 1326 1327 1328 1329
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1330 1331
}

1332 1333 1334 1335 1336 1337 1338 1339
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1340
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1341
{
1342
	int i, j, channels = 0;
1343

1344
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1345
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1346
		return 2;
1347 1348

	/*
1349 1350 1351
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1352 1353 1354 1355
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1356
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1357

1358 1359 1360 1361 1362
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1363 1364
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1365

1366 1367 1368 1369 1370 1371
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1372 1373
	}

1374 1375 1376
	if (channels > 2)
		channels = 2;

1377
	amd64_info("MCT channel count: %d\n", channels);
1378 1379 1380 1381

	return channels;
}

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
	for (i = 0; i < NUM_UMCS; i++)
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1395
static int ddr3_cs_size(unsigned i, bool dct_width)
1396
{
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1452
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1453
				   unsigned cs_mode, int cs_mask_nr)
1454 1455 1456 1457
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1458 1459

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1460
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1461
	else
1462 1463 1464 1465 1466 1467 1468
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1469
				   unsigned cs_mode, int cs_mask_nr)
1470 1471
{
	WARN_ON(cs_mode > 12);
1472

1473
	return ddr3_cs_size(cs_mode, false);
1474 1475
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1507
/*
1508
 * F16h and F15h model 30h have only limited cs_modes.
1509 1510
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1511
				unsigned cs_mode, int cs_mask_nr)
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static int f17_base_addr_to_cs_size(struct amd64_pvt *pvt, u8 umc,
				    unsigned int cs_mode, int csrow_nr)
{
	u32 base_addr = pvt->csels[umc].csbases[csrow_nr];

	/*  Each mask is used for every two base addresses. */
	u32 addr_mask = pvt->csels[umc].csmasks[csrow_nr >> 1];

	/*  Register [31:1] = Address [39:9]. Size is in kBs here. */
	u32 size = ((addr_mask >> 1) - (base_addr >> 1) + 1) >> 1;

	edac_dbg(1, "BaseAddr: 0x%x, AddrMask: 0x%x\n", base_addr, addr_mask);

	/* Return size in MBs. */
	return size >> 10;
}

1539
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1540 1541
{

1542
	if (pvt->fam == 0xf)
1543 1544
		return;

1545
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1546 1547
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1548

1549 1550
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1551 1552

		if (!dct_ganging_enabled(pvt))
1553 1554
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1555

1556 1557 1558
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1559

1560 1561 1562 1563
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1564 1565
	}

1566
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1567 1568
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1597 1598 1599
	return channel;
}

1600
/*
1601
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1602 1603
 * Interleaving Modes.
 */
1604
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1605
				bool hi_range_sel, u8 intlv_en)
1606
{
1607
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1608 1609

	if (dct_ganging_enabled(pvt))
1610
		return 0;
1611

1612 1613
	if (hi_range_sel)
		return dct_sel_high;
1614

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1627
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1628 1629 1630 1631

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1632 1633 1634 1635 1636 1637
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1638 1639 1640 1641 1642
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1643 1644 1645 1646

	return 0;
}

1647
/* Convert the sys_addr to the normalized DCT address */
1648
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1649 1650
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1651 1652
{
	u64 chan_off;
1653 1654
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1655
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1656

1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1671
		    dhar_valid(pvt) &&
1672
		    (sys_addr >= BIT_64(32)))
1673
			chan_off = hole_off;
1674 1675 1676
		else
			chan_off = dct_sel_base_off;
	} else {
1677 1678 1679 1680 1681 1682 1683 1684 1685
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1686
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1687
			chan_off = hole_off;
1688
		else
1689
			chan_off = dram_base;
1690 1691
	}

1692
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1693 1694 1695 1696 1697 1698
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1699
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1700
{
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1724
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1725 1726 1727
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1728
	u64 cs_base, cs_mask;
1729 1730 1731
	int cs_found = -EINVAL;
	int csrow;

1732
	mci = edac_mc_find(nid);
1733 1734 1735 1736 1737
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1738
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1739

1740 1741
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1742 1743
			continue;

1744
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1745

1746 1747
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1748

1749
		cs_mask = ~cs_mask;
1750

1751 1752
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1753

1754
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1755 1756 1757 1758
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1759
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1760

1761
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1762 1763 1764 1765 1766 1767
			break;
		}
	}
	return cs_found;
}

1768 1769 1770 1771 1772
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1773
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1774 1775 1776
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1777
	if (pvt->fam == 0x10) {
1778
		/* only revC3 and revE have that feature */
1779
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1780 1781 1782
			return sys_addr;
	}

1783
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1802
/* For a given @dram_range, check if @sys_addr falls within it. */
1803
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1804
				  u64 sys_addr, int *chan_sel)
1805
{
1806
	int cs_found = -EINVAL;
1807
	u64 chan_addr;
1808
	u32 dct_sel_base;
1809
	u8 channel;
1810
	bool high_range = false;
1811

1812
	u8 node_id    = dram_dst_node(pvt, range);
1813
	u8 intlv_en   = dram_intlv_en(pvt, range);
1814
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1815

1816 1817
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1818

1819 1820 1821 1822 1823 1824 1825 1826
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1827
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1828 1829
		return -EINVAL;

1830
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1831

1832 1833 1834 1835 1836 1837 1838 1839 1840
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1841
		high_range = true;
1842

1843
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1844

1845
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1846
					  high_range, dct_sel_base);
1847

1848 1849 1850 1851
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1852

1853
	/* remove channel interleave */
1854 1855 1856
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1871 1872
	}

1873
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1874

1875
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1876

1877
	if (cs_found >= 0)
1878
		*chan_sel = channel;
1879

1880 1881 1882
	return cs_found;
}

1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
1920 1921
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
1922 1923

	if (!(dct_cont_base_reg & BIT(0)) &&
1924 1925
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
1926 1927 1928 1929 1930 1931 1932 1933
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

1934 1935 1936 1937 1938
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
1939 1940

	/* Verify we stay within the MAX number of channels allowed */
1941
	if (channel > 3)
1942 1943 1944 1945 1946 1947 1948 1949
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
1950
		chan_offset = dct_base << 27;
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
1980
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2008
{
2009 2010
	int cs_found = -EINVAL;
	unsigned range;
2011

2012 2013
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2014 2015
			continue;

2016 2017 2018 2019
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2020

2021 2022
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2023
			cs_found = f1x_match_to_this_node(pvt, range,
2024
							  sys_addr, chan_sel);
2025 2026 2027 2028 2029 2030 2031 2032
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2033 2034
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2035
 *
2036 2037
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2038
 */
2039
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2040
				     struct err_info *err)
2041 2042 2043
{
	struct amd64_pvt *pvt = mci->pvt_info;

2044
	error_address_to_page_and_offset(sys_addr, err);
2045

2046 2047 2048
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2049 2050 2051 2052 2053 2054 2055 2056
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2057
	if (dct_ganging_enabled(pvt))
2058
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2059 2060 2061
}

/*
2062
 * debug routine to display the memory sizes of all logical DIMMs and its
2063
 * CSROWs
2064
 */
2065
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2066
{
2067
	int dimm, size0, size1;
2068 2069
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2070

2071
	if (pvt->fam == 0xf) {
2072
		/* K8 families < revF not supported yet */
2073
	       if (pvt->ext_model < K8_REV_F)
2074 2075 2076 2077 2078
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2089 2090
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2091

2092 2093
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2094 2095 2096 2097
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2098
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2099 2100 2101
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2102 2103 2104
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2105
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2106 2107
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2108 2109

		size1 = 0;
2110
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2111
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2112 2113
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2114

2115
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2116 2117
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2118 2119 2120
	}
}

2121
static struct amd64_family_type family_types[] = {
2122
	[K8_CPUS] = {
2123
		.ctl_name = "K8",
2124
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2125
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2126
		.ops = {
2127 2128 2129
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2130 2131 2132
		}
	},
	[F10_CPUS] = {
2133
		.ctl_name = "F10h",
2134
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2135
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2136
		.ops = {
2137
			.early_channel_count	= f1x_early_channel_count,
2138
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2139
			.dbam_to_cs		= f10_dbam_to_chip_select,
2140 2141 2142 2143
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2144
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2145
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2146
		.ops = {
2147
			.early_channel_count	= f1x_early_channel_count,
2148
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2149
			.dbam_to_cs		= f15_dbam_to_chip_select,
2150 2151
		}
	},
2152 2153 2154
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2155
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2156 2157 2158 2159 2160 2161
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2162 2163 2164
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2165
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2166 2167 2168 2169 2170 2171
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2172 2173 2174
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2175
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2176 2177 2178 2179 2180 2181
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2182 2183 2184
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2185
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2186 2187 2188 2189 2190 2191
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2192 2193 2194 2195 2196 2197 2198 2199 2200
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_base_addr_to_cs_size,
		}
	},
2201 2202
};

2203
/*
2204 2205 2206
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2207
 *
2208
 * Algorithm courtesy of Ross LaFetra from AMD.
2209
 */
2210
static const u16 x4_vectors[] = {
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2247 2248
};

2249
static const u16 x8_vectors[] = {
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2271
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2272
			   unsigned v_dim)
2273
{
2274 2275 2276 2277
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2278 2279
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2292

2293 2294 2295
					if (!s)
						return err_sym;
				}
2296

2297 2298 2299 2300
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2301 2302
	}

2303
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2304 2305
	return -1;
}
2306

2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2349 2350
	int err_sym = -1;

2351
	if (pvt->ecc_sym_sz == 8)
2352 2353
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2354 2355
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2356 2357
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2358
					  pvt->ecc_sym_sz);
2359
	else {
2360
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2361
		return err_sym;
2362
	}
2363

2364
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2365 2366
}

2367
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2368
			    u8 ecc_type)
2369
{
2370 2371
	enum hw_event_mc_err_type err_type;
	const char *string;
2372

2373 2374 2375 2376
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2377 2378
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2379 2380
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2381 2382 2383
		return;
	}

2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2395 2396 2397 2398 2399 2400 2401
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2402 2403 2404 2405
		break;
	default:
		string = "WTF error";
		break;
2406
	}
2407 2408 2409 2410 2411

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2412 2413
}

2414
static inline void decode_bus_error(int node_id, struct mce *m)
2415
{
2416 2417
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2418
	u8 ecc_type = (m->status >> 45) & 0x3;
2419 2420
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2421 2422
	u64 sys_addr;
	struct err_info err;
2423

2424 2425 2426 2427 2428 2429
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2430
	/* Bail out early if this was an 'observed' error */
2431
	if (PP(ec) == NBSL_PP_OBS)
2432
		return;
2433

2434 2435
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2436 2437
		return;

2438 2439
	memset(&err, 0, sizeof(err));

2440
	sys_addr = get_error_address(pvt, m);
2441

2442
	if (ecc_type == 2)
2443 2444 2445 2446
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2447
	__log_ecc_error(mci, &err, ecc_type);
2448 2449
}

2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
 */
static int find_umc_channel(struct amd64_pvt *pvt, struct mce *m)
{
	u32 umc_instance_id[] = {0x50f00, 0x150f00};
	u32 instance_id = m->ipid & GENMASK(31, 0);
	int i, channel = -1;

	for (i = 0; i < ARRAY_SIZE(umc_instance_id); i++)
		if (umc_instance_id[i] == instance_id)
			channel = i;

	return channel;
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

	err.channel = find_umc_channel(pvt, m);
	if (err.channel < 0) {
		err.err_code = ERR_CHANNEL;
		goto log_error;
	}

	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2520
/*
2521 2522
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2523
 * Reserve F0 and F6 on systems with a UMC.
2524
 */
2525 2526 2527 2528 2529 2530
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2531
			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2532 2533 2534 2535 2536 2537 2538 2539
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2540
			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2541 2542
			return -ENODEV;
		}
2543

2544 2545 2546 2547 2548 2549 2550
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2551
	/* Reserve the ADDRESS MAP Device */
2552
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2553
	if (!pvt->F1) {
2554
		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2555
		return -ENODEV;
2556 2557
	}

2558
	/* Reserve the DCT Device */
2559
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2560
	if (!pvt->F2) {
2561 2562
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2563

2564 2565
		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
		return -ENODEV;
2566
	}
2567

2568 2569 2570
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2571 2572 2573 2574

	return 0;
}

2575
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2576
{
2577 2578 2579 2580 2581 2582 2583
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2584 2585
}

2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

		for (i = 0; i < NUM_UMCS; i++) {
			/* Check enabled channels only: */
			if ((pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) &&
			    (pvt->umc[i].ecc_ctrl & BIT(7))) {
				pvt->ecc_sym_sz = 8;
				break;
			}
		}

		return;
	}

	if (pvt->fam >= 0x10) {
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
	for (i = 0; i < NUM_UMCS; i++) {

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2634 2635
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2636 2637
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2638
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2639 2640 2641
	}
}

2642 2643 2644 2645
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2646
static void read_mc_regs(struct amd64_pvt *pvt)
2647
{
2648
	unsigned int range;
2649 2650 2651 2652
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2653
	 * those are Read-As-Zero.
2654
	 */
2655
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2656
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2657

2658
	/* Check first whether TOP_MEM2 is enabled: */
2659
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2660
	if (msr_val & BIT(21)) {
2661
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2662
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2663
	} else {
2664
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2665 2666 2667 2668 2669 2670 2671 2672
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2673

2674
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2675

2676
	read_dram_ctl_register(pvt);
2677

2678 2679
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2680

2681 2682 2683 2684 2685 2686 2687
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2688 2689 2690 2691
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2692

2693 2694 2695 2696 2697 2698
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2699 2700
	}

2701
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2702
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2703

2704
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2705

2706 2707
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2708

2709
	if (!dct_ganging_enabled(pvt)) {
2710 2711
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2712
	}
2713

2714 2715 2716
skip:
	read_dct_base_mask(pvt);

2717 2718
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2719

2720
	determine_ecc_sym_sz(pvt);
2721

2722
	dump_misc_regs(pvt);
2723 2724 2725 2726 2727 2728
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2729
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2759
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2760
{
2761
	u32 cs_mode, nr_pages;
2762
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2763

2764

2765 2766 2767 2768 2769 2770 2771
	/*
	 * The math on this doesn't look right on the surface because x/2*4 can
	 * be simplified to x*2 but this expression makes use of the fact that
	 * it is integral math where 1/2=0. This intermediate value becomes the
	 * number of bits to shift the DBAM register to extract the proper CSROW
	 * field.
	 */
B
Borislav Petkov 已提交
2772
	cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
2773

2774 2775
	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
							   << (20 - PAGE_SHIFT);
2776

2777 2778 2779
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
		    csrow_nr, dct,  cs_mode);
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2780 2781 2782 2783 2784 2785 2786 2787

	return nr_pages;
}

/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2788
static int init_csrows(struct mem_ctl_info *mci)
2789
{
2790
	struct amd64_pvt *pvt = mci->pvt_info;
2791
	enum edac_type edac_mode = EDAC_NONE;
2792
	struct csrow_info *csrow;
2793
	struct dimm_info *dimm;
2794
	int i, j, empty = 1;
2795
	int nr_pages = 0;
2796
	u32 val;
2797

2798 2799
	if (!pvt->umc) {
		amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2800

2801
		pvt->nbcfg = val;
2802

2803 2804 2805 2806
		edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
			 pvt->mc_node_id, val,
			 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
	}
2807

2808 2809 2810
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2811
	for_each_chip_select(i, 0, pvt) {
2812 2813
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2814

2815
		if (pvt->fam != 0xf)
2816 2817 2818
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2819 2820
			continue;

2821
		csrow = mci->csrows[i];
2822
		empty = 0;
2823 2824 2825 2826

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2827
		if (row_dct0) {
2828
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
2829 2830
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
2831

2832
		/* K8 has only one DCT */
2833
		if (pvt->fam != 0xf && row_dct1) {
2834
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
2835 2836 2837 2838

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
2839

2840
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
2841

2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		/* Determine DIMM ECC mode: */
		if (pvt->umc) {
			if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED)
				edac_mode = EDAC_S4ECD4ED;
			else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED)
				edac_mode = EDAC_SECDED;

		} else if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
2854 2855

		for (j = 0; j < pvt->channel_count; j++) {
2856
			dimm = csrow->channels[j]->dimm;
2857
			dimm->mtype = pvt->dram_type;
2858
			dimm->edac_mode = edac_mode;
2859
		}
2860 2861 2862 2863
	}

	return empty;
}
2864

2865
/* get all cores on this DCT */
2866
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
2867 2868 2869 2870 2871 2872 2873 2874 2875
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
2876
static bool nb_mce_bank_enabled_on_node(u16 nid)
2877 2878
{
	cpumask_var_t mask;
2879
	int cpu, nbe;
2880 2881 2882
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2883
		amd64_warn("%s: Error allocating mask\n", __func__);
2884 2885 2886 2887 2888 2889 2890 2891
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
2892
		struct msr *reg = per_cpu_ptr(msrs, cpu);
2893
		nbe = reg->l & MSR_MCGCTL_NBE;
2894

2895 2896 2897
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

2909
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
2910 2911
{
	cpumask_var_t cmask;
2912
	int cpu;
2913 2914

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2915
		amd64_warn("%s: error allocating mask\n", __func__);
2916 2917 2918
		return false;
	}

2919
	get_cpus_on_this_dct_cpumask(cmask, nid);
2920 2921 2922 2923 2924

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

2925 2926
		struct msr *reg = per_cpu_ptr(msrs, cpu);

2927
		if (on) {
2928
			if (reg->l & MSR_MCGCTL_NBE)
2929
				s->flags.nb_mce_enable = 1;
2930

2931
			reg->l |= MSR_MCGCTL_NBE;
2932 2933
		} else {
			/*
2934
			 * Turn off NB MCE reporting only when it was off before
2935
			 */
2936
			if (!s->flags.nb_mce_enable)
2937
				reg->l &= ~MSR_MCGCTL_NBE;
2938 2939 2940 2941 2942 2943 2944 2945 2946
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

2947
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2948
				       struct pci_dev *F3)
2949
{
2950
	bool ret = true;
B
Borislav Petkov 已提交
2951
	u32 value, mask = 0x3;		/* UECC/CECC enable */
2952

2953 2954 2955 2956 2957
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
2958
	amd64_read_pci_cfg(F3, NBCTL, &value);
2959

2960 2961
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
2962 2963

	value |= mask;
B
Borislav Petkov 已提交
2964
	amd64_write_pci_cfg(F3, NBCTL, value);
2965

2966
	amd64_read_pci_cfg(F3, NBCFG, &value);
2967

2968 2969
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2970

2971
	if (!(value & NBCFG_ECC_ENABLE)) {
2972
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2973

2974
		s->flags.nb_ecc_prev = 0;
2975

2976
		/* Attempt to turn on DRAM ECC Enable */
2977 2978
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
2979

2980
		amd64_read_pci_cfg(F3, NBCFG, &value);
2981

2982
		if (!(value & NBCFG_ECC_ENABLE)) {
2983 2984
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
2985
			ret = false;
2986
		} else {
2987
			amd64_info("Hardware accepted DRAM ECC Enable\n");
2988
		}
2989
	} else {
2990
		s->flags.nb_ecc_prev = 1;
2991
	}
2992

2993 2994
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
2995

2996
	return ret;
2997 2998
}

2999
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3000
					struct pci_dev *F3)
3001
{
B
Borislav Petkov 已提交
3002 3003
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3004
	if (!s->nbctl_valid)
3005 3006
		return;

B
Borislav Petkov 已提交
3007
	amd64_read_pci_cfg(F3, NBCTL, &value);
3008
	value &= ~mask;
3009
	value |= s->old_nbctl;
3010

B
Borislav Petkov 已提交
3011
	amd64_write_pci_cfg(F3, NBCTL, value);
3012

3013 3014
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3015 3016 3017
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3018 3019 3020
	}

	/* restore the NB Enable MCGCTL bit */
3021
	if (toggle_ecc_err_reporting(s, nid, OFF))
3022
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3023 3024 3025
}

/*
3026 3027 3028 3029
 * EDAC requires that the BIOS have ECC enabled before
 * taking over the processing of ECC errors. A command line
 * option allows to force-enable hardware ECC later in
 * enable_ecc_error_reporting().
3030
 */
3031 3032 3033 3034 3035
static const char *ecc_msg =
	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
	" Either enable ECC checking or force module loading by setting "
	"'ecc_enable_override'.\n"
	" (Note that use of the override may cause unknown side effects.)\n";
3036

3037
static bool ecc_enabled(struct pci_dev *F3, u16 nid)
3038
{
3039
	bool nb_mce_en = false;
3040 3041
	u8 ecc_en = 0, i;
	u32 value;
3042

3043 3044
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3045

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072
		for (i = 0; i < NUM_UMCS; i++) {
			u32 base = get_umc_base(i);

			/* Only check enabled UMCs. */
			if (amd_smn_read(nid, base + UMCCH_SDP_CTRL, &value))
				continue;

			if (!(value & UMC_SDP_INIT))
				continue;

			umc_en_mask |= BIT(i);

			if (amd_smn_read(nid, base + UMCCH_UMC_CAP_HI, &value))
				continue;

			if (value & UMC_ECC_ENABLED)
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
		amd64_read_pci_cfg(F3, NBCFG, &value);
3073

3074 3075 3076 3077 3078 3079 3080 3081 3082
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
			amd64_notice("NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
				     MSR_IA32_MCG_CTL, nid);
	}

	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
3083

3084 3085 3086 3087 3088
	if (!ecc_en || !nb_mce_en) {
		amd64_notice("%s", ecc_msg);
		return false;
	}
	return true;
3089 3090
}

3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
	u8 i, ecc_en = 1, cpk_en = 1;

	for (i = 0; i < NUM_UMCS; i++) {
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

		if (cpk_en)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
}

3112 3113
static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
				 struct amd64_family_type *fam)
3114 3115 3116 3117 3118 3119
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3120 3121 3122 3123 3124
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3125

3126 3127 3128
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3129

3130
	mci->edac_cap		= determine_edac_cap(pvt);
3131 3132
	mci->mod_name		= EDAC_MOD_STR;
	mci->mod_ver		= EDAC_AMD64_VERSION;
3133
	mci->ctl_name		= fam->ctl_name;
3134
	mci->dev_name		= pci_name(pvt->F3);
3135 3136 3137
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3138 3139
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3140 3141
}

3142 3143 3144
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3145
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3146
{
3147 3148
	struct amd64_family_type *fam_type = NULL;

3149
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3150
	pvt->stepping	= boot_cpu_data.x86_mask;
3151 3152 3153 3154
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3155
	case 0xf:
3156 3157
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3158
		break;
3159

3160
	case 0x10:
3161 3162
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3163 3164 3165
		break;

	case 0x15:
3166
		if (pvt->model == 0x30) {
3167 3168
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3169
			break;
3170 3171 3172 3173
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3174 3175
		}

3176 3177
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3178 3179
		break;

3180
	case 0x16:
3181 3182 3183 3184 3185
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3186 3187
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3188 3189
		break;

3190 3191 3192 3193 3194
	case 0x17:
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
		break;

3195
	default:
3196
		amd64_err("Unsupported family!\n");
3197
		return NULL;
3198
	}
3199

3200
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3201
		     (pvt->fam == 0xf ?
3202 3203 3204
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3205
	return fam_type;
3206 3207
}

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3218
static int init_one_instance(unsigned int nid)
3219
{
3220
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3221
	struct amd64_family_type *fam_type = NULL;
3222
	struct mem_ctl_info *mci = NULL;
3223
	struct edac_mc_layer layers[2];
3224
	struct amd64_pvt *pvt = NULL;
3225
	u16 pci_id1, pci_id2;
3226 3227 3228 3229 3230
	int err = 0, ret;

	ret = -ENOMEM;
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
3231
		goto err_ret;
3232

3233
	pvt->mc_node_id	= nid;
3234
	pvt->F3 = F3;
3235

3236
	ret = -EINVAL;
3237
	fam_type = per_family_init(pvt);
3238
	if (!fam_type)
3239 3240
		goto err_free;

3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	if (pvt->fam >= 0x17) {
		pvt->umc = kcalloc(NUM_UMCS, sizeof(struct amd64_umc), GFP_KERNEL);
		if (!pvt->umc) {
			ret = -ENOMEM;
			goto err_free;
		}

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

	err = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
3256
	if (err)
3257
		goto err_post_init;
3258

3259
	read_mc_regs(pvt);
3260 3261 3262 3263

	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3264
	 * tables in the 'mci' structure.
3265
	 */
3266
	ret = -EINVAL;
3267 3268
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3269
		goto err_siblings;
3270 3271

	ret = -ENOMEM;
3272 3273 3274 3275
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3276 3277 3278 3279 3280 3281 3282

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
	layers[1].size = 2;
3283
	layers[1].is_virt_csrow = false;
3284

3285
	mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
3286
	if (!mci)
3287
		goto err_siblings;
3288 3289

	mci->pvt_info = pvt;
3290
	mci->pdev = &pvt->F3->dev;
3291

3292
	setup_mci_misc_attrs(mci, fam_type);
3293 3294

	if (init_csrows(mci))
3295 3296 3297
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3298
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3299
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3300 3301 3302
		goto err_add_mc;
	}

3303 3304 3305 3306
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

3307 3308 3309 3310
	if (pvt->umc)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);
3311

3312 3313 3314 3315 3316
	return 0;

err_add_mc:
	edac_mc_free(mci);

3317 3318
err_siblings:
	free_mc_sibling_devs(pvt);
3319

3320 3321 3322 3323
err_post_init:
	if (pvt->fam >= 0x17)
		kfree(pvt->umc);

3324 3325
err_free:
	kfree(pvt);
3326

3327
err_ret:
3328 3329 3330
	return ret;
}

3331
static int probe_one_instance(unsigned int nid)
3332
{
3333
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3334
	struct ecc_settings *s;
3335
	int ret;
3336

3337 3338 3339
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3340
		goto err_out;
3341 3342 3343

	ecc_stngs[nid] = s;

3344 3345 3346 3347 3348 3349
	if (!ecc_enabled(F3, nid)) {
		ret = -ENODEV;

		if (!ecc_enable_override)
			goto err_enable;

3350 3351 3352 3353 3354
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3355 3356 3357 3358 3359

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3360
	ret = init_one_instance(nid);
3361
	if (ret < 0) {
3362
		amd64_err("Error probing instance: %d\n", nid);
3363 3364 3365

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3366
	}
3367 3368

	return ret;
3369 3370 3371 3372 3373 3374 3375

err_enable:
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3376 3377
}

3378
static void remove_one_instance(unsigned int nid)
3379
{
3380 3381
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3382 3383
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3384

3385
	mci = find_mci_by_dev(&F3->dev);
3386 3387
	WARN_ON(!mci);

3388
	/* Remove from EDAC CORE tracking list */
3389
	mci = edac_mc_del_mc(&F3->dev);
3390 3391 3392 3393 3394
	if (!mci)
		return;

	pvt = mci->pvt_info;

3395
	restore_ecc_error_reporting(s, nid, F3);
3396

3397
	free_mc_sibling_devs(pvt);
3398

3399 3400
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);
3401 3402 3403 3404 3405

	if (pvt->umc)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);
3406

3407 3408
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3409

3410
	/* Free the EDAC CORE resources */
3411 3412 3413
	mci->pvt_info = NULL;

	kfree(pvt);
3414 3415 3416
	edac_mc_free(mci);
}

3417
static void setup_pci_device(void)
3418 3419 3420 3421
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3422
	if (pci_ctl)
3423 3424
		return;

3425
	mci = edac_mc_find(0);
3426 3427
	if (!mci)
		return;
3428

3429
	pvt = mci->pvt_info;
3430 3431 3432 3433
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3434 3435 3436
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3437 3438 3439
	}
}

3440 3441 3442 3443 3444
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3445
	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3446 3447 3448 3449
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3450 3451
static int __init amd64_edac_init(void)
{
3452
	int err = -ENODEV;
3453
	int i;
3454

3455
	if (amd_cache_northbridges() < 0)
3456
		goto err_ret;
3457

3458 3459
	opstate_init();

3460
	err = -ENOMEM;
3461
	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
3462
	if (!ecc_stngs)
3463
		goto err_free;
3464

3465
	msrs = msrs_alloc();
3466
	if (!msrs)
3467
		goto err_free;
3468

3469 3470 3471 3472 3473
	for (i = 0; i < amd_nb_num(); i++)
		if (probe_one_instance(i)) {
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3474

3475 3476
			goto err_pci;
		}
3477

3478
	setup_pci_device();
T
Tomasz Pala 已提交
3479 3480 3481 3482 3483

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3484 3485
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3486
	return 0;
3487

3488 3489 3490
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3491

3492 3493 3494 3495
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3496
err_ret:
3497 3498 3499 3500 3501
	return err;
}

static void __exit amd64_edac_exit(void)
{
3502 3503
	int i;

3504 3505
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3506

3507 3508
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3509

3510 3511 3512
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3513 3514
	msrs_free(msrs);
	msrs = NULL;
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");