amd64_edac.c 93.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "amd64_edac.h"
3
#include <asm/amd_nb.h>
4

5
static struct edac_pci_ctl_info *pci_ctl;
6 7 8 9 10 11 12 13 14 15 16

static int report_gart_errors;
module_param(report_gart_errors, int, 0644);

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

17
static struct msr __percpu *msrs;
18

19 20
static struct amd64_family_type *fam_type;

21
/* Per-node stuff */
22
static struct ecc_settings **ecc_stngs;
23

24 25 26 27 28 29 30
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
31
static const struct scrubrate {
32 33 34
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

60 61
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

86 87 88 89 90 91 92 93 94 95 96 97 98
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

99 100 101 102
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
103
 * K8: has a single DCT only and no address offsets >= 0x100
104 105 106 107 108
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
109
 * F16h: has only 1 DCT
110 111
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
112
 */
113 114
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
115
{
116 117 118 119 120
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
121

122 123 124 125 126 127 128 129 130
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
131

132 133 134
			offset += 0x100;
		}
		break;
135

136 137 138 139 140 141 142 143
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
144

145 146 147 148
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
149

150 151
	default:
		break;
152
	}
153
	return amd64_read_pci_cfg(pvt->F2, offset, val);
154 155
}

156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
185
/*
186
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
187 188
 * issue. If requested is too big, then use last maximum value found.
 */
189
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
190 191 192 193 194 195 196 197 198
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
199 200 201
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
202
	 */
203
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
204 205 206 207
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
208
		if (scrubrates[i].scrubval < min_rate)
209 210 211 212 213 214 215 216
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

P
Pu Wen 已提交
217
	if (pvt->fam == 0x17 || pvt->fam == 0x18) {
218 219
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
220 221 222 223 224 225 226
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
227

228 229 230
	if (scrubval)
		return scrubrates[i].bandwidth;

231 232 233
	return 0;
}

234
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
235 236
{
	struct amd64_pvt *pvt = mci->pvt_info;
237
	u32 min_scrubrate = 0x5;
238

239
	if (pvt->fam == 0xf)
240 241
		min_scrubrate = 0x0;

242 243 244 245
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
246

247 248 249 250
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
251 252
}

253
static int get_scrub_rate(struct mem_ctl_info *mci)
254 255
{
	struct amd64_pvt *pvt = mci->pvt_info;
256
	int i, retval = -EINVAL;
257
	u32 scrubval = 0;
258

259 260
	switch (pvt->fam) {
	case 0x15:
261 262 263
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
264

265 266
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
267 268 269
		break;

	case 0x17:
P
Pu Wen 已提交
270
	case 0x18:
271 272 273 274 275 276 277 278 279 280 281
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
		break;

	default:
282
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
283 284
		break;
	}
285 286 287

	scrubval = scrubval & 0x001F;

288
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
289
		if (scrubrates[i].scrubval == scrubval) {
290
			retval = scrubrates[i].bandwidth;
291 292 293
			break;
		}
	}
294
	return retval;
295 296
}

297
/*
298 299
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
300
 */
301
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
302
{
303
	u64 addr;
304 305 306 307 308 309 310 311 312

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

313 314
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
315 316 317 318 319 320 321 322 323 324 325 326
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
327
	u8 node_id;
328 329 330 331 332 333 334 335 336 337 338 339 340
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
341
	intlv_en = dram_intlv_en(pvt, 0);
342 343

	if (intlv_en == 0) {
344
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
345
			if (base_limit_match(pvt, sys_addr, node_id))
346
				goto found;
347
		}
348
		goto err_no_match;
349 350
	}

351 352 353
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
354
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
355 356 357 358 359 360
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
361
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
362 363
			break;	/* intlv_sel field matches */

364
		if (++node_id >= DRAM_RANGES)
365 366 367 368
			goto err_no_match;
	}

	/* sanity test for sys_addr */
369
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
370 371 372
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
373 374 375 376
		return NULL;
	}

found:
377
	return edac_mc_find((int)node_id);
378 379

err_no_match:
380 381
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
382 383 384

	return NULL;
}
385 386

/*
387 388
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
389
 */
390 391
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
392
{
393 394
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
395

396
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
397 398
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
399 400
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
401
		addr_shift	= 4;
402 403

	/*
404 405 406 407 408
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
409 410 411
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

412 413
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
414 415 416

		*mask = ~0ULL;
		/* poke holes for the csmask */
417 418
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
419

420 421
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
422 423

		return;
424 425 426 427
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
428

429
		if (pvt->fam == 0x15)
430 431
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
432
		else
433 434
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
435
	}
436

437
	*base  = (csbase & base_bits) << addr_shift;
438

439 440 441 442 443
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
444 445
}

446 447 448
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

449 450 451
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

452 453 454
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

455
#define for_each_umc(i) \
456
	for (i = 0; i < fam_type->max_mcs; i++)
457

458 459 460 461 462 463 464 465 466 467 468 469
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

470 471
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
472 473
			continue;

474 475 476
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
477 478

		if ((input_addr & mask) == (base & mask)) {
479 480 481
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
482 483 484 485

			return csrow;
		}
	}
486 487
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
514
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
515 516
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
517 518 519
		return 1;
	}

520
	/* valid for Fam10h and above */
521
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
522
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
523 524 525
		return 1;
	}

526
	if (!dhar_valid(pvt)) {
527 528
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

550 551
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
552

553 554
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
555

556 557 558
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
559 560 561 562 563

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
595
	struct amd64_pvt *pvt = mci->pvt_info;
596
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
597
	int ret;
598

599
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
600 601 602 603

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
604 605
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
606 607 608
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

609 610 611
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
612 613 614 615 616 617 618 619 620 621 622 623 624 625

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
626
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
627

628 629
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
661
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
662
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
663
		      (dram_addr & 0xfff);
664

665 666 667
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
668 669 670 671 672 673 674 675 676 677 678 679 680 681 682

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
683
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
684
		 (unsigned long)sys_addr, (unsigned long)input_addr);
685 686 687 688 689 690

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
691
						    struct err_info *err)
692
{
693 694
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
712 713
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
714 715
	return csrow;
}
716

717
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
718 719 720 721 722

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
723
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
724
{
725
	unsigned long edac_cap = EDAC_FLAG_NONE;
726 727 728 729
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
730

731
		for_each_umc(i) {
732 733
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
752 753 754 755

	return edac_cap;
}

756
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
757

758
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
759
{
760
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
761

762 763 764 765 766 767 768 769 770 771 772 773 774
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

775

776 777
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
778

779
	if (pvt->fam == 0x10)
780 781
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
782

783 784 785 786 787
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
788 789
}

790 791
#define CS_EVEN_PRIMARY		BIT(0)
#define CS_ODD_PRIMARY		BIT(1)
792 793
#define CS_EVEN_SECONDARY	BIT(2)
#define CS_ODD_SECONDARY	BIT(3)
794

795 796
#define CS_EVEN			(CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
#define CS_ODD			(CS_ODD_PRIMARY | CS_ODD_SECONDARY)
797 798

static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
799
{
800
	int cs_mode = 0;
801

802 803
	if (csrow_enabled(2 * dimm, ctrl, pvt))
		cs_mode |= CS_EVEN_PRIMARY;
804

805 806 807
	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_PRIMARY;

808 809 810 811
	/* Asymmetric dual-rank DIMM support. */
	if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_SECONDARY;

812
	return cs_mode;
813 814
}

815 816
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
817
	int dimm, size0, size1, cs0, cs1, cs_mode;
818 819 820

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

821
	for (dimm = 0; dimm < 2; dimm++) {
822 823 824
		cs0 = dimm * 2;
		cs1 = dimm * 2 + 1;

825 826 827 828
		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);

		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
829 830

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
831 832
				cs0,	size0,
				cs1,	size1);
833 834 835 836 837 838 839 840
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

841
	for_each_umc(i) {
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

880
/* Display and decode various NB registers for debug purposes. */
881
static void __dump_misc_regs(struct amd64_pvt *pvt)
882
{
883
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
884

885 886
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
887

888 889 890
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
891

892
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
893

894
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
895

896 897
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
898 899
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
900

901
	debug_display_dimm_sizes(pvt, 0);
902

903
	/* everything below this point is Fam10h and above */
904
	if (pvt->fam == 0xf)
905
		return;
906

907
	debug_display_dimm_sizes(pvt, 1);
908

909
	/* Only if NOT ganged does dclr1 have valid info */
910
	if (!dct_ganging_enabled(pvt))
911
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
912 913
}

914 915 916 917 918 919 920 921 922 923
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

924
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
925 926
}

927
/*
928
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
929
 */
930
static void prep_chip_selects(struct amd64_pvt *pvt)
931
{
932
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
933 934
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
935
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
936 937
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
938 939 940 941 942 943 944 945
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

946
	} else {
947 948
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
949 950 951
	}
}

952 953
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
954 955 956 957 958 959
	u32 umc_base_reg, umc_base_reg_sec;
	u32 umc_mask_reg, umc_mask_reg_sec;
	u32 base_reg, base_reg_sec;
	u32 mask_reg, mask_reg_sec;
	u32 *base, *base_sec;
	u32 *mask, *mask_sec;
960 961 962 963
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
964
		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
965 966 967

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];
968
			base_sec = &pvt->csels[umc].csbases_sec[cs];
969 970

			base_reg = umc_base_reg + (cs * 4);
971
			base_reg_sec = umc_base_reg_sec + (cs * 4);
972 973 974 975

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
976 977 978 979

			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base_sec, base_reg_sec);
980 981 982
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
983
		umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
984 985 986

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];
987
			mask_sec = &pvt->csels[umc].csmasks_sec[cs];
988 989

			mask_reg = umc_mask_reg + (cs * 4);
990
			mask_reg_sec = umc_mask_reg_sec + (cs * 4);
991 992 993 994

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
995 996 997 998

			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask_sec, mask_reg_sec);
999 1000 1001 1002
		}
	}
}

1003
/*
1004
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
1005
 */
1006
static void read_dct_base_mask(struct amd64_pvt *pvt)
1007
{
1008
	int cs;
1009

1010
	prep_chip_selects(pvt);
1011

1012 1013
	if (pvt->umc)
		return read_umc_base_mask(pvt);
1014

1015
	for_each_chip_select(cs, 0, pvt) {
1016 1017
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
1018 1019
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
1020

1021 1022 1023
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1024

1025 1026
		if (pvt->fam == 0xf)
			continue;
1027

1028 1029 1030 1031
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1032 1033
	}

1034
	for_each_chip_select_mask(cs, 0, pvt) {
1035 1036
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1037 1038
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1039

1040 1041 1042
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1043

1044 1045
		if (pvt->fam == 0xf)
			continue;
1046

1047 1048 1049 1050
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1051 1052 1053
	}
}

1054
static void determine_memory_type(struct amd64_pvt *pvt)
1055
{
1056
	u32 dram_ctrl, dcsm;
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1067
		if (pvt->dchr0 & DDR3_MODE)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1095
		else
1096
			pvt->dram_type = MEM_RDDR3;
1097

1098 1099 1100 1101 1102
		return;

	case 0x16:
		goto ddr3;

1103
	case 0x17:
P
Pu Wen 已提交
1104
	case 0x18:
1105 1106 1107 1108 1109 1110 1111 1112
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;

1113 1114 1115 1116 1117
	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1118

1119 1120
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1121 1122
}

1123
/* Get the number of DCT channels the memory controller is using. */
1124 1125
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1126
	int flag;
1127

1128
	if (pvt->ext_model >= K8_REV_F)
1129
		/* RevF (NPT) and later */
1130
		flag = pvt->dclr0 & WIDTH_128;
1131
	else
1132 1133 1134 1135 1136 1137 1138 1139 1140
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1141
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1142
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1143
{
1144 1145
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1146 1147
	u8 start_bit = 1;
	u8 end_bit   = 47;
1148 1149 1150 1151 1152 1153 1154
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1155

1156
	if (pvt->fam == 0xf) {
1157 1158 1159 1160
		start_bit = 3;
		end_bit   = 39;
	}

1161
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1162 1163 1164 1165

	/*
	 * Erratum 637 workaround
	 */
1166
	if (pvt->fam == 0x15) {
1167 1168
		u64 cc6_base, tmp_addr;
		u32 tmp;
1169
		u8 intlv_en;
1170

1171
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1172 1173 1174 1175 1176 1177 1178
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1179
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1180 1181 1182 1183 1184 1185 1186 1187

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1188
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1189 1190 1191 1192

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1193
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1194 1195

		/* OR DramIntlvSel into bits [14:12] */
1196
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1197 1198

		/* add remaining [11:0] bits from original MC4_ADDR */
1199
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1200 1201 1202 1203 1204

		return cc6_base | tmp_addr;
	}

	return addr;
1205 1206
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1223
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1224
{
1225
	struct amd_northbridge *nb;
1226 1227
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1228
	int off = range << 3;
1229
	u32 llim;
1230

1231 1232
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1233

1234
	if (pvt->fam == 0xf)
1235
		return;
1236

1237 1238
	if (!dram_rw(pvt, range))
		return;
1239

1240 1241
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1242

1243
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1244
	if (pvt->fam != 0x15)
1245
		return;
1246

1247 1248 1249
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1250

1251 1252 1253 1254 1255 1256
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1257 1258

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1259 1260
	if (WARN_ON(!f1))
		return;
1261

1262
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1263

1264
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1265

1266 1267
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1268

1269
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1270

1271 1272 1273 1274
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1275 1276
}

1277
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1278
				    struct err_info *err)
1279
{
1280
	struct amd64_pvt *pvt = mci->pvt_info;
1281

1282
	error_address_to_page_and_offset(sys_addr, err);
1283 1284 1285 1286 1287

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1288 1289
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1290 1291
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1292
		err->err_code = ERR_NODE;
1293 1294 1295 1296
		return;
	}

	/* Now map the sys_addr to a CSROW */
1297 1298 1299
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1300 1301 1302
		return;
	}

1303
	/* CHIPKILL enabled */
1304
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1305 1306
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1307 1308 1309 1310 1311
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1312
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1313
				      "possible error reporting race\n",
1314 1315
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1327
		err->channel = ((sys_addr & BIT(3)) != 0);
1328 1329 1330
	}
}

1331
static int ddr2_cs_size(unsigned i, bool dct_width)
1332
{
1333
	unsigned shift = 0;
1334

1335 1336 1337 1338
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1339
	else
1340
		shift = (i + 1) >> 1;
1341

1342 1343 1344 1345
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1346
				  unsigned cs_mode, int cs_mask_nr)
1347 1348 1349 1350 1351 1352 1353 1354
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1355
		unsigned diff;
1356 1357
		WARN_ON(cs_mode > 10);

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1385 1386 1387 1388 1389
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1390 1391
}

1392 1393 1394 1395 1396 1397 1398 1399
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1400
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1401
{
1402
	int i, j, channels = 0;
1403

1404
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1405
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1406
		return 2;
1407 1408

	/*
1409 1410 1411
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1412 1413 1414 1415
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1416
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1417

1418 1419 1420 1421 1422
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1423 1424
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1425

1426 1427 1428 1429 1430 1431
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1432 1433
	}

1434 1435 1436
	if (channels > 2)
		channels = 2;

1437
	amd64_info("MCT channel count: %d\n", channels);
1438 1439 1440 1441

	return channels;
}

1442 1443 1444 1445 1446
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1447
	for_each_umc(i)
1448 1449 1450 1451 1452 1453 1454
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1455
static int ddr3_cs_size(unsigned i, bool dct_width)
1456
{
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1512
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1513
				   unsigned cs_mode, int cs_mask_nr)
1514 1515 1516 1517
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1518 1519

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1520
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1521
	else
1522 1523 1524 1525 1526 1527 1528
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1529
				   unsigned cs_mode, int cs_mask_nr)
1530 1531
{
	WARN_ON(cs_mode > 12);
1532

1533
	return ddr3_cs_size(cs_mode, false);
1534 1535
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1567
/*
1568
 * F16h and F15h model 30h have only limited cs_modes.
1569 1570
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1571
				unsigned cs_mode, int cs_mask_nr)
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1582
static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1583 1584
				    unsigned int cs_mode, int csrow_nr)
{
1585 1586 1587
	u32 addr_mask_orig, addr_mask_deinterleaved;
	u32 msb, weight, num_zero_bits;
	int dimm, size = 0;
1588

1589 1590 1591
	/* No Chip Selects are enabled. */
	if (!cs_mode)
		return size;
1592

1593 1594 1595
	/* Requested size of an even CS but none are enabled. */
	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
		return size;
1596

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	/* Requested size of an odd CS but none are enabled. */
	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
		return size;

	/*
	 * There is one mask per DIMM, and two Chip Selects per DIMM.
	 *	CS0 and CS1 -> DIMM0
	 *	CS2 and CS3 -> DIMM1
	 */
	dimm = csrow_nr >> 1;

1608 1609 1610 1611 1612
	/* Asymmetric dual-rank DIMM support. */
	if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
		addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm];
	else
		addr_mask_orig = pvt->csels[umc].csmasks[dimm];
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633

	/*
	 * The number of zero bits in the mask is equal to the number of bits
	 * in a full mask minus the number of bits in the current mask.
	 *
	 * The MSB is the number of bits in the full mask because BIT[0] is
	 * always 0.
	 */
	msb = fls(addr_mask_orig) - 1;
	weight = hweight_long(addr_mask_orig);
	num_zero_bits = msb - weight;

	/* Take the number of zero bits off from the top of the mask. */
	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);

	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);

	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
	size = (addr_mask_deinterleaved >> 2) + 1;
1634 1635 1636 1637 1638

	/* Return size in MBs. */
	return size >> 10;
}

1639
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1640 1641
{

1642
	if (pvt->fam == 0xf)
1643 1644
		return;

1645
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1646 1647
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1648

1649 1650
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1651 1652

		if (!dct_ganging_enabled(pvt))
1653 1654
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1655

1656 1657 1658
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1659

1660 1661 1662 1663
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1664 1665
	}

1666
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1667 1668
}

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1697 1698 1699
	return channel;
}

1700
/*
1701
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1702 1703
 * Interleaving Modes.
 */
1704
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1705
				bool hi_range_sel, u8 intlv_en)
1706
{
1707
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1708 1709

	if (dct_ganging_enabled(pvt))
1710
		return 0;
1711

1712 1713
	if (hi_range_sel)
		return dct_sel_high;
1714

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1727
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1728 1729 1730 1731

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1732 1733 1734 1735 1736 1737
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1738 1739 1740 1741 1742
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1743 1744 1745 1746

	return 0;
}

1747
/* Convert the sys_addr to the normalized DCT address */
1748
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1749 1750
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1751 1752
{
	u64 chan_off;
1753 1754
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1755
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1771
		    dhar_valid(pvt) &&
1772
		    (sys_addr >= BIT_64(32)))
1773
			chan_off = hole_off;
1774 1775 1776
		else
			chan_off = dct_sel_base_off;
	} else {
1777 1778 1779 1780 1781 1782 1783 1784 1785
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1786
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1787
			chan_off = hole_off;
1788
		else
1789
			chan_off = dram_base;
1790 1791
	}

1792
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1793 1794 1795 1796 1797 1798
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1799
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1800
{
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1824
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1825 1826 1827
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1828
	u64 cs_base, cs_mask;
1829 1830 1831
	int cs_found = -EINVAL;
	int csrow;

1832
	mci = edac_mc_find(nid);
1833 1834 1835 1836 1837
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1838
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1839

1840 1841
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1842 1843
			continue;

1844
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1845

1846 1847
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1848

1849
		cs_mask = ~cs_mask;
1850

1851 1852
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1853

1854
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1855 1856 1857 1858
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1859
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1860

1861
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1862 1863 1864 1865 1866 1867
			break;
		}
	}
	return cs_found;
}

1868 1869 1870 1871 1872
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1873
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1874 1875 1876
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1877
	if (pvt->fam == 0x10) {
1878
		/* only revC3 and revE have that feature */
1879
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1880 1881 1882
			return sys_addr;
	}

1883
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1902
/* For a given @dram_range, check if @sys_addr falls within it. */
1903
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1904
				  u64 sys_addr, int *chan_sel)
1905
{
1906
	int cs_found = -EINVAL;
1907
	u64 chan_addr;
1908
	u32 dct_sel_base;
1909
	u8 channel;
1910
	bool high_range = false;
1911

1912
	u8 node_id    = dram_dst_node(pvt, range);
1913
	u8 intlv_en   = dram_intlv_en(pvt, range);
1914
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1915

1916 1917
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1918

1919 1920 1921 1922 1923 1924 1925 1926
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1927
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1928 1929
		return -EINVAL;

1930
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1931

1932 1933 1934 1935 1936 1937 1938 1939 1940
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1941
		high_range = true;
1942

1943
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1944

1945
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1946
					  high_range, dct_sel_base);
1947

1948 1949 1950 1951
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1952

1953
	/* remove channel interleave */
1954 1955 1956
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1971 1972
	}

1973
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1974

1975
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1976

1977
	if (cs_found >= 0)
1978
		*chan_sel = channel;
1979

1980 1981 1982
	return cs_found;
}

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
2020 2021
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2022 2023

	if (!(dct_cont_base_reg & BIT(0)) &&
2024 2025
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
2026 2027 2028 2029 2030 2031 2032 2033
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

2034 2035 2036 2037 2038
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
2039 2040

	/* Verify we stay within the MAX number of channels allowed */
2041
	if (channel > 3)
2042 2043 2044 2045 2046 2047 2048 2049
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
2050
		chan_offset = dct_base << 27;
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2080
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2108
{
2109 2110
	int cs_found = -EINVAL;
	unsigned range;
2111

2112 2113
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2114 2115
			continue;

2116 2117 2118 2119
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2120

2121 2122
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2123
			cs_found = f1x_match_to_this_node(pvt, range,
2124
							  sys_addr, chan_sel);
2125 2126 2127 2128 2129 2130 2131 2132
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2133 2134
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2135
 *
2136 2137
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2138
 */
2139
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2140
				     struct err_info *err)
2141 2142 2143
{
	struct amd64_pvt *pvt = mci->pvt_info;

2144
	error_address_to_page_and_offset(sys_addr, err);
2145

2146 2147 2148
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2149 2150 2151 2152 2153 2154 2155 2156
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2157
	if (dct_ganging_enabled(pvt))
2158
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2159 2160 2161
}

/*
2162
 * debug routine to display the memory sizes of all logical DIMMs and its
2163
 * CSROWs
2164
 */
2165
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2166
{
2167
	int dimm, size0, size1;
2168 2169
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2170

2171
	if (pvt->fam == 0xf) {
2172
		/* K8 families < revF not supported yet */
2173
	       if (pvt->ext_model < K8_REV_F)
2174 2175 2176 2177 2178
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2189 2190
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2191

2192 2193
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2194 2195 2196 2197
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2198
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2199 2200 2201
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2202 2203 2204
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2205
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2206 2207
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2208 2209

		size1 = 0;
2210
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2211
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2212 2213
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2214

2215
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2216 2217
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2218 2219 2220
	}
}

2221
static struct amd64_family_type family_types[] = {
2222
	[K8_CPUS] = {
2223
		.ctl_name = "K8",
2224
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2225
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2226
		.max_mcs = 2,
2227
		.ops = {
2228 2229 2230
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2231 2232 2233
		}
	},
	[F10_CPUS] = {
2234
		.ctl_name = "F10h",
2235
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2236
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2237
		.max_mcs = 2,
2238
		.ops = {
2239
			.early_channel_count	= f1x_early_channel_count,
2240
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2241
			.dbam_to_cs		= f10_dbam_to_chip_select,
2242 2243 2244 2245
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2246
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2247
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2248
		.max_mcs = 2,
2249
		.ops = {
2250
			.early_channel_count	= f1x_early_channel_count,
2251
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2252
			.dbam_to_cs		= f15_dbam_to_chip_select,
2253 2254
		}
	},
2255 2256 2257
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2258
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2259
		.max_mcs = 2,
2260 2261 2262 2263 2264 2265
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2266 2267 2268
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2269
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2270
		.max_mcs = 2,
2271 2272 2273 2274 2275 2276
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2277 2278 2279
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2280
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2281
		.max_mcs = 2,
2282 2283 2284 2285 2286 2287
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2288 2289 2290
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2291
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2292
		.max_mcs = 2,
2293 2294 2295 2296 2297 2298
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2299 2300 2301 2302
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2303
		.max_mcs = 2,
2304 2305
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2306
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2307 2308
		}
	},
2309 2310 2311 2312
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
2313
		.max_mcs = 2,
2314 2315
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2316
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2317 2318
		}
	},
2319 2320 2321 2322
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
2323
		.max_mcs = 8,
2324 2325
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2326
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2327 2328
		}
	},
2329 2330 2331 2332
	[F17_M70H_CPUS] = {
		.ctl_name = "F17h_M70h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
2333
		.max_mcs = 2,
2334 2335 2336 2337 2338
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2339 2340
};

2341
/*
2342 2343 2344
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2345
 *
2346
 * Algorithm courtesy of Ross LaFetra from AMD.
2347
 */
2348
static const u16 x4_vectors[] = {
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2385 2386
};

2387
static const u16 x8_vectors[] = {
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2409
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2410
			   unsigned v_dim)
2411
{
2412 2413 2414 2415
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2416 2417
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2430

2431 2432 2433
					if (!s)
						return err_sym;
				}
2434

2435 2436 2437 2438
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2439 2440
	}

2441
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2442 2443
	return -1;
}
2444

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2487 2488
	int err_sym = -1;

2489
	if (pvt->ecc_sym_sz == 8)
2490 2491
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2492 2493
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2494 2495
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2496
					  pvt->ecc_sym_sz);
2497
	else {
2498
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2499
		return err_sym;
2500
	}
2501

2502
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2503 2504
}

2505
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2506
			    u8 ecc_type)
2507
{
2508 2509
	enum hw_event_mc_err_type err_type;
	const char *string;
2510

2511 2512 2513 2514
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2515 2516
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2517 2518
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2519 2520 2521
		return;
	}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2533 2534 2535 2536 2537 2538 2539
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2540 2541 2542 2543
		break;
	default:
		string = "WTF error";
		break;
2544
	}
2545 2546 2547 2548 2549

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2550 2551
}

2552
static inline void decode_bus_error(int node_id, struct mce *m)
2553
{
2554 2555
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2556
	u8 ecc_type = (m->status >> 45) & 0x3;
2557 2558
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2559 2560
	u64 sys_addr;
	struct err_info err;
2561

2562 2563 2564 2565 2566 2567
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2568
	/* Bail out early if this was an 'observed' error */
2569
	if (PP(ec) == NBSL_PP_OBS)
2570
		return;
2571

2572 2573
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2574 2575
		return;

2576 2577
	memset(&err, 0, sizeof(err));

2578
	sys_addr = get_error_address(pvt, m);
2579

2580
	if (ecc_type == 2)
2581 2582 2583 2584
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2585
	__log_ecc_error(mci, &err, ecc_type);
2586 2587
}

2588 2589 2590 2591
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
2592 2593 2594 2595
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
2596
 */
2597
static int find_umc_channel(struct mce *m)
2598
{
2599
	return (m->ipid & GENMASK(31, 0)) >> 20;
2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

2621
	err.channel = find_umc_channel(m);
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

2639 2640 2641 2642 2643 2644 2645
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

2646 2647 2648 2649
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2650
/*
2651 2652
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2653
 * Reserve F0 and F6 on systems with a UMC.
2654
 */
2655 2656 2657 2658 2659 2660
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2661
			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2662 2663 2664 2665 2666 2667 2668 2669
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2670
			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2671 2672
			return -ENODEV;
		}
2673

2674 2675 2676 2677 2678 2679 2680
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2681
	/* Reserve the ADDRESS MAP Device */
2682
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2683
	if (!pvt->F1) {
2684
		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2685
		return -ENODEV;
2686 2687
	}

2688
	/* Reserve the DCT Device */
2689
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2690
	if (!pvt->F2) {
2691 2692
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2693

2694 2695
		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
		return -ENODEV;
2696
	}
2697

2698 2699 2700
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2701 2702 2703 2704

	return 0;
}

2705
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2706
{
2707 2708 2709 2710 2711 2712 2713
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2714 2715
}

2716 2717 2718 2719 2720 2721 2722
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

2723
		for_each_umc(i) {
2724
			/* Check enabled channels only: */
2725 2726 2727 2728 2729 2730 2731 2732
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
2733 2734
			}
		}
2735
	} else if (pvt->fam >= 0x10) {
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
2759
	for_each_umc(i) {
2760 2761 2762 2763

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2764 2765
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2766 2767
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2768
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2769 2770 2771
	}
}

2772 2773 2774 2775
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2776
static void read_mc_regs(struct amd64_pvt *pvt)
2777
{
2778
	unsigned int range;
2779 2780 2781 2782
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2783
	 * those are Read-As-Zero.
2784
	 */
2785
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2786
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2787

2788
	/* Check first whether TOP_MEM2 is enabled: */
2789
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2790
	if (msr_val & BIT(21)) {
2791
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2792
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2793
	} else {
2794
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2795 2796 2797 2798 2799 2800 2801 2802
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2803

2804
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2805

2806
	read_dram_ctl_register(pvt);
2807

2808 2809
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2810

2811 2812 2813 2814 2815 2816 2817
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2818 2819 2820 2821
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2822

2823 2824 2825 2826 2827 2828
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2829 2830
	}

2831
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2832
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2833

2834
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2835

2836 2837
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2838

2839
	if (!dct_ganging_enabled(pvt)) {
2840 2841
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2842
	}
2843

2844 2845 2846
skip:
	read_dct_base_mask(pvt);

2847 2848
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2849

2850
	determine_ecc_sym_sz(pvt);
2851 2852 2853 2854 2855 2856
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2857
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2887
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2888
{
2889
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2890 2891
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
2892

2893
	if (!pvt->umc) {
2894
		csrow_nr >>= 1;
2895 2896 2897 2898
		cs_mode = DBAM_DIMM(csrow_nr, dbam);
	} else {
		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
	}
2899

2900 2901
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
2902

2903
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2904
		    csrow_nr_orig, dct,  cs_mode);
2905
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2906 2907 2908 2909

	return nr_pages;
}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
			dimm->mtype = pvt->dram_type;
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
Y
Yazen Ghannam 已提交
2947
			dimm->grain = 64;
2948 2949 2950 2951 2952 2953
		}
	}

	return empty;
}

2954 2955 2956 2957
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2958
static int init_csrows(struct mem_ctl_info *mci)
2959
{
2960
	struct amd64_pvt *pvt = mci->pvt_info;
2961
	enum edac_type edac_mode = EDAC_NONE;
2962
	struct csrow_info *csrow;
2963
	struct dimm_info *dimm;
2964
	int i, j, empty = 1;
2965
	int nr_pages = 0;
2966
	u32 val;
2967

2968 2969
	if (pvt->umc)
		return init_csrows_df(mci);
2970

2971
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2972

2973 2974 2975 2976 2977
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2978

2979 2980 2981
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2982
	for_each_chip_select(i, 0, pvt) {
2983 2984
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2985

2986
		if (pvt->fam != 0xf)
2987 2988 2989
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
2990 2991
			continue;

2992
		csrow = mci->csrows[i];
2993
		empty = 0;
2994 2995 2996 2997

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

2998
		if (row_dct0) {
2999
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
3000 3001
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
3002

3003
		/* K8 has only one DCT */
3004
		if (pvt->fam != 0xf && row_dct1) {
3005
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
3006 3007 3008 3009

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
3010

3011
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
3012

3013
		/* Determine DIMM ECC mode: */
3014
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
3015 3016 3017 3018
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
3019 3020

		for (j = 0; j < pvt->channel_count; j++) {
3021
			dimm = csrow->channels[j]->dimm;
3022
			dimm->mtype = pvt->dram_type;
3023
			dimm->edac_mode = edac_mode;
Y
Yazen Ghannam 已提交
3024
			dimm->grain = 64;
3025
		}
3026 3027 3028 3029
	}

	return empty;
}
3030

3031
/* get all cores on this DCT */
3032
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3033 3034 3035 3036 3037 3038 3039 3040 3041
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
3042
static bool nb_mce_bank_enabled_on_node(u16 nid)
3043 3044
{
	cpumask_var_t mask;
3045
	int cpu, nbe;
3046 3047 3048
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3049
		amd64_warn("%s: Error allocating mask\n", __func__);
3050 3051 3052 3053 3054 3055 3056 3057
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
3058
		struct msr *reg = per_cpu_ptr(msrs, cpu);
3059
		nbe = reg->l & MSR_MCGCTL_NBE;
3060

3061 3062 3063
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3075
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3076 3077
{
	cpumask_var_t cmask;
3078
	int cpu;
3079 3080

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3081
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3082
		return -ENOMEM;
3083 3084
	}

3085
	get_cpus_on_this_dct_cpumask(cmask, nid);
3086 3087 3088 3089 3090

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3091 3092
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3093
		if (on) {
3094
			if (reg->l & MSR_MCGCTL_NBE)
3095
				s->flags.nb_mce_enable = 1;
3096

3097
			reg->l |= MSR_MCGCTL_NBE;
3098 3099
		} else {
			/*
3100
			 * Turn off NB MCE reporting only when it was off before
3101
			 */
3102
			if (!s->flags.nb_mce_enable)
3103
				reg->l &= ~MSR_MCGCTL_NBE;
3104 3105 3106 3107 3108 3109 3110 3111 3112
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3113
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3114
				       struct pci_dev *F3)
3115
{
3116
	bool ret = true;
B
Borislav Petkov 已提交
3117
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3118

3119 3120 3121 3122 3123
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3124
	amd64_read_pci_cfg(F3, NBCTL, &value);
3125

3126 3127
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3128 3129

	value |= mask;
B
Borislav Petkov 已提交
3130
	amd64_write_pci_cfg(F3, NBCTL, value);
3131

3132
	amd64_read_pci_cfg(F3, NBCFG, &value);
3133

3134 3135
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3136

3137
	if (!(value & NBCFG_ECC_ENABLE)) {
3138
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3139

3140
		s->flags.nb_ecc_prev = 0;
3141

3142
		/* Attempt to turn on DRAM ECC Enable */
3143 3144
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3145

3146
		amd64_read_pci_cfg(F3, NBCFG, &value);
3147

3148
		if (!(value & NBCFG_ECC_ENABLE)) {
3149 3150
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3151
			ret = false;
3152
		} else {
3153
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3154
		}
3155
	} else {
3156
		s->flags.nb_ecc_prev = 1;
3157
	}
3158

3159 3160
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3161

3162
	return ret;
3163 3164
}

3165
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3166
					struct pci_dev *F3)
3167
{
B
Borislav Petkov 已提交
3168 3169
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3170
	if (!s->nbctl_valid)
3171 3172
		return;

B
Borislav Petkov 已提交
3173
	amd64_read_pci_cfg(F3, NBCTL, &value);
3174
	value &= ~mask;
3175
	value |= s->old_nbctl;
3176

B
Borislav Petkov 已提交
3177
	amd64_write_pci_cfg(F3, NBCTL, value);
3178

3179 3180
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3181 3182 3183
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3184 3185 3186
	}

	/* restore the NB Enable MCGCTL bit */
3187
	if (toggle_ecc_err_reporting(s, nid, OFF))
3188
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3189 3190
}

3191
static bool ecc_enabled(struct amd64_pvt *pvt)
3192
{
3193
	u16 nid = pvt->mc_node_id;
3194
	bool nb_mce_en = false;
3195 3196
	u8 ecc_en = 0, i;
	u32 value;
3197

3198 3199
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3200
		struct amd64_umc *umc;
3201

3202
		for_each_umc(i) {
3203
			umc = &pvt->umc[i];
3204 3205

			/* Only check enabled UMCs. */
3206
			if (!(umc->sdp_ctrl & UMC_SDP_INIT))
3207 3208 3209 3210
				continue;

			umc_en_mask |= BIT(i);

3211
			if (umc->umc_cap_hi & UMC_ECC_ENABLED)
3212 3213 3214 3215 3216 3217
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3218 3219
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3220 3221 3222 3223

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
3224
		amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
3225

3226 3227 3228 3229
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3230
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3231 3232 3233
				     MSR_IA32_MCG_CTL, nid);
	}

3234 3235
	amd64_info("Node %d: DRAM ECC %s.\n",
		   nid, (ecc_en ? "enabled" : "disabled"));
3236

3237
	if (!ecc_en || !nb_mce_en)
3238
		return false;
3239 3240
	else
		return true;
3241 3242
}

3243 3244 3245
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3246
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3247

3248
	for_each_umc(i) {
3249 3250 3251
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3252 3253 3254

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3255 3256 3257 3258 3259 3260 3261
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3262 3263 3264 3265
		if (!cpk_en)
			return;

		if (dev_x4)
3266
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3267 3268 3269 3270
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3271 3272 3273
	}
}

3274
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
3275 3276 3277 3278 3279 3280
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3281 3282 3283 3284 3285
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3286

3287 3288 3289
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3290

3291
	mci->edac_cap		= determine_edac_cap(pvt);
3292
	mci->mod_name		= EDAC_MOD_STR;
3293
	mci->ctl_name		= fam_type->ctl_name;
3294
	mci->dev_name		= pci_name(pvt->F3);
3295 3296 3297
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3298 3299
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3300 3301
}

3302 3303 3304
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3305
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3306
{
3307
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3308
	pvt->stepping	= boot_cpu_data.x86_stepping;
3309 3310 3311 3312
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3313
	case 0xf:
3314 3315
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3316
		break;
3317

3318
	case 0x10:
3319 3320
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3321 3322 3323
		break;

	case 0x15:
3324
		if (pvt->model == 0x30) {
3325 3326
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3327
			break;
3328 3329 3330 3331
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3332 3333
		}

3334 3335
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3336 3337
		break;

3338
	case 0x16:
3339 3340 3341 3342 3343
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3344 3345
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3346 3347
		break;

3348
	case 0x17:
3349 3350 3351 3352
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3353 3354 3355 3356
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3357 3358 3359 3360
		} else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			break;
3361
		}
P
Pu Wen 已提交
3362 3363
		/* fall through */
	case 0x18:
3364 3365
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
P
Pu Wen 已提交
3366 3367 3368

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3369 3370
		break;

3371
	default:
3372
		amd64_err("Unsupported family!\n");
3373
		return NULL;
3374
	}
3375

3376
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3377
		     (pvt->fam == 0xf ?
3378 3379 3380
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3381
	return fam_type;
3382 3383
}

3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3394
static int hw_info_get(struct amd64_pvt *pvt)
3395
{
3396
	u16 pci_id1, pci_id2;
3397
	int ret = -EINVAL;
3398

3399
	if (pvt->fam >= 0x17) {
3400
		pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
3401 3402
		if (!pvt->umc)
			return -ENOMEM;
3403 3404 3405 3406 3407 3408 3409 3410

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

3411 3412 3413
	ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
	if (ret)
		return ret;
3414

3415
	read_mc_regs(pvt);
3416

3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
	return 0;
}

static void hw_info_put(struct amd64_pvt *pvt)
{
	if (pvt->F0 || pvt->F1)
		free_mc_sibling_devs(pvt);

	kfree(pvt->umc);
}

static int init_one_instance(struct amd64_pvt *pvt)
{
	struct mem_ctl_info *mci = NULL;
	struct edac_mc_layer layers[2];
	int ret = -EINVAL;

3434 3435 3436
	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3437
	 * tables in the 'mci' structure.
3438 3439 3440
	 */
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3441
		return ret;
3442 3443

	ret = -ENOMEM;
3444 3445 3446 3447
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3448 3449 3450 3451 3452 3453

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
3454
	layers[1].size = fam_type->max_mcs;
3455
	layers[1].is_virt_csrow = false;
3456

3457
	mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
3458
	if (!mci)
3459
		return ret;
3460 3461

	mci->pvt_info = pvt;
3462
	mci->pdev = &pvt->F3->dev;
3463

3464
	setup_mci_misc_attrs(mci);
3465 3466

	if (init_csrows(mci))
3467 3468 3469
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3470
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3471
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3472 3473
		edac_mc_free(mci);
		return ret;
3474 3475 3476 3477 3478
	}

	return 0;
}

3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
static bool instance_has_memory(struct amd64_pvt *pvt)
{
	bool cs_enabled = false;
	int cs = 0, dct = 0;

	for (dct = 0; dct < fam_type->max_mcs; dct++) {
		for_each_chip_select(cs, dct, pvt)
			cs_enabled |= csrow_enabled(cs, dct, pvt);
	}

	return cs_enabled;
}

3492
static int probe_one_instance(unsigned int nid)
3493
{
3494
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3495
	struct amd64_pvt *pvt = NULL;
3496
	struct ecc_settings *s;
3497
	int ret;
3498

3499 3500 3501
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3502
		goto err_out;
3503 3504 3505

	ecc_stngs[nid] = s;

3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
		goto err_settings;

	pvt->mc_node_id	= nid;
	pvt->F3 = F3;

	fam_type = per_family_init(pvt);
	if (!fam_type)
		goto err_enable;

	ret = hw_info_get(pvt);
	if (ret < 0)
		goto err_enable;

3521 3522 3523 3524 3525 3526
	ret = 0;
	if (!instance_has_memory(pvt)) {
		amd64_info("Node %d: No DIMMs detected.\n", nid);
		goto err_enable;
	}

3527
	if (!ecc_enabled(pvt)) {
3528
		ret = -ENODEV;
3529 3530 3531 3532

		if (!ecc_enable_override)
			goto err_enable;

3533 3534 3535 3536 3537
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3538 3539 3540 3541 3542

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3543
	ret = init_one_instance(pvt);
3544
	if (ret < 0) {
3545
		amd64_err("Error probing instance: %d\n", nid);
3546 3547 3548

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3549 3550

		goto err_enable;
3551
	}
3552

3553 3554
	dump_misc_regs(pvt);

3555
	return ret;
3556 3557

err_enable:
3558 3559 3560 3561
	hw_info_put(pvt);
	kfree(pvt);

err_settings:
3562 3563 3564 3565 3566
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3567 3568
}

3569
static void remove_one_instance(unsigned int nid)
3570
{
3571 3572
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3573 3574
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3575

3576
	mci = find_mci_by_dev(&F3->dev);
3577 3578
	WARN_ON(!mci);

3579
	/* Remove from EDAC CORE tracking list */
3580
	mci = edac_mc_del_mc(&F3->dev);
3581 3582 3583 3584 3585
	if (!mci)
		return;

	pvt = mci->pvt_info;

3586
	restore_ecc_error_reporting(s, nid, F3);
3587

3588 3589
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3590

3591
	/* Free the EDAC CORE resources */
3592 3593
	mci->pvt_info = NULL;

3594
	hw_info_put(pvt);
3595
	kfree(pvt);
3596 3597 3598
	edac_mc_free(mci);
}

3599
static void setup_pci_device(void)
3600 3601 3602 3603
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3604
	if (pci_ctl)
3605 3606
		return;

3607
	mci = edac_mc_find(0);
3608 3609
	if (!mci)
		return;
3610

3611
	pvt = mci->pvt_info;
3612 3613 3614 3615
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3616 3617 3618
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3619 3620 3621
	}
}

3622 3623 3624 3625 3626
static const struct x86_cpu_id amd64_cpuids[] = {
	{ X86_VENDOR_AMD, 0xF,	X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
	{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
3627
	{ X86_VENDOR_AMD, 0x17, X86_MODEL_ANY,	X86_FEATURE_ANY, 0 },
P
Pu Wen 已提交
3628
	{ X86_VENDOR_HYGON, 0x18, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
3629 3630 3631 3632
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3633 3634
static int __init amd64_edac_init(void)
{
3635
	const char *owner;
3636
	int err = -ENODEV;
3637
	int i;
3638

3639 3640 3641 3642
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3643 3644 3645
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3646
	if (amd_cache_northbridges() < 0)
3647
		return -ENODEV;
3648

3649 3650
	opstate_init();

3651
	err = -ENOMEM;
K
Kees Cook 已提交
3652
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3653
	if (!ecc_stngs)
3654
		goto err_free;
3655

3656
	msrs = msrs_alloc();
3657
	if (!msrs)
3658
		goto err_free;
3659

3660 3661 3662
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3663 3664 3665
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3666

3667 3668
			goto err_pci;
		}
3669
	}
3670

3671 3672 3673 3674 3675
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3676 3677 3678 3679 3680 3681 3682 3683 3684
	/* register stuff with EDAC MCE */
	if (report_gart_errors)
		amd_report_gart_errors(true);

	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3685
	setup_pci_device();
T
Tomasz Pala 已提交
3686 3687 3688 3689 3690

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3691 3692
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3693
	return 0;
3694

3695 3696 3697
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3698

3699 3700 3701 3702
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3703 3704 3705 3706 3707
	return err;
}

static void __exit amd64_edac_exit(void)
{
3708 3709
	int i;

3710 3711
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3712

3713 3714 3715 3716 3717 3718 3719 3720
	/* unregister from EDAC MCE */
	amd_report_gart_errors(false);

	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

3721 3722
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3723

3724 3725 3726
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3727 3728
	msrs_free(msrs);
	msrs = NULL;
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");