amd64_edac.c 101.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "amd64_edac.h"
3
#include <asm/amd_nb.h>
4

5
static struct edac_pci_ctl_info *pci_ctl;
6 7 8 9 10 11 12 13

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

14
static struct msr __percpu *msrs;
15

16 17
static struct amd64_family_type *fam_type;

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23
/* Device for the PCI component */
static struct device *pci_ctl_dev;

24 25 26 27 28 29 30
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
31
static const struct scrubrate {
32 33 34
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

60 61
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

99 100 101 102
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
103
 * K8: has a single DCT only and no address offsets >= 0x100
104 105 106 107 108
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
109
 * F16h: has only 1 DCT
110 111
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
112
 */
113 114
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
115
{
116 117 118 119 120
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
121

122 123 124 125 126 127 128 129 130
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
131

132 133 134
			offset += 0x100;
		}
		break;
135

136 137 138 139 140 141 142 143
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
144

145 146 147 148
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
149

150 151
	default:
		break;
152
	}
153
	return amd64_read_pci_cfg(pvt->F2, offset, val);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
185
/*
186
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
187 188
 * issue. If requested is too big, then use last maximum value found.
 */
189
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
190 191 192 193 194 195 196 197 198
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
199 200 201
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
202
	 */
203
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
204 205 206 207
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
208
		if (scrubrates[i].scrubval < min_rate)
209 210 211 212 213 214 215 216
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

217
	if (pvt->umc) {
218 219
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
220 221 222 223 224 225 226
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
227

228 229 230
	if (scrubval)
		return scrubrates[i].bandwidth;

231 232 233
	return 0;
}

234
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
235 236
{
	struct amd64_pvt *pvt = mci->pvt_info;
237
	u32 min_scrubrate = 0x5;
238

239
	if (pvt->fam == 0xf)
240 241
		min_scrubrate = 0x0;

242 243 244 245
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
246

247 248 249 250
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
251 252
}

253
static int get_scrub_rate(struct mem_ctl_info *mci)
254 255
{
	struct amd64_pvt *pvt = mci->pvt_info;
256
	int i, retval = -EINVAL;
257
	u32 scrubval = 0;
258

259
	if (pvt->umc) {
260 261 262 263 264 265 266 267
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
268 269 270 271
	} else if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
272

273 274
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
275 276
		else
			amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
277
	} else {
278
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
279
	}
280 281 282

	scrubval = scrubval & 0x001F;

283
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
284
		if (scrubrates[i].scrubval == scrubval) {
285
			retval = scrubrates[i].bandwidth;
286 287 288
			break;
		}
	}
289
	return retval;
290 291
}

292
/*
293 294
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
295
 */
296
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
297
{
298
	u64 addr;
299 300 301 302 303 304 305 306 307

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

308 309
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
310 311 312 313 314 315 316 317 318 319 320 321
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
322
	u8 node_id;
323 324 325 326 327 328 329 330 331 332 333 334 335
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
336
	intlv_en = dram_intlv_en(pvt, 0);
337 338

	if (intlv_en == 0) {
339
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
340
			if (base_limit_match(pvt, sys_addr, node_id))
341
				goto found;
342
		}
343
		goto err_no_match;
344 345
	}

346 347 348
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
349
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
350 351 352 353 354 355
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
356
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
357 358
			break;	/* intlv_sel field matches */

359
		if (++node_id >= DRAM_RANGES)
360 361 362 363
			goto err_no_match;
	}

	/* sanity test for sys_addr */
364
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
365 366 367
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
368 369 370 371
		return NULL;
	}

found:
372
	return edac_mc_find((int)node_id);
373 374

err_no_match:
375 376
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
377 378 379

	return NULL;
}
380 381

/*
382 383
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
384
 */
385 386
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
387
{
388 389
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
390

391
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
392 393
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
394 395
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
396
		addr_shift	= 4;
397 398

	/*
399 400 401 402 403
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
404 405 406
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

407 408
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
409 410 411

		*mask = ~0ULL;
		/* poke holes for the csmask */
412 413
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
414

415 416
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
417 418

		return;
419 420 421 422
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
423

424
		if (pvt->fam == 0x15)
425 426
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
427
		else
428 429
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
430
	}
431

432
	*base  = (csbase & base_bits) << addr_shift;
433

434 435 436 437 438
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
439 440
}

441 442 443
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

444 445 446
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

447 448 449
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

450
#define for_each_umc(i) \
451
	for (i = 0; i < fam_type->max_mcs; i++)
452

453 454 455 456 457 458 459 460 461 462 463 464
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

465 466
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
467 468
			continue;

469 470 471
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
472 473

		if ((input_addr & mask) == (base & mask)) {
474 475 476
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
477 478 479 480

			return csrow;
		}
	}
481 482
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
503 504
static int get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			      u64 *hole_offset, u64 *hole_size)
505 506 507 508
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
509
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
510 511
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
512 513 514
		return 1;
	}

515
	/* valid for Fam10h and above */
516
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
517
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
518 519 520
		return 1;
	}

521
	if (!dhar_valid(pvt)) {
522 523
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

545 546
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
547

548 549
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
550

551 552 553
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
554 555 556

	return 0;
}
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573

#ifdef CONFIG_EDAC_DEBUG
#define EDAC_DCT_ATTR_SHOW(reg)						\
static ssize_t reg##_show(struct device *dev,				\
			 struct device_attribute *mattr, char *data)	\
{									\
	struct mem_ctl_info *mci = to_mci(dev);				\
	struct amd64_pvt *pvt = mci->pvt_info;				\
									\
	return sprintf(data, "0x%016llx\n", (u64)pvt->reg);		\
}

EDAC_DCT_ATTR_SHOW(dhar);
EDAC_DCT_ATTR_SHOW(dbam0);
EDAC_DCT_ATTR_SHOW(top_mem);
EDAC_DCT_ATTR_SHOW(top_mem2);

574 575
static ssize_t dram_hole_show(struct device *dev, struct device_attribute *mattr,
			      char *data)
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
{
	struct mem_ctl_info *mci = to_mci(dev);

	u64 hole_base = 0;
	u64 hole_offset = 0;
	u64 hole_size = 0;

	get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);

	return sprintf(data, "%llx %llx %llx\n", hole_base, hole_offset,
						 hole_size);
}

/*
 * update NUM_DBG_ATTRS in case you add new members
 */
static DEVICE_ATTR(dhar, S_IRUGO, dhar_show, NULL);
static DEVICE_ATTR(dbam, S_IRUGO, dbam0_show, NULL);
static DEVICE_ATTR(topmem, S_IRUGO, top_mem_show, NULL);
static DEVICE_ATTR(topmem2, S_IRUGO, top_mem2_show, NULL);
596
static DEVICE_ATTR_RO(dram_hole);
597 598 599 600 601 602 603 604 605 606 607 608 609 610

static struct attribute *dbg_attrs[] = {
	&dev_attr_dhar.attr,
	&dev_attr_dbam.attr,
	&dev_attr_topmem.attr,
	&dev_attr_topmem2.attr,
	&dev_attr_dram_hole.attr,
	NULL
};

static const struct attribute_group dbg_group = {
	.attrs = dbg_attrs,
};

611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static ssize_t inject_section_show(struct device *dev,
				   struct device_attribute *mattr, char *buf)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	return sprintf(buf, "0x%x\n", pvt->injection.section);
}

/*
 * store error injection section value which refers to one of 4 16-byte sections
 * within a 64-byte cacheline
 *
 * range: 0..3
 */
static ssize_t inject_section_store(struct device *dev,
				    struct device_attribute *mattr,
				    const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	if (value > 3) {
		amd64_warn("%s: invalid section 0x%lx\n", __func__, value);
		return -EINVAL;
	}

	pvt->injection.section = (u32) value;
	return count;
}

static ssize_t inject_word_show(struct device *dev,
				struct device_attribute *mattr, char *buf)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	return sprintf(buf, "0x%x\n", pvt->injection.word);
}

/*
 * store error injection word value which refers to one of 9 16-bit word of the
 * 16-byte (128-bit + ECC bits) section
 *
 * range: 0..8
 */
static ssize_t inject_word_store(struct device *dev,
				 struct device_attribute *mattr,
				 const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	if (value > 8) {
		amd64_warn("%s: invalid word 0x%lx\n", __func__, value);
		return -EINVAL;
	}

	pvt->injection.word = (u32) value;
	return count;
}

static ssize_t inject_ecc_vector_show(struct device *dev,
				      struct device_attribute *mattr,
				      char *buf)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	return sprintf(buf, "0x%x\n", pvt->injection.bit_map);
}

/*
 * store 16 bit error injection vector which enables injecting errors to the
 * corresponding bit within the error injection word above. When used during a
 * DRAM ECC read, it holds the contents of the of the DRAM ECC bits.
 */
static ssize_t inject_ecc_vector_store(struct device *dev,
				       struct device_attribute *mattr,
				       const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 16, &value);
	if (ret < 0)
		return ret;

	if (value & 0xFFFF0000) {
		amd64_warn("%s: invalid EccVector: 0x%lx\n", __func__, value);
		return -EINVAL;
	}

	pvt->injection.bit_map = (u32) value;
	return count;
}

/*
 * Do a DRAM ECC read. Assemble staged values in the pvt area, format into
 * fields needed by the injection registers and read the NB Array Data Port.
 */
static ssize_t inject_read_store(struct device *dev,
				 struct device_attribute *mattr,
				 const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	unsigned long value;
	u32 section, word_bits;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	/* Form value to choose 16-byte section of cacheline */
	section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);

	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);

	word_bits = SET_NB_DRAM_INJECTION_READ(pvt->injection);

	/* Issue 'word' and 'bit' along with the READ request */
	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);

	edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);

	return count;
}

/*
 * Do a DRAM ECC write. Assemble staged values in the pvt area and format into
 * fields needed by the injection registers.
 */
static ssize_t inject_write_store(struct device *dev,
				  struct device_attribute *mattr,
				  const char *data, size_t count)
{
	struct mem_ctl_info *mci = to_mci(dev);
	struct amd64_pvt *pvt = mci->pvt_info;
	u32 section, word_bits, tmp;
	unsigned long value;
	int ret;

	ret = kstrtoul(data, 10, &value);
	if (ret < 0)
		return ret;

	/* Form value to choose 16-byte section of cacheline */
	section = F10_NB_ARRAY_DRAM | SET_NB_ARRAY_ADDR(pvt->injection.section);

	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_ADDR, section);

	word_bits = SET_NB_DRAM_INJECTION_WRITE(pvt->injection);

	pr_notice_once("Don't forget to decrease MCE polling interval in\n"
			"/sys/bus/machinecheck/devices/machinecheck<CPUNUM>/check_interval\n"
			"so that you can get the error report faster.\n");

	on_each_cpu(disable_caches, NULL, 1);

	/* Issue 'word' and 'bit' along with the READ request */
	amd64_write_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, word_bits);

 retry:
	/* wait until injection happens */
	amd64_read_pci_cfg(pvt->F3, F10_NB_ARRAY_DATA, &tmp);
	if (tmp & F10_NB_ARR_ECC_WR_REQ) {
		cpu_relax();
		goto retry;
	}

	on_each_cpu(enable_caches, NULL, 1);

	edac_dbg(0, "section=0x%x word_bits=0x%x\n", section, word_bits);

	return count;
}

/*
 * update NUM_INJ_ATTRS in case you add new members
 */

805 806 807 808 809
static DEVICE_ATTR_RW(inject_section);
static DEVICE_ATTR_RW(inject_word);
static DEVICE_ATTR_RW(inject_ecc_vector);
static DEVICE_ATTR_WO(inject_write);
static DEVICE_ATTR_WO(inject_read);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

static struct attribute *inj_attrs[] = {
	&dev_attr_inject_section.attr,
	&dev_attr_inject_word.attr,
	&dev_attr_inject_ecc_vector.attr,
	&dev_attr_inject_write.attr,
	&dev_attr_inject_read.attr,
	NULL
};

static umode_t inj_is_visible(struct kobject *kobj, struct attribute *attr, int idx)
{
	struct device *dev = kobj_to_dev(kobj);
	struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
	struct amd64_pvt *pvt = mci->pvt_info;

826 827 828 829 830
	/* Families which have that injection hw */
	if (pvt->fam >= 0x10 && pvt->fam <= 0x16)
		return attr->mode;

	return 0;
831 832 833 834 835 836 837
}

static const struct attribute_group inj_group = {
	.attrs = inj_attrs,
	.is_visible = inj_is_visible,
};
#endif /* CONFIG_EDAC_DEBUG */
838

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
870
	struct amd64_pvt *pvt = mci->pvt_info;
871
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
872
	int ret;
873

874
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
875

876
	ret = get_dram_hole_info(mci, &hole_base, &hole_offset, &hole_size);
877
	if (!ret) {
878 879
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
880 881 882
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

883 884 885
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
886 887 888 889 890 891 892 893 894 895 896 897 898 899

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
900
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
901

902 903
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
935
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
936
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
937
		      (dram_addr & 0xfff);
938

939 940 941
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
957
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
958
		 (unsigned long)sys_addr, (unsigned long)input_addr);
959 960 961 962 963 964

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
965
						    struct err_info *err)
966
{
967 968
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
986 987
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
988 989
	return csrow;
}
990

991
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
992 993 994 995 996

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
997
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
998
{
999
	unsigned long edac_cap = EDAC_FLAG_NONE;
1000 1001 1002 1003
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
1004

1005
		for_each_umc(i) {
1006 1007
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
1026 1027 1028 1029

	return edac_cap;
}

1030
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
1031

1032
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
1033
{
1034
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
1035

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

1049

1050 1051
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
1052

1053
	if (pvt->fam == 0x10)
1054 1055
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
1056

1057 1058 1059 1060 1061
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
1062 1063
}

1064 1065
#define CS_EVEN_PRIMARY		BIT(0)
#define CS_ODD_PRIMARY		BIT(1)
1066 1067
#define CS_EVEN_SECONDARY	BIT(2)
#define CS_ODD_SECONDARY	BIT(3)
1068
#define CS_3R_INTERLEAVE	BIT(4)
1069

1070 1071
#define CS_EVEN			(CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
#define CS_ODD			(CS_ODD_PRIMARY | CS_ODD_SECONDARY)
1072 1073

static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
1074
{
1075
	u8 base, count = 0;
1076
	int cs_mode = 0;
1077

1078 1079
	if (csrow_enabled(2 * dimm, ctrl, pvt))
		cs_mode |= CS_EVEN_PRIMARY;
1080

1081 1082 1083
	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_PRIMARY;

1084 1085 1086 1087
	/* Asymmetric dual-rank DIMM support. */
	if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_SECONDARY;

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
	/*
	 * 3 Rank inteleaving support.
	 * There should be only three bases enabled and their two masks should
	 * be equal.
	 */
	for_each_chip_select(base, ctrl, pvt)
		count += csrow_enabled(base, ctrl, pvt);

	if (count == 3 &&
	    pvt->csels[ctrl].csmasks[0] == pvt->csels[ctrl].csmasks[1]) {
		edac_dbg(1, "3R interleaving in use.\n");
		cs_mode |= CS_3R_INTERLEAVE;
	}

1102
	return cs_mode;
1103 1104
}

1105 1106
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
1107
	int dimm, size0, size1, cs0, cs1, cs_mode;
1108 1109 1110

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

1111
	for (dimm = 0; dimm < 2; dimm++) {
1112 1113 1114
		cs0 = dimm * 2;
		cs1 = dimm * 2 + 1;

1115 1116 1117 1118
		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);

		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
1119 1120

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1121 1122
				cs0,	size0,
				cs1,	size1);
1123 1124 1125 1126 1127 1128 1129 1130
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

1131
	for_each_umc(i) {
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

1170
/* Display and decode various NB registers for debug purposes. */
1171
static void __dump_misc_regs(struct amd64_pvt *pvt)
1172
{
1173
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
1174

1175 1176
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
1177

1178 1179 1180
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
1181

1182
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
1183

1184
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
1185

1186 1187
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
1188 1189
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
1190

1191
	debug_display_dimm_sizes(pvt, 0);
1192

1193
	/* everything below this point is Fam10h and above */
1194
	if (pvt->fam == 0xf)
1195
		return;
1196

1197
	debug_display_dimm_sizes(pvt, 1);
1198

1199
	/* Only if NOT ganged does dclr1 have valid info */
1200
	if (!dct_ganging_enabled(pvt))
1201
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
1202 1203
}

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

1214
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
1215 1216
}

1217
/*
1218
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
1219
 */
1220
static void prep_chip_selects(struct amd64_pvt *pvt)
1221
{
1222
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
1223 1224
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
1225
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
1226 1227
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
1228 1229 1230 1231 1232 1233 1234 1235
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

1236
	} else {
1237 1238
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
1239 1240 1241
	}
}

1242 1243
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
1244 1245 1246 1247 1248 1249
	u32 umc_base_reg, umc_base_reg_sec;
	u32 umc_mask_reg, umc_mask_reg_sec;
	u32 base_reg, base_reg_sec;
	u32 mask_reg, mask_reg_sec;
	u32 *base, *base_sec;
	u32 *mask, *mask_sec;
1250 1251 1252 1253
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
1254
		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
1255 1256 1257

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];
1258
			base_sec = &pvt->csels[umc].csbases_sec[cs];
1259 1260

			base_reg = umc_base_reg + (cs * 4);
1261
			base_reg_sec = umc_base_reg_sec + (cs * 4);
1262 1263 1264 1265

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
1266 1267 1268 1269

			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base_sec, base_reg_sec);
1270 1271 1272
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
1273
		umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
1274 1275 1276

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];
1277
			mask_sec = &pvt->csels[umc].csmasks_sec[cs];
1278 1279

			mask_reg = umc_mask_reg + (cs * 4);
1280
			mask_reg_sec = umc_mask_reg_sec + (cs * 4);
1281 1282 1283 1284

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
1285 1286 1287 1288

			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask_sec, mask_reg_sec);
1289 1290 1291 1292
		}
	}
}

1293
/*
1294
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
1295
 */
1296
static void read_dct_base_mask(struct amd64_pvt *pvt)
1297
{
1298
	int cs;
1299

1300
	prep_chip_selects(pvt);
1301

1302 1303
	if (pvt->umc)
		return read_umc_base_mask(pvt);
1304

1305
	for_each_chip_select(cs, 0, pvt) {
1306 1307
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
1308 1309
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
1310

1311 1312 1313
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1314

1315 1316
		if (pvt->fam == 0xf)
			continue;
1317

1318 1319 1320 1321
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1322 1323
	}

1324
	for_each_chip_select_mask(cs, 0, pvt) {
1325 1326
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1327 1328
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1329

1330 1331 1332
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1333

1334 1335
		if (pvt->fam == 0xf)
			continue;
1336

1337 1338 1339 1340
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1341 1342 1343
	}
}

1344
static void determine_memory_type(struct amd64_pvt *pvt)
1345
{
1346
	u32 dram_ctrl, dcsm;
1347

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	if (pvt->umc) {
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;
	}

1358 1359 1360 1361 1362 1363 1364 1365 1366
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1367
		if (pvt->dchr0 & DDR3_MODE)
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1395
		else
1396
			pvt->dram_type = MEM_RDDR3;
1397

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
		return;

	case 0x16:
		goto ddr3;

	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1408

1409 1410
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1411 1412
}

1413
/* Get the number of DCT channels the memory controller is using. */
1414 1415
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1416
	int flag;
1417

1418
	if (pvt->ext_model >= K8_REV_F)
1419
		/* RevF (NPT) and later */
1420
		flag = pvt->dclr0 & WIDTH_128;
1421
	else
1422 1423 1424 1425 1426 1427 1428 1429 1430
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1431
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1432
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1433
{
1434
	u16 mce_nid = topology_die_id(m->extcpu);
1435
	struct mem_ctl_info *mci;
1436 1437
	u8 start_bit = 1;
	u8 end_bit   = 47;
1438 1439 1440 1441 1442 1443 1444
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1445

1446
	if (pvt->fam == 0xf) {
1447 1448 1449 1450
		start_bit = 3;
		end_bit   = 39;
	}

1451
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1452 1453 1454 1455

	/*
	 * Erratum 637 workaround
	 */
1456
	if (pvt->fam == 0x15) {
1457 1458
		u64 cc6_base, tmp_addr;
		u32 tmp;
1459
		u8 intlv_en;
1460

1461
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1462 1463 1464 1465 1466 1467 1468
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1469
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1470 1471 1472 1473 1474 1475 1476 1477

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1478
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1479 1480 1481 1482

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1483
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1484 1485

		/* OR DramIntlvSel into bits [14:12] */
1486
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1487 1488

		/* add remaining [11:0] bits from original MC4_ADDR */
1489
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1490 1491 1492 1493 1494

		return cc6_base | tmp_addr;
	}

	return addr;
1495 1496
}

1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1513
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1514
{
1515
	struct amd_northbridge *nb;
1516 1517
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1518
	int off = range << 3;
1519
	u32 llim;
1520

1521 1522
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1523

1524
	if (pvt->fam == 0xf)
1525
		return;
1526

1527 1528
	if (!dram_rw(pvt, range))
		return;
1529

1530 1531
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1532

1533
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1534
	if (pvt->fam != 0x15)
1535
		return;
1536

1537 1538 1539
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1540

1541 1542 1543 1544 1545 1546
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1547 1548

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1549 1550
	if (WARN_ON(!f1))
		return;
1551

1552
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1553

1554
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1555

1556 1557
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1558

1559
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1560

1561 1562 1563 1564
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1565 1566
}

1567
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1568
				    struct err_info *err)
1569
{
1570
	struct amd64_pvt *pvt = mci->pvt_info;
1571

1572
	error_address_to_page_and_offset(sys_addr, err);
1573 1574 1575 1576 1577

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1578 1579
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1580 1581
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1582
		err->err_code = ERR_NODE;
1583 1584 1585 1586
		return;
	}

	/* Now map the sys_addr to a CSROW */
1587 1588 1589
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1590 1591 1592
		return;
	}

1593
	/* CHIPKILL enabled */
1594
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1595 1596
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1597 1598 1599 1600 1601
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1602
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1603
				      "possible error reporting race\n",
1604 1605
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1617
		err->channel = ((sys_addr & BIT(3)) != 0);
1618 1619 1620
	}
}

1621
static int ddr2_cs_size(unsigned i, bool dct_width)
1622
{
1623
	unsigned shift = 0;
1624

1625 1626 1627 1628
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1629
	else
1630
		shift = (i + 1) >> 1;
1631

1632 1633 1634 1635
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1636
				  unsigned cs_mode, int cs_mask_nr)
1637 1638 1639 1640 1641 1642 1643 1644
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1645
		unsigned diff;
1646 1647
		WARN_ON(cs_mode > 10);

1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1675 1676 1677 1678 1679
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1680 1681
}

1682 1683 1684 1685 1686 1687 1688 1689
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1690
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1691
{
1692
	int i, j, channels = 0;
1693

1694
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1695
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1696
		return 2;
1697 1698

	/*
1699 1700 1701
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1702 1703 1704 1705
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1706
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1707

1708 1709 1710 1711 1712
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1713 1714
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1715

1716 1717 1718 1719 1720 1721
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1722 1723
	}

1724 1725 1726
	if (channels > 2)
		channels = 2;

1727
	amd64_info("MCT channel count: %d\n", channels);
1728 1729 1730 1731

	return channels;
}

1732 1733 1734 1735 1736
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1737
	for_each_umc(i)
1738 1739 1740 1741 1742 1743 1744
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1745
static int ddr3_cs_size(unsigned i, bool dct_width)
1746
{
1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1802
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1803
				   unsigned cs_mode, int cs_mask_nr)
1804 1805 1806 1807
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1808 1809

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1810
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1811
	else
1812 1813 1814 1815 1816 1817 1818
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1819
				   unsigned cs_mode, int cs_mask_nr)
1820 1821
{
	WARN_ON(cs_mode > 12);
1822

1823
	return ddr3_cs_size(cs_mode, false);
1824 1825
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1857
/*
1858
 * F16h and F15h model 30h have only limited cs_modes.
1859 1860
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1861
				unsigned cs_mode, int cs_mask_nr)
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1872
static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1873 1874
				    unsigned int cs_mode, int csrow_nr)
{
1875 1876 1877
	u32 addr_mask_orig, addr_mask_deinterleaved;
	u32 msb, weight, num_zero_bits;
	int dimm, size = 0;
1878

1879 1880 1881
	/* No Chip Selects are enabled. */
	if (!cs_mode)
		return size;
1882

1883 1884 1885
	/* Requested size of an even CS but none are enabled. */
	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
		return size;
1886

1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	/* Requested size of an odd CS but none are enabled. */
	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
		return size;

	/*
	 * There is one mask per DIMM, and two Chip Selects per DIMM.
	 *	CS0 and CS1 -> DIMM0
	 *	CS2 and CS3 -> DIMM1
	 */
	dimm = csrow_nr >> 1;

1898 1899 1900 1901 1902
	/* Asymmetric dual-rank DIMM support. */
	if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
		addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm];
	else
		addr_mask_orig = pvt->csels[umc].csmasks[dimm];
1903 1904 1905 1906 1907 1908 1909

	/*
	 * The number of zero bits in the mask is equal to the number of bits
	 * in a full mask minus the number of bits in the current mask.
	 *
	 * The MSB is the number of bits in the full mask because BIT[0] is
	 * always 0.
1910 1911 1912 1913
	 *
	 * In the special 3 Rank interleaving case, a single bit is flipped
	 * without swapping with the most significant bit. This can be handled
	 * by keeping the MSB where it is and ignoring the single zero bit.
1914 1915 1916
	 */
	msb = fls(addr_mask_orig) - 1;
	weight = hweight_long(addr_mask_orig);
1917
	num_zero_bits = msb - weight - !!(cs_mode & CS_3R_INTERLEAVE);
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927

	/* Take the number of zero bits off from the top of the mask. */
	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);

	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);

	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
	size = (addr_mask_deinterleaved >> 2) + 1;
1928 1929 1930 1931 1932

	/* Return size in MBs. */
	return size >> 10;
}

1933
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1934 1935
{

1936
	if (pvt->fam == 0xf)
1937 1938
		return;

1939
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1940 1941
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1942

1943 1944
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1945 1946

		if (!dct_ganging_enabled(pvt))
1947 1948
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1949

1950 1951 1952
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1953

1954 1955 1956 1957
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1958 1959
	}

1960
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1961 1962
}

1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1991 1992 1993
	return channel;
}

1994
/*
1995
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1996 1997
 * Interleaving Modes.
 */
1998
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1999
				bool hi_range_sel, u8 intlv_en)
2000
{
2001
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
2002 2003

	if (dct_ganging_enabled(pvt))
2004
		return 0;
2005

2006 2007
	if (hi_range_sel)
		return dct_sel_high;
2008

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
2021
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
2022 2023 2024 2025

			return ((sys_addr >> shift) & 1) ^ temp;
		}

2026 2027 2028 2029 2030 2031
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

2032 2033 2034 2035 2036
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
2037 2038 2039 2040

	return 0;
}

2041
/* Convert the sys_addr to the normalized DCT address */
2042
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
2043 2044
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
2045 2046
{
	u64 chan_off;
2047 2048
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
2049
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
2050

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
2065
		    dhar_valid(pvt) &&
2066
		    (sys_addr >= BIT_64(32)))
2067
			chan_off = hole_off;
2068 2069 2070
		else
			chan_off = dct_sel_base_off;
	} else {
2071 2072 2073 2074 2075 2076 2077 2078 2079
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
2080
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
2081
			chan_off = hole_off;
2082
		else
2083
			chan_off = dram_base;
2084 2085
	}

2086
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
2087 2088 2089 2090 2091 2092
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
2093
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
2094
{
2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
2118
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
2119 2120 2121
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2122
	u64 cs_base, cs_mask;
2123 2124 2125
	int cs_found = -EINVAL;
	int csrow;

2126
	mci = edac_mc_find(nid);
2127 2128 2129 2130 2131
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

2132
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
2133

2134 2135
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
2136 2137
			continue;

2138
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
2139

2140 2141
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
2142

2143
		cs_mask = ~cs_mask;
2144

2145 2146
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
2147

2148
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
2149 2150 2151 2152
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
2153
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
2154

2155
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
2156 2157 2158 2159 2160 2161
			break;
		}
	}
	return cs_found;
}

2162 2163 2164 2165 2166
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
2167
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
2168 2169 2170
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

2171
	if (pvt->fam == 0x10) {
2172
		/* only revC3 and revE have that feature */
2173
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
2174 2175 2176
			return sys_addr;
	}

2177
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

2196
/* For a given @dram_range, check if @sys_addr falls within it. */
2197
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
2198
				  u64 sys_addr, int *chan_sel)
2199
{
2200
	int cs_found = -EINVAL;
2201
	u64 chan_addr;
2202
	u32 dct_sel_base;
2203
	u8 channel;
2204
	bool high_range = false;
2205

2206
	u8 node_id    = dram_dst_node(pvt, range);
2207
	u8 intlv_en   = dram_intlv_en(pvt, range);
2208
	u32 intlv_sel = dram_intlv_sel(pvt, range);
2209

2210 2211
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
2212

2213 2214 2215 2216 2217 2218 2219 2220
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

2221
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
2222 2223
		return -EINVAL;

2224
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
2225

2226 2227 2228 2229 2230 2231 2232 2233 2234
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
2235
		high_range = true;
2236

2237
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
2238

2239
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
2240
					  high_range, dct_sel_base);
2241

2242 2243 2244 2245
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
2246

2247
	/* remove channel interleave */
2248 2249 2250
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
2265 2266
	}

2267
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
2268

2269
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
2270

2271
	if (cs_found >= 0)
2272
		*chan_sel = channel;
2273

2274 2275 2276
	return cs_found;
}

2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
2314 2315
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2316 2317

	if (!(dct_cont_base_reg & BIT(0)) &&
2318 2319
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
2320 2321 2322 2323 2324 2325 2326 2327
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

2328 2329 2330 2331 2332
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
2333 2334

	/* Verify we stay within the MAX number of channels allowed */
2335
	if (channel > 3)
2336 2337 2338 2339 2340 2341 2342 2343
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
2344
		chan_offset = dct_base << 27;
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2374
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2402
{
2403 2404
	int cs_found = -EINVAL;
	unsigned range;
2405

2406 2407
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2408 2409
			continue;

2410 2411 2412 2413
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2414

2415 2416
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2417
			cs_found = f1x_match_to_this_node(pvt, range,
2418
							  sys_addr, chan_sel);
2419 2420 2421 2422 2423 2424 2425 2426
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2427 2428
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2429
 *
2430 2431
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2432
 */
2433
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2434
				     struct err_info *err)
2435 2436 2437
{
	struct amd64_pvt *pvt = mci->pvt_info;

2438
	error_address_to_page_and_offset(sys_addr, err);
2439

2440 2441 2442
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2443 2444 2445 2446 2447 2448 2449 2450
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2451
	if (dct_ganging_enabled(pvt))
2452
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2453 2454 2455
}

/*
2456
 * debug routine to display the memory sizes of all logical DIMMs and its
2457
 * CSROWs
2458
 */
2459
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2460
{
2461
	int dimm, size0, size1;
2462 2463
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2464

2465
	if (pvt->fam == 0xf) {
2466
		/* K8 families < revF not supported yet */
2467
	       if (pvt->ext_model < K8_REV_F)
2468 2469 2470 2471 2472
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2483 2484
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2485

2486 2487
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2488 2489 2490 2491
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2492
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2493 2494 2495
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2496 2497 2498
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2499
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2500 2501
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2502 2503

		size1 = 0;
2504
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2505
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2506 2507
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2508

2509
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2510 2511
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2512 2513 2514
	}
}

2515
static struct amd64_family_type family_types[] = {
2516
	[K8_CPUS] = {
2517
		.ctl_name = "K8",
2518
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2519
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2520
		.max_mcs = 2,
2521
		.ops = {
2522 2523 2524
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2525 2526 2527
		}
	},
	[F10_CPUS] = {
2528
		.ctl_name = "F10h",
2529
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2530
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2531
		.max_mcs = 2,
2532
		.ops = {
2533
			.early_channel_count	= f1x_early_channel_count,
2534
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2535
			.dbam_to_cs		= f10_dbam_to_chip_select,
2536 2537 2538 2539
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2540
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2541
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2542
		.max_mcs = 2,
2543
		.ops = {
2544
			.early_channel_count	= f1x_early_channel_count,
2545
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2546
			.dbam_to_cs		= f15_dbam_to_chip_select,
2547 2548
		}
	},
2549 2550 2551
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2552
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2553
		.max_mcs = 2,
2554 2555 2556 2557 2558 2559
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2560 2561 2562
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2563
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2564
		.max_mcs = 2,
2565 2566 2567 2568 2569 2570
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2571 2572 2573
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2574
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2575
		.max_mcs = 2,
2576 2577 2578 2579 2580 2581
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2582 2583 2584
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2585
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2586
		.max_mcs = 2,
2587 2588 2589 2590 2591 2592
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2593 2594 2595 2596
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2597
		.max_mcs = 2,
2598 2599
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2600
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2601 2602
		}
	},
2603 2604 2605 2606
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
2607
		.max_mcs = 2,
2608 2609
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2610
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2611 2612
		}
	},
2613 2614 2615 2616
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
2617
		.max_mcs = 8,
2618 2619
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2620
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2621 2622
		}
	},
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
	[F17_M60H_CPUS] = {
		.ctl_name = "F17h_M60h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F6,
		.max_mcs = 2,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2633 2634 2635 2636
	[F17_M70H_CPUS] = {
		.ctl_name = "F17h_M70h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
2637
		.max_mcs = 2,
2638 2639 2640 2641 2642
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
	[F19_CPUS] = {
		.ctl_name = "F19h",
		.f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6,
		.max_mcs = 8,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2653 2654
};

2655
/*
2656 2657 2658
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2659
 *
2660
 * Algorithm courtesy of Ross LaFetra from AMD.
2661
 */
2662
static const u16 x4_vectors[] = {
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2699 2700
};

2701
static const u16 x8_vectors[] = {
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2723
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2724
			   unsigned v_dim)
2725
{
2726 2727 2728 2729
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2730 2731
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2744

2745 2746 2747
					if (!s)
						return err_sym;
				}
2748

2749 2750 2751 2752
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2753 2754
	}

2755
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2756 2757
	return -1;
}
2758

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
		case 0x22:
		case 0x23:
			return 1;
		default:
			return err_sym >> 4;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
		case 0x11:
			return 0;
		case 0x12:
			return 1;
		default:
			return err_sym >> 3;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2793 2794
	int err_sym = -1;

2795
	if (pvt->ecc_sym_sz == 8)
2796 2797
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2798 2799
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2800 2801
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2802
					  pvt->ecc_sym_sz);
2803
	else {
2804
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2805
		return err_sym;
2806
	}
2807

2808
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2809 2810
}

2811
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2812
			    u8 ecc_type)
2813
{
2814 2815
	enum hw_event_mc_err_type err_type;
	const char *string;
2816

2817 2818 2819 2820
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2821 2822
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2823 2824
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2825 2826 2827
		return;
	}

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2839 2840 2841 2842 2843 2844 2845
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2846 2847 2848 2849
		break;
	default:
		string = "WTF error";
		break;
2850
	}
2851 2852 2853 2854 2855

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2856 2857
}

2858
static inline void decode_bus_error(int node_id, struct mce *m)
2859
{
2860 2861
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2862
	u8 ecc_type = (m->status >> 45) & 0x3;
2863 2864
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2865 2866
	u64 sys_addr;
	struct err_info err;
2867

2868 2869 2870 2871 2872 2873
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2874
	/* Bail out early if this was an 'observed' error */
2875
	if (PP(ec) == NBSL_PP_OBS)
2876
		return;
2877

2878 2879
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2880 2881
		return;

2882 2883
	memset(&err, 0, sizeof(err));

2884
	sys_addr = get_error_address(pvt, m);
2885

2886
	if (ecc_type == 2)
2887 2888 2889 2890
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2891
	__log_ecc_error(mci, &err, ecc_type);
2892 2893
}

2894 2895 2896 2897
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
2898 2899 2900 2901
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
2902
 */
2903
static int find_umc_channel(struct mce *m)
2904
{
2905
	return (m->ipid & GENMASK(31, 0)) >> 20;
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

2927
	err.channel = find_umc_channel(m);
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

2945 2946 2947 2948 2949 2950 2951
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

2952 2953 2954 2955
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2956
/*
2957 2958
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2959
 * Reserve F0 and F6 on systems with a UMC.
2960
 */
2961 2962 2963 2964 2965 2966
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2967
			edac_dbg(1, "F0 not found, device 0x%x\n", pci_id1);
2968 2969 2970 2971 2972 2973 2974 2975
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2976
			edac_dbg(1, "F6 not found: device 0x%x\n", pci_id2);
2977 2978
			return -ENODEV;
		}
2979

2980 2981 2982
		if (!pci_ctl_dev)
			pci_ctl_dev = &pvt->F0->dev;

2983 2984 2985 2986 2987 2988 2989
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2990
	/* Reserve the ADDRESS MAP Device */
2991
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2992
	if (!pvt->F1) {
2993
		edac_dbg(1, "F1 not found: device 0x%x\n", pci_id1);
2994
		return -ENODEV;
2995 2996
	}

2997
	/* Reserve the DCT Device */
2998
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2999
	if (!pvt->F2) {
3000 3001
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
3002

3003
		edac_dbg(1, "F2 not found: device 0x%x\n", pci_id2);
3004
		return -ENODEV;
3005
	}
3006

3007 3008 3009
	if (!pci_ctl_dev)
		pci_ctl_dev = &pvt->F2->dev;

3010 3011 3012
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
3013 3014 3015 3016

	return 0;
}

3017
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
3018
{
3019 3020 3021 3022 3023 3024 3025
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
3026 3027
}

3028 3029 3030 3031 3032 3033 3034
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

3035
		for_each_umc(i) {
3036
			/* Check enabled channels only: */
3037 3038 3039 3040 3041 3042 3043 3044
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
3045 3046
			}
		}
3047
	} else if (pvt->fam >= 0x10) {
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
3071
	for_each_umc(i) {
3072 3073 3074 3075

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

3076 3077
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
3078 3079
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
3080
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
3081 3082 3083
	}
}

3084 3085 3086 3087
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
3088
static void read_mc_regs(struct amd64_pvt *pvt)
3089
{
3090
	unsigned int range;
3091 3092 3093 3094
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
3095
	 * those are Read-As-Zero.
3096
	 */
3097
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
3098
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
3099

3100
	/* Check first whether TOP_MEM2 is enabled: */
3101
	rdmsrl(MSR_AMD64_SYSCFG, msr_val);
3102
	if (msr_val & BIT(21)) {
3103
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
3104
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
3105
	} else {
3106
		edac_dbg(0, "  TOP_MEM2 disabled\n");
3107 3108 3109 3110 3111 3112 3113 3114
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
3115

3116
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
3117

3118
	read_dram_ctl_register(pvt);
3119

3120 3121
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
3122

3123 3124 3125 3126 3127 3128 3129
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

3130 3131 3132 3133
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
3134

3135 3136 3137 3138 3139 3140
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
3141 3142
	}

3143
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
3144
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
3145

3146
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
3147

3148 3149
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
3150

3151
	if (!dct_ganging_enabled(pvt)) {
3152 3153
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
3154
	}
3155

3156 3157 3158
skip:
	read_dct_base_mask(pvt);

3159 3160
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
3161

3162
	determine_ecc_sym_sz(pvt);
3163 3164 3165 3166 3167 3168
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
3169
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
3199
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
3200
{
3201
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
3202 3203
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
3204

3205
	if (!pvt->umc) {
3206
		csrow_nr >>= 1;
3207 3208 3209 3210
		cs_mode = DBAM_DIMM(csrow_nr, dbam);
	} else {
		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
	}
3211

3212 3213
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
3214

3215
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
3216
		    csrow_nr_orig, dct,  cs_mode);
3217
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
3218 3219 3220 3221

	return nr_pages;
}

3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
			dimm->mtype = pvt->dram_type;
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
Y
Yazen Ghannam 已提交
3259
			dimm->grain = 64;
3260 3261 3262 3263 3264 3265
		}
	}

	return empty;
}

3266 3267 3268 3269
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
3270
static int init_csrows(struct mem_ctl_info *mci)
3271
{
3272
	struct amd64_pvt *pvt = mci->pvt_info;
3273
	enum edac_type edac_mode = EDAC_NONE;
3274
	struct csrow_info *csrow;
3275
	struct dimm_info *dimm;
3276
	int i, j, empty = 1;
3277
	int nr_pages = 0;
3278
	u32 val;
3279

3280 3281
	if (pvt->umc)
		return init_csrows_df(mci);
3282

3283
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
3284

3285 3286 3287 3288 3289
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
3290

3291 3292 3293
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
3294
	for_each_chip_select(i, 0, pvt) {
3295 3296
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
3297

3298
		if (pvt->fam != 0xf)
3299 3300 3301
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
3302 3303
			continue;

3304
		csrow = mci->csrows[i];
3305
		empty = 0;
3306 3307 3308 3309

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

3310
		if (row_dct0) {
3311
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
3312 3313
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
3314

3315
		/* K8 has only one DCT */
3316
		if (pvt->fam != 0xf && row_dct1) {
3317
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
3318 3319 3320 3321

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
3322

3323
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
3324

3325
		/* Determine DIMM ECC mode: */
3326
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
3327 3328 3329 3330
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
3331 3332

		for (j = 0; j < pvt->channel_count; j++) {
3333
			dimm = csrow->channels[j]->dimm;
3334
			dimm->mtype = pvt->dram_type;
3335
			dimm->edac_mode = edac_mode;
Y
Yazen Ghannam 已提交
3336
			dimm->grain = 64;
3337
		}
3338 3339 3340 3341
	}

	return empty;
}
3342

3343
/* get all cores on this DCT */
3344
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3345 3346 3347 3348
{
	int cpu;

	for_each_online_cpu(cpu)
3349
		if (topology_die_id(cpu) == nid)
3350 3351 3352 3353
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
3354
static bool nb_mce_bank_enabled_on_node(u16 nid)
3355 3356
{
	cpumask_var_t mask;
3357
	int cpu, nbe;
3358 3359 3360
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3361
		amd64_warn("%s: Error allocating mask\n", __func__);
3362 3363 3364 3365 3366 3367 3368 3369
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
3370
		struct msr *reg = per_cpu_ptr(msrs, cpu);
3371
		nbe = reg->l & MSR_MCGCTL_NBE;
3372

3373 3374 3375
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3387
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3388 3389
{
	cpumask_var_t cmask;
3390
	int cpu;
3391 3392

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3393
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3394
		return -ENOMEM;
3395 3396
	}

3397
	get_cpus_on_this_dct_cpumask(cmask, nid);
3398 3399 3400 3401 3402

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3403 3404
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3405
		if (on) {
3406
			if (reg->l & MSR_MCGCTL_NBE)
3407
				s->flags.nb_mce_enable = 1;
3408

3409
			reg->l |= MSR_MCGCTL_NBE;
3410 3411
		} else {
			/*
3412
			 * Turn off NB MCE reporting only when it was off before
3413
			 */
3414
			if (!s->flags.nb_mce_enable)
3415
				reg->l &= ~MSR_MCGCTL_NBE;
3416 3417 3418 3419 3420 3421 3422 3423 3424
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3425
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3426
				       struct pci_dev *F3)
3427
{
3428
	bool ret = true;
B
Borislav Petkov 已提交
3429
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3430

3431 3432 3433 3434 3435
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3436
	amd64_read_pci_cfg(F3, NBCTL, &value);
3437

3438 3439
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3440 3441

	value |= mask;
B
Borislav Petkov 已提交
3442
	amd64_write_pci_cfg(F3, NBCTL, value);
3443

3444
	amd64_read_pci_cfg(F3, NBCFG, &value);
3445

3446 3447
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3448

3449
	if (!(value & NBCFG_ECC_ENABLE)) {
3450
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3451

3452
		s->flags.nb_ecc_prev = 0;
3453

3454
		/* Attempt to turn on DRAM ECC Enable */
3455 3456
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3457

3458
		amd64_read_pci_cfg(F3, NBCFG, &value);
3459

3460
		if (!(value & NBCFG_ECC_ENABLE)) {
3461 3462
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3463
			ret = false;
3464
		} else {
3465
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3466
		}
3467
	} else {
3468
		s->flags.nb_ecc_prev = 1;
3469
	}
3470

3471 3472
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3473

3474
	return ret;
3475 3476
}

3477
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3478
					struct pci_dev *F3)
3479
{
B
Borislav Petkov 已提交
3480 3481
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3482
	if (!s->nbctl_valid)
3483 3484
		return;

B
Borislav Petkov 已提交
3485
	amd64_read_pci_cfg(F3, NBCTL, &value);
3486
	value &= ~mask;
3487
	value |= s->old_nbctl;
3488

B
Borislav Petkov 已提交
3489
	amd64_write_pci_cfg(F3, NBCTL, value);
3490

3491 3492
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3493 3494 3495
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3496 3497 3498
	}

	/* restore the NB Enable MCGCTL bit */
3499
	if (toggle_ecc_err_reporting(s, nid, OFF))
3500
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3501 3502
}

3503
static bool ecc_enabled(struct amd64_pvt *pvt)
3504
{
3505
	u16 nid = pvt->mc_node_id;
3506
	bool nb_mce_en = false;
3507 3508
	u8 ecc_en = 0, i;
	u32 value;
3509

3510 3511
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3512
		struct amd64_umc *umc;
3513

3514
		for_each_umc(i) {
3515
			umc = &pvt->umc[i];
3516 3517

			/* Only check enabled UMCs. */
3518
			if (!(umc->sdp_ctrl & UMC_SDP_INIT))
3519 3520 3521 3522
				continue;

			umc_en_mask |= BIT(i);

3523
			if (umc->umc_cap_hi & UMC_ECC_ENABLED)
3524 3525 3526 3527 3528 3529
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3530 3531
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3532 3533 3534 3535

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
3536
		amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
3537

3538 3539 3540 3541
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3542
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3543 3544 3545
				     MSR_IA32_MCG_CTL, nid);
	}

3546
	edac_dbg(3, "Node %d: DRAM ECC %s.\n", nid, (ecc_en ? "enabled" : "disabled"));
3547

3548
	if (!ecc_en || !nb_mce_en)
3549
		return false;
3550 3551
	else
		return true;
3552 3553
}

3554 3555 3556
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3557
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3558

3559
	for_each_umc(i) {
3560 3561 3562
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3563 3564 3565

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3566 3567 3568 3569 3570 3571 3572
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3573 3574 3575 3576
		if (!cpk_en)
			return;

		if (dev_x4)
3577
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3578 3579 3580 3581
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3582 3583 3584
	}
}

3585
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
3586 3587 3588 3589 3590 3591
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3592 3593 3594 3595 3596
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3597

3598 3599 3600
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3601

3602
	mci->edac_cap		= determine_edac_cap(pvt);
3603
	mci->mod_name		= EDAC_MOD_STR;
3604
	mci->ctl_name		= fam_type->ctl_name;
3605
	mci->dev_name		= pci_name(pvt->F3);
3606 3607 3608
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3609 3610
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3611 3612
}

3613 3614 3615
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3616
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3617
{
3618
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3619
	pvt->stepping	= boot_cpu_data.x86_stepping;
3620 3621 3622 3623
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3624
	case 0xf:
3625 3626
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3627
		break;
3628

3629
	case 0x10:
3630 3631
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3632 3633 3634
		break;

	case 0x15:
3635
		if (pvt->model == 0x30) {
3636 3637
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3638
			break;
3639 3640 3641 3642
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3643 3644 3645 3646 3647 3648
		/* Richland is only client */
		} else if (pvt->model == 0x13) {
			return NULL;
		} else {
			fam_type	= &family_types[F15_CPUS];
			pvt->ops	= &family_types[F15_CPUS].ops;
3649
		}
3650 3651
		break;

3652
	case 0x16:
3653 3654 3655 3656 3657
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3658 3659
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3660 3661
		break;

3662
	case 0x17:
3663 3664 3665 3666
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3667 3668 3669 3670
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3671 3672 3673 3674
		} else if (pvt->model >= 0x60 && pvt->model <= 0x6f) {
			fam_type = &family_types[F17_M60H_CPUS];
			pvt->ops = &family_types[F17_M60H_CPUS].ops;
			break;
3675 3676 3677 3678
		} else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			break;
3679
		}
3680
		fallthrough;
P
Pu Wen 已提交
3681
	case 0x18:
3682 3683
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
P
Pu Wen 已提交
3684 3685 3686

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3687 3688
		break;

3689
	case 0x19:
3690 3691 3692 3693 3694 3695
		if (pvt->model >= 0x20 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			fam_type->ctl_name = "F19h_M20h";
			break;
		}
3696 3697 3698 3699 3700
		fam_type	= &family_types[F19_CPUS];
		pvt->ops	= &family_types[F19_CPUS].ops;
		family_types[F19_CPUS].ctl_name = "F19h";
		break;

3701
	default:
3702
		amd64_err("Unsupported family!\n");
3703
		return NULL;
3704
	}
3705 3706

	return fam_type;
3707 3708
}

3709 3710
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
3711
	&dbg_group,
3712
	&inj_group,
3713 3714 3715 3716
#endif
	NULL
};

3717
static int hw_info_get(struct amd64_pvt *pvt)
3718
{
3719
	u16 pci_id1, pci_id2;
3720
	int ret;
3721

3722
	if (pvt->fam >= 0x17) {
3723
		pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
3724 3725
		if (!pvt->umc)
			return -ENOMEM;
3726 3727 3728 3729 3730 3731 3732 3733

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

3734 3735 3736
	ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
	if (ret)
		return ret;
3737

3738
	read_mc_regs(pvt);
3739

3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
	return 0;
}

static void hw_info_put(struct amd64_pvt *pvt)
{
	if (pvt->F0 || pvt->F1)
		free_mc_sibling_devs(pvt);

	kfree(pvt->umc);
}

static int init_one_instance(struct amd64_pvt *pvt)
{
	struct mem_ctl_info *mci = NULL;
	struct edac_mc_layer layers[2];
	int ret = -EINVAL;

3757 3758 3759
	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3760
	 * tables in the 'mci' structure.
3761 3762 3763
	 */
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3764
		return ret;
3765 3766

	ret = -ENOMEM;
3767 3768 3769 3770
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3771 3772 3773 3774 3775 3776

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
3777
	layers[1].size = fam_type->max_mcs;
3778
	layers[1].is_virt_csrow = false;
3779

3780
	mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
3781
	if (!mci)
3782
		return ret;
3783 3784

	mci->pvt_info = pvt;
3785
	mci->pdev = &pvt->F3->dev;
3786

3787
	setup_mci_misc_attrs(mci);
3788 3789

	if (init_csrows(mci))
3790 3791 3792
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3793
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3794
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3795 3796
		edac_mc_free(mci);
		return ret;
3797 3798 3799 3800 3801
	}

	return 0;
}

3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814
static bool instance_has_memory(struct amd64_pvt *pvt)
{
	bool cs_enabled = false;
	int cs = 0, dct = 0;

	for (dct = 0; dct < fam_type->max_mcs; dct++) {
		for_each_chip_select(cs, dct, pvt)
			cs_enabled |= csrow_enabled(cs, dct, pvt);
	}

	return cs_enabled;
}

3815
static int probe_one_instance(unsigned int nid)
3816
{
3817
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3818
	struct amd64_pvt *pvt = NULL;
3819
	struct ecc_settings *s;
3820
	int ret;
3821

3822 3823 3824
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3825
		goto err_out;
3826 3827 3828

	ecc_stngs[nid] = s;

3829 3830 3831 3832 3833 3834 3835
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
		goto err_settings;

	pvt->mc_node_id	= nid;
	pvt->F3 = F3;

3836
	ret = -ENODEV;
3837 3838 3839 3840 3841 3842 3843 3844
	fam_type = per_family_init(pvt);
	if (!fam_type)
		goto err_enable;

	ret = hw_info_get(pvt);
	if (ret < 0)
		goto err_enable;

3845 3846 3847 3848 3849 3850
	ret = 0;
	if (!instance_has_memory(pvt)) {
		amd64_info("Node %d: No DIMMs detected.\n", nid);
		goto err_enable;
	}

3851
	if (!ecc_enabled(pvt)) {
3852
		ret = -ENODEV;
3853 3854 3855 3856

		if (!ecc_enable_override)
			goto err_enable;

3857 3858 3859 3860 3861
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3862 3863 3864 3865 3866

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3867
	ret = init_one_instance(pvt);
3868
	if (ret < 0) {
3869
		amd64_err("Error probing instance: %d\n", nid);
3870 3871 3872

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3873 3874

		goto err_enable;
3875
	}
3876

3877 3878 3879 3880 3881 3882
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
		     (pvt->fam == 0xf ?
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);

3883 3884
	dump_misc_regs(pvt);

3885
	return ret;
3886 3887

err_enable:
3888 3889 3890 3891
	hw_info_put(pvt);
	kfree(pvt);

err_settings:
3892 3893 3894 3895 3896
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3897 3898
}

3899
static void remove_one_instance(unsigned int nid)
3900
{
3901 3902
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3903 3904
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3905 3906

	/* Remove from EDAC CORE tracking list */
3907
	mci = edac_mc_del_mc(&F3->dev);
3908 3909 3910 3911 3912
	if (!mci)
		return;

	pvt = mci->pvt_info;

3913
	restore_ecc_error_reporting(s, nid, F3);
3914

3915 3916
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3917

3918
	/* Free the EDAC CORE resources */
3919 3920
	mci->pvt_info = NULL;

3921
	hw_info_put(pvt);
3922
	kfree(pvt);
3923 3924 3925
	edac_mc_free(mci);
}

3926
static void setup_pci_device(void)
3927
{
3928
	if (pci_ctl)
3929 3930
		return;

3931
	pci_ctl = edac_pci_create_generic_ctl(pci_ctl_dev, EDAC_MOD_STR);
3932 3933 3934
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3935 3936 3937
	}
}

3938
static const struct x86_cpu_id amd64_cpuids[] = {
3939 3940 3941 3942 3943 3944 3945
	X86_MATCH_VENDOR_FAM(AMD,	0x0F, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x10, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x15, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x16, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x17, NULL),
	X86_MATCH_VENDOR_FAM(HYGON,	0x18, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x19, NULL),
3946 3947 3948 3949
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3950 3951
static int __init amd64_edac_init(void)
{
3952
	const char *owner;
3953
	int err = -ENODEV;
3954
	int i;
3955

3956 3957 3958 3959
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3960 3961 3962
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3963
	if (amd_cache_northbridges() < 0)
3964
		return -ENODEV;
3965

3966 3967
	opstate_init();

3968
	err = -ENOMEM;
K
Kees Cook 已提交
3969
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3970
	if (!ecc_stngs)
3971
		goto err_free;
3972

3973
	msrs = msrs_alloc();
3974
	if (!msrs)
3975
		goto err_free;
3976

3977 3978 3979
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3980 3981 3982
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3983

3984 3985
			goto err_pci;
		}
3986
	}
3987

3988 3989 3990 3991 3992
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3993 3994 3995 3996 3997 3998
	/* register stuff with EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3999
	setup_pci_device();
T
Tomasz Pala 已提交
4000 4001 4002 4003 4004

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

4005 4006
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

4007
	return 0;
4008

4009
err_pci:
4010 4011
	pci_ctl_dev = NULL;

4012 4013
	msrs_free(msrs);
	msrs = NULL;
4014

4015 4016 4017 4018
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

4019 4020 4021 4022 4023
	return err;
}

static void __exit amd64_edac_exit(void)
{
4024 4025
	int i;

4026 4027
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
4028

4029 4030 4031 4032 4033 4034
	/* unregister from EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

4035 4036
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
4037

4038 4039 4040
	kfree(ecc_stngs);
	ecc_stngs = NULL;

4041 4042
	pci_ctl_dev = NULL;

4043 4044
	msrs_free(msrs);
	msrs = NULL;
4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");