amd64_edac.c 93.7 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include "amd64_edac.h"
3
#include <asm/amd_nb.h>
4

5
static struct edac_pci_ctl_info *pci_ctl;
6 7 8 9 10 11 12 13

/*
 * Set by command line parameter. If BIOS has enabled the ECC, this override is
 * cleared to prevent re-enabling the hardware by this driver.
 */
static int ecc_enable_override;
module_param(ecc_enable_override, int, 0644);

14
static struct msr __percpu *msrs;
15

16 17
static struct amd64_family_type *fam_type;

18
/* Per-node stuff */
19
static struct ecc_settings **ecc_stngs;
20

21 22 23 24 25 26 27
/*
 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
 * or higher value'.
 *
 *FIXME: Produce a better mapping/linearisation.
 */
28
static const struct scrubrate {
29 30 31
       u32 scrubval;           /* bit pattern for scrub rate */
       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
} scrubrates[] = {
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
	{ 0x01, 1600000000UL},
	{ 0x02, 800000000UL},
	{ 0x03, 400000000UL},
	{ 0x04, 200000000UL},
	{ 0x05, 100000000UL},
	{ 0x06, 50000000UL},
	{ 0x07, 25000000UL},
	{ 0x08, 12284069UL},
	{ 0x09, 6274509UL},
	{ 0x0A, 3121951UL},
	{ 0x0B, 1560975UL},
	{ 0x0C, 781440UL},
	{ 0x0D, 390720UL},
	{ 0x0E, 195300UL},
	{ 0x0F, 97650UL},
	{ 0x10, 48854UL},
	{ 0x11, 24427UL},
	{ 0x12, 12213UL},
	{ 0x13, 6101UL},
	{ 0x14, 3051UL},
	{ 0x15, 1523UL},
	{ 0x16, 761UL},
	{ 0x00, 0UL},        /* scrubbing off */
};

57 58
int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
			       u32 *val, const char *func)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
{
	int err = 0;

	err = pci_read_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error reading F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
				u32 val, const char *func)
{
	int err = 0;

	err = pci_write_config_dword(pdev, offset, val);
	if (err)
		amd64_warn("%s: error writing to F%dx%03x.\n",
			   func, PCI_FUNC(pdev->devfn), offset);

	return err;
}

83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * Select DCT to which PCI cfg accesses are routed
 */
static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
{
	u32 reg = 0;

	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
	reg &= (pvt->model == 0x30) ? ~3 : ~1;
	reg |= dct;
	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
}

96 97 98 99
/*
 *
 * Depending on the family, F2 DCT reads need special handling:
 *
100
 * K8: has a single DCT only and no address offsets >= 0x100
101 102 103 104 105
 *
 * F10h: each DCT has its own set of regs
 *	DCT0 -> F2x040..
 *	DCT1 -> F2x140..
 *
106
 * F16h: has only 1 DCT
107 108
 *
 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
109
 */
110 111
static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
					 int offset, u32 *val)
112
{
113 114 115 116 117
	switch (pvt->fam) {
	case 0xf:
		if (dct || offset >= 0x100)
			return -EINVAL;
		break;
118

119 120 121 122 123 124 125 126 127
	case 0x10:
		if (dct) {
			/*
			 * Note: If ganging is enabled, barring the regs
			 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
			 * return 0. (cf. Section 2.8.1 F10h BKDG)
			 */
			if (dct_ganging_enabled(pvt))
				return 0;
128

129 130 131
			offset += 0x100;
		}
		break;
132

133 134 135 136 137 138 139 140
	case 0x15:
		/*
		 * F15h: F2x1xx addresses do not map explicitly to DCT1.
		 * We should select which DCT we access using F1x10C[DctCfgSel]
		 */
		dct = (dct && pvt->model == 0x30) ? 3 : dct;
		f15h_select_dct(pvt, dct);
		break;
141

142 143 144 145
	case 0x16:
		if (dct)
			return -EINVAL;
		break;
146

147 148
	default:
		break;
149
	}
150
	return amd64_read_pci_cfg(pvt->F2, offset, val);
151 152
}

153 154 155 156 157 158 159 160 161 162 163 164 165 166
/*
 * Memory scrubber control interface. For K8, memory scrubbing is handled by
 * hardware and can involve L2 cache, dcache as well as the main memory. With
 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
 * functionality.
 *
 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
 * bytes/sec for the setting.
 *
 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
 * other archs, we might not have access to the caches directly.
 */

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
static inline void __f17h_set_scrubval(struct amd64_pvt *pvt, u32 scrubval)
{
	/*
	 * Fam17h supports scrub values between 0x5 and 0x14. Also, the values
	 * are shifted down by 0x5, so scrubval 0x5 is written to the register
	 * as 0x0, scrubval 0x6 as 0x1, etc.
	 */
	if (scrubval >= 0x5 && scrubval <= 0x14) {
		scrubval -= 0x5;
		pci_write_bits32(pvt->F6, F17H_SCR_LIMIT_ADDR, scrubval, 0xF);
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 1, 0x1);
	} else {
		pci_write_bits32(pvt->F6, F17H_SCR_BASE_ADDR, 0, 0x1);
	}
}
182
/*
183
 * Scan the scrub rate mapping table for a close or matching bandwidth value to
184 185
 * issue. If requested is too big, then use last maximum value found.
 */
186
static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
187 188 189 190 191 192 193 194 195
{
	u32 scrubval;
	int i;

	/*
	 * map the configured rate (new_bw) to a value specific to the AMD64
	 * memory controller and apply to register. Search for the first
	 * bandwidth entry that is greater or equal than the setting requested
	 * and program that. If at last entry, turn off DRAM scrubbing.
196 197 198
	 *
	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
	 * by falling back to the last element in scrubrates[].
199
	 */
200
	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
201 202 203 204
		/*
		 * skip scrub rates which aren't recommended
		 * (see F10 BKDG, F3x58)
		 */
205
		if (scrubrates[i].scrubval < min_rate)
206 207 208 209 210 211 212 213
			continue;

		if (scrubrates[i].bandwidth <= new_bw)
			break;
	}

	scrubval = scrubrates[i].scrubval;

214
	if (pvt->umc) {
215 216
		__f17h_set_scrubval(pvt, scrubval);
	} else if (pvt->fam == 0x15 && pvt->model == 0x60) {
217 218 219 220 221 222 223
		f15h_select_dct(pvt, 0);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
		f15h_select_dct(pvt, 1);
		pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
	} else {
		pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
	}
224

225 226 227
	if (scrubval)
		return scrubrates[i].bandwidth;

228 229 230
	return 0;
}

231
static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
232 233
{
	struct amd64_pvt *pvt = mci->pvt_info;
234
	u32 min_scrubrate = 0x5;
235

236
	if (pvt->fam == 0xf)
237 238
		min_scrubrate = 0x0;

239 240 241 242
	if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
243

244 245 246 247
		if (pvt->model == 0x60)
			min_scrubrate = 0x6;
	}
	return __set_scrub_rate(pvt, bw, min_scrubrate);
248 249
}

250
static int get_scrub_rate(struct mem_ctl_info *mci)
251 252
{
	struct amd64_pvt *pvt = mci->pvt_info;
253
	int i, retval = -EINVAL;
254
	u32 scrubval = 0;
255

256
	if (pvt->umc) {
257 258 259 260 261 262 263 264
		amd64_read_pci_cfg(pvt->F6, F17H_SCR_BASE_ADDR, &scrubval);
		if (scrubval & BIT(0)) {
			amd64_read_pci_cfg(pvt->F6, F17H_SCR_LIMIT_ADDR, &scrubval);
			scrubval &= 0xF;
			scrubval += 0x5;
		} else {
			scrubval = 0;
		}
265 266 267 268
	} else if (pvt->fam == 0x15) {
		/* Erratum #505 */
		if (pvt->model < 0x10)
			f15h_select_dct(pvt, 0);
269

270 271
		if (pvt->model == 0x60)
			amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
272 273
		else
			amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
274
	} else {
275
		amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
276
	}
277 278 279

	scrubval = scrubval & 0x001F;

280
	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
281
		if (scrubrates[i].scrubval == scrubval) {
282
			retval = scrubrates[i].bandwidth;
283 284 285
			break;
		}
	}
286
	return retval;
287 288
}

289
/*
290 291
 * returns true if the SysAddr given by sys_addr matches the
 * DRAM base/limit associated with node_id
292
 */
293
static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
294
{
295
	u64 addr;
296 297 298 299 300 301 302 303 304

	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
	 * all ones if the most significant implemented address bit is 1.
	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
	 * Application Programming.
	 */
	addr = sys_addr & 0x000000ffffffffffull;

305 306
	return ((addr >= get_dram_base(pvt, nid)) &&
		(addr <= get_dram_limit(pvt, nid)));
307 308 309 310 311 312 313 314 315 316 317 318
}

/*
 * Attempt to map a SysAddr to a node. On success, return a pointer to the
 * mem_ctl_info structure for the node that the SysAddr maps to.
 *
 * On failure, return NULL.
 */
static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
						u64 sys_addr)
{
	struct amd64_pvt *pvt;
319
	u8 node_id;
320 321 322 323 324 325 326 327 328 329 330 331 332
	u32 intlv_en, bits;

	/*
	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
	 * 3.4.4.2) registers to map the SysAddr to a node ID.
	 */
	pvt = mci->pvt_info;

	/*
	 * The value of this field should be the same for all DRAM Base
	 * registers.  Therefore we arbitrarily choose to read it from the
	 * register for node 0.
	 */
333
	intlv_en = dram_intlv_en(pvt, 0);
334 335

	if (intlv_en == 0) {
336
		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
337
			if (base_limit_match(pvt, sys_addr, node_id))
338
				goto found;
339
		}
340
		goto err_no_match;
341 342
	}

343 344 345
	if (unlikely((intlv_en != 0x01) &&
		     (intlv_en != 0x03) &&
		     (intlv_en != 0x07))) {
346
		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
347 348 349 350 351 352
		return NULL;
	}

	bits = (((u32) sys_addr) >> 12) & intlv_en;

	for (node_id = 0; ; ) {
353
		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
354 355
			break;	/* intlv_sel field matches */

356
		if (++node_id >= DRAM_RANGES)
357 358 359 360
			goto err_no_match;
	}

	/* sanity test for sys_addr */
361
	if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
362 363 364
		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
			   "range for node %d with node interleaving enabled.\n",
			   __func__, sys_addr, node_id);
365 366 367 368
		return NULL;
	}

found:
369
	return edac_mc_find((int)node_id);
370 371

err_no_match:
372 373
	edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
		 (unsigned long)sys_addr);
374 375 376

	return NULL;
}
377 378

/*
379 380
 * compute the CS base address of the @csrow on the DRAM controller @dct.
 * For details see F2x[5C:40] in the processor's BKDG
381
 */
382 383
static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
				 u64 *base, u64 *mask)
384
{
385 386
	u64 csbase, csmask, base_bits, mask_bits;
	u8 addr_shift;
387

388
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
389 390
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow];
391 392
		base_bits	= GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
		mask_bits	= GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
393
		addr_shift	= 4;
394 395

	/*
396 397 398 399 400
	 * F16h and F15h, models 30h and later need two addr_shift values:
	 * 8 for high and 6 for low (cf. F16h BKDG).
	 */
	} else if (pvt->fam == 0x16 ||
		  (pvt->fam == 0x15 && pvt->model >= 0x30)) {
401 402 403
		csbase          = pvt->csels[dct].csbases[csrow];
		csmask          = pvt->csels[dct].csmasks[csrow >> 1];

404 405
		*base  = (csbase & GENMASK_ULL(15,  5)) << 6;
		*base |= (csbase & GENMASK_ULL(30, 19)) << 8;
406 407 408

		*mask = ~0ULL;
		/* poke holes for the csmask */
409 410
		*mask &= ~((GENMASK_ULL(15, 5)  << 6) |
			   (GENMASK_ULL(30, 19) << 8));
411

412 413
		*mask |= (csmask & GENMASK_ULL(15, 5))  << 6;
		*mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
414 415

		return;
416 417 418 419
	} else {
		csbase		= pvt->csels[dct].csbases[csrow];
		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
		addr_shift	= 8;
420

421
		if (pvt->fam == 0x15)
422 423
			base_bits = mask_bits =
				GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
424
		else
425 426
			base_bits = mask_bits =
				GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
427
	}
428

429
	*base  = (csbase & base_bits) << addr_shift;
430

431 432 433 434 435
	*mask  = ~0ULL;
	/* poke holes for the csmask */
	*mask &= ~(mask_bits << addr_shift);
	/* OR them in */
	*mask |= (csmask & mask_bits) << addr_shift;
436 437
}

438 439 440
#define for_each_chip_select(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].b_cnt; i++)

441 442 443
#define chip_select_base(i, dct, pvt) \
	pvt->csels[dct].csbases[i]

444 445 446
#define for_each_chip_select_mask(i, dct, pvt) \
	for (i = 0; i < pvt->csels[dct].m_cnt; i++)

447
#define for_each_umc(i) \
448
	for (i = 0; i < fam_type->max_mcs; i++)
449

450 451 452 453 454 455 456 457 458 459 460 461
/*
 * @input_addr is an InputAddr associated with the node given by mci. Return the
 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
 */
static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
{
	struct amd64_pvt *pvt;
	int csrow;
	u64 base, mask;

	pvt = mci->pvt_info;

462 463
	for_each_chip_select(csrow, 0, pvt) {
		if (!csrow_enabled(csrow, 0, pvt))
464 465
			continue;

466 467 468
		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);

		mask = ~mask;
469 470

		if ((input_addr & mask) == (base & mask)) {
471 472 473
			edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
				 (unsigned long)input_addr, csrow,
				 pvt->mc_node_id);
474 475 476 477

			return csrow;
		}
	}
478 479
	edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
		 (unsigned long)input_addr, pvt->mc_node_id);
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505

	return -1;
}

/*
 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
 * for the node represented by mci. Info is passed back in *hole_base,
 * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
 * info is invalid. Info may be invalid for either of the following reasons:
 *
 * - The revision of the node is not E or greater.  In this case, the DRAM Hole
 *   Address Register does not exist.
 *
 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
 *   indicating that its contents are not valid.
 *
 * The values passed back in *hole_base, *hole_offset, and *hole_size are
 * complete 32-bit values despite the fact that the bitfields in the DHAR
 * only represent bits 31-24 of the base and offset values.
 */
int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
			     u64 *hole_offset, u64 *hole_size)
{
	struct amd64_pvt *pvt = mci->pvt_info;

	/* only revE and later have the DRAM Hole Address Register */
506
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
507 508
		edac_dbg(1, "  revision %d for node %d does not support DHAR\n",
			 pvt->ext_model, pvt->mc_node_id);
509 510 511
		return 1;
	}

512
	/* valid for Fam10h and above */
513
	if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
514
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this system\n");
515 516 517
		return 1;
	}

518
	if (!dhar_valid(pvt)) {
519 520
		edac_dbg(1, "  Dram Memory Hoisting is DISABLED on this node %d\n",
			 pvt->mc_node_id);
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
		return 1;
	}

	/* This node has Memory Hoisting */

	/* +------------------+--------------------+--------------------+-----
	 * | memory           | DRAM hole          | relocated          |
	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
	 * |                  |                    | DRAM hole          |
	 * |                  |                    | [0x100000000,      |
	 * |                  |                    |  (0x100000000+     |
	 * |                  |                    |   (0xffffffff-x))] |
	 * +------------------+--------------------+--------------------+-----
	 *
	 * Above is a diagram of physical memory showing the DRAM hole and the
	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
	 * starts at address x (the base address) and extends through address
	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
	 * addresses in the hole so that they start at 0x100000000.
	 */

542 543
	*hole_base = dhar_base(pvt);
	*hole_size = (1ULL << 32) - *hole_base;
544

545 546
	*hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
					: k8_dhar_offset(pvt);
547

548 549 550
	edac_dbg(1, "  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
		 pvt->mc_node_id, (unsigned long)*hole_base,
		 (unsigned long)*hole_offset, (unsigned long)*hole_size);
551 552 553 554 555

	return 0;
}
EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
/*
 * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
 * assumed that sys_addr maps to the node given by mci.
 *
 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
 * then it is also involved in translating a SysAddr to a DramAddr. Sections
 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
 * These parts of the documentation are unclear. I interpret them as follows:
 *
 * When node n receives a SysAddr, it processes the SysAddr as follows:
 *
 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
 *    Limit registers for node n. If the SysAddr is not within the range
 *    specified by the base and limit values, then node n ignores the Sysaddr
 *    (since it does not map to node n). Otherwise continue to step 2 below.
 *
 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
 *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
 *    the range of relocated addresses (starting at 0x100000000) from the DRAM
 *    hole. If not, skip to step 3 below. Else get the value of the
 *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
 *    offset defined by this value from the SysAddr.
 *
 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
 *    Base register for node n. To obtain the DramAddr, subtract the base
 *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
 */
static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
587
	struct amd64_pvt *pvt = mci->pvt_info;
588
	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
589
	int ret;
590

591
	dram_base = get_dram_base(pvt, pvt->mc_node_id);
592 593 594 595

	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
				      &hole_size);
	if (!ret) {
596 597
		if ((sys_addr >= (1ULL << 32)) &&
		    (sys_addr < ((1ULL << 32) + hole_size))) {
598 599 600
			/* use DHAR to translate SysAddr to DramAddr */
			dram_addr = sys_addr - hole_offset;

601 602 603
			edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
				 (unsigned long)sys_addr,
				 (unsigned long)dram_addr);
604 605 606 607 608 609 610 611 612 613 614 615 616 617

			return dram_addr;
		}
	}

	/*
	 * Translate the SysAddr to a DramAddr as shown near the start of
	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
	 * Programmer's Manual Volume 1 Application Programming.
	 */
618
	dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
619

620 621
	edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
		 (unsigned long)sys_addr, (unsigned long)dram_addr);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
	return dram_addr;
}

/*
 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
 * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
 * for node interleaving.
 */
static int num_node_interleave_bits(unsigned intlv_en)
{
	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
	int n;

	BUG_ON(intlv_en > 7);
	n = intlv_shift_table[intlv_en];
	return n;
}

/* Translate the DramAddr given by @dram_addr to an InputAddr. */
static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
{
	struct amd64_pvt *pvt;
	int intlv_shift;
	u64 input_addr;

	pvt = mci->pvt_info;

	/*
	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
	 * concerning translating a DramAddr to an InputAddr.
	 */
653
	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
654
	input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
655
		      (dram_addr & 0xfff);
656

657 658 659
	edac_dbg(2, "  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
		 intlv_shift, (unsigned long)dram_addr,
		 (unsigned long)input_addr);
660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

	return input_addr;
}

/*
 * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
 * assumed that @sys_addr maps to the node given by mci.
 */
static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
{
	u64 input_addr;

	input_addr =
	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));

M
Masanari Iida 已提交
675
	edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
676
		 (unsigned long)sys_addr, (unsigned long)input_addr);
677 678 679 680 681 682

	return input_addr;
}

/* Map the Error address to a PAGE and PAGE OFFSET. */
static inline void error_address_to_page_and_offset(u64 error_address,
683
						    struct err_info *err)
684
{
685 686
	err->page = (u32) (error_address >> PAGE_SHIFT);
	err->offset = ((u32) error_address) & ~PAGE_MASK;
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
}

/*
 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
 * of a node that detected an ECC memory error.  mci represents the node that
 * the error address maps to (possibly different from the node that detected
 * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
 * error.
 */
static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
{
	int csrow;

	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));

	if (csrow == -1)
704 705
		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
				  "address 0x%lx\n", (unsigned long)sys_addr);
706 707
	return csrow;
}
708

709
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
710 711 712 713 714

/*
 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
 * are ECC capable.
 */
715
static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
716
{
717
	unsigned long edac_cap = EDAC_FLAG_NONE;
718 719 720 721
	u8 bit;

	if (pvt->umc) {
		u8 i, umc_en_mask = 0, dimm_ecc_en_mask = 0;
722

723
		for_each_umc(i) {
724 725
			if (!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT))
				continue;
726

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
			umc_en_mask |= BIT(i);

			/* UMC Configuration bit 12 (DimmEccEn) */
			if (pvt->umc[i].umc_cfg & BIT(12))
				dimm_ecc_en_mask |= BIT(i);
		}

		if (umc_en_mask == dimm_ecc_en_mask)
			edac_cap = EDAC_FLAG_SECDED;
	} else {
		bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
			? 19
			: 17;

		if (pvt->dclr0 & BIT(bit))
			edac_cap = EDAC_FLAG_SECDED;
	}
744 745 746 747

	return edac_cap;
}

748
static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
749

750
static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
751
{
752
	edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
753

754 755 756 757 758 759 760 761 762 763 764 765 766
	if (pvt->dram_type == MEM_LRDDR3) {
		u32 dcsm = pvt->csels[chan].csmasks[0];
		/*
		 * It's assumed all LRDIMMs in a DCT are going to be of
		 * same 'type' until proven otherwise. So, use a cs
		 * value of '0' here to get dcsm value.
		 */
		edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
	}

	edac_dbg(1, "All DIMMs support ECC:%s\n",
		    (dclr & BIT(19)) ? "yes" : "no");

767

768 769
	edac_dbg(1, "  PAR/ERR parity: %s\n",
		 (dclr & BIT(8)) ?  "enabled" : "disabled");
770

771
	if (pvt->fam == 0x10)
772 773
		edac_dbg(1, "  DCT 128bit mode width: %s\n",
			 (dclr & BIT(11)) ?  "128b" : "64b");
774

775 776 777 778 779
	edac_dbg(1, "  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
		 (dclr & BIT(12)) ?  "yes" : "no",
		 (dclr & BIT(13)) ?  "yes" : "no",
		 (dclr & BIT(14)) ?  "yes" : "no",
		 (dclr & BIT(15)) ?  "yes" : "no");
780 781
}

782 783
#define CS_EVEN_PRIMARY		BIT(0)
#define CS_ODD_PRIMARY		BIT(1)
784 785
#define CS_EVEN_SECONDARY	BIT(2)
#define CS_ODD_SECONDARY	BIT(3)
786

787 788
#define CS_EVEN			(CS_EVEN_PRIMARY | CS_EVEN_SECONDARY)
#define CS_ODD			(CS_ODD_PRIMARY | CS_ODD_SECONDARY)
789 790

static int f17_get_cs_mode(int dimm, u8 ctrl, struct amd64_pvt *pvt)
791
{
792
	int cs_mode = 0;
793

794 795
	if (csrow_enabled(2 * dimm, ctrl, pvt))
		cs_mode |= CS_EVEN_PRIMARY;
796

797 798 799
	if (csrow_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_PRIMARY;

800 801 802 803
	/* Asymmetric dual-rank DIMM support. */
	if (csrow_sec_enabled(2 * dimm + 1, ctrl, pvt))
		cs_mode |= CS_ODD_SECONDARY;

804
	return cs_mode;
805 806
}

807 808
static void debug_display_dimm_sizes_df(struct amd64_pvt *pvt, u8 ctrl)
{
809
	int dimm, size0, size1, cs0, cs1, cs_mode;
810 811 812

	edac_printk(KERN_DEBUG, EDAC_MC, "UMC%d chip selects:\n", ctrl);

813
	for (dimm = 0; dimm < 2; dimm++) {
814 815 816
		cs0 = dimm * 2;
		cs1 = dimm * 2 + 1;

817 818 819 820
		cs_mode = f17_get_cs_mode(dimm, ctrl, pvt);

		size0 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs0);
		size1 = pvt->ops->dbam_to_cs(pvt, ctrl, cs_mode, cs1);
821 822

		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
823 824
				cs0,	size0,
				cs1,	size1);
825 826 827 828 829 830 831 832
	}
}

static void __dump_misc_regs_df(struct amd64_pvt *pvt)
{
	struct amd64_umc *umc;
	u32 i, tmp, umc_base;

833
	for_each_umc(i) {
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

		edac_dbg(1, "UMC%d DIMM cfg: 0x%x\n", i, umc->dimm_cfg);
		edac_dbg(1, "UMC%d UMC cfg: 0x%x\n", i, umc->umc_cfg);
		edac_dbg(1, "UMC%d SDP ctrl: 0x%x\n", i, umc->sdp_ctrl);
		edac_dbg(1, "UMC%d ECC ctrl: 0x%x\n", i, umc->ecc_ctrl);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ECC_BAD_SYMBOL, &tmp);
		edac_dbg(1, "UMC%d ECC bad symbol: 0x%x\n", i, tmp);

		amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_UMC_CAP, &tmp);
		edac_dbg(1, "UMC%d UMC cap: 0x%x\n", i, tmp);
		edac_dbg(1, "UMC%d UMC cap high: 0x%x\n", i, umc->umc_cap_hi);

		edac_dbg(1, "UMC%d ECC capable: %s, ChipKill ECC capable: %s\n",
				i, (umc->umc_cap_hi & BIT(30)) ? "yes" : "no",
				    (umc->umc_cap_hi & BIT(31)) ? "yes" : "no");
		edac_dbg(1, "UMC%d All DIMMs support ECC: %s\n",
				i, (umc->umc_cfg & BIT(12)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x4 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(6)) ? "yes" : "no");
		edac_dbg(1, "UMC%d x16 DIMMs present: %s\n",
				i, (umc->dimm_cfg & BIT(7)) ? "yes" : "no");

		if (pvt->dram_type == MEM_LRDDR4) {
			amd_smn_read(pvt->mc_node_id, umc_base + UMCCH_ADDR_CFG, &tmp);
			edac_dbg(1, "UMC%d LRDIMM %dx rank multiply\n",
					i, 1 << ((tmp >> 4) & 0x3));
		}

		debug_display_dimm_sizes_df(pvt, i);
	}

	edac_dbg(1, "F0x104 (DRAM Hole Address): 0x%08x, base: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt));
}

872
/* Display and decode various NB registers for debug purposes. */
873
static void __dump_misc_regs(struct amd64_pvt *pvt)
874
{
875
	edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
876

877 878
	edac_dbg(1, "  NB two channel DRAM capable: %s\n",
		 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
879

880 881 882
	edac_dbg(1, "  ECC capable: %s, ChipKill ECC capable: %s\n",
		 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
		 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
883

884
	debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
885

886
	edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
887

888 889
	edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
		 pvt->dhar, dhar_base(pvt),
890 891
		 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
				   : f10_dhar_offset(pvt));
892

893
	debug_display_dimm_sizes(pvt, 0);
894

895
	/* everything below this point is Fam10h and above */
896
	if (pvt->fam == 0xf)
897
		return;
898

899
	debug_display_dimm_sizes(pvt, 1);
900

901
	/* Only if NOT ganged does dclr1 have valid info */
902
	if (!dct_ganging_enabled(pvt))
903
		debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
904 905
}

906 907 908 909 910 911 912 913 914 915
/* Display and decode various NB registers for debug purposes. */
static void dump_misc_regs(struct amd64_pvt *pvt)
{
	if (pvt->umc)
		__dump_misc_regs_df(pvt);
	else
		__dump_misc_regs(pvt);

	edac_dbg(1, "  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");

916
	amd64_info("using x%u syndromes.\n", pvt->ecc_sym_sz);
917 918
}

919
/*
920
 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
921
 */
922
static void prep_chip_selects(struct amd64_pvt *pvt)
923
{
924
	if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
925 926
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
927
	} else if (pvt->fam == 0x15 && pvt->model == 0x30) {
928 929
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
930 931 932 933 934 935 936 937
	} else if (pvt->fam >= 0x17) {
		int umc;

		for_each_umc(umc) {
			pvt->csels[umc].b_cnt = 4;
			pvt->csels[umc].m_cnt = 2;
		}

938
	} else {
939 940
		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
941 942 943
	}
}

944 945
static void read_umc_base_mask(struct amd64_pvt *pvt)
{
946 947 948 949 950 951
	u32 umc_base_reg, umc_base_reg_sec;
	u32 umc_mask_reg, umc_mask_reg_sec;
	u32 base_reg, base_reg_sec;
	u32 mask_reg, mask_reg_sec;
	u32 *base, *base_sec;
	u32 *mask, *mask_sec;
952 953 954 955
	int cs, umc;

	for_each_umc(umc) {
		umc_base_reg = get_umc_base(umc) + UMCCH_BASE_ADDR;
956
		umc_base_reg_sec = get_umc_base(umc) + UMCCH_BASE_ADDR_SEC;
957 958 959

		for_each_chip_select(cs, umc, pvt) {
			base = &pvt->csels[umc].csbases[cs];
960
			base_sec = &pvt->csels[umc].csbases_sec[cs];
961 962

			base_reg = umc_base_reg + (cs * 4);
963
			base_reg_sec = umc_base_reg_sec + (cs * 4);
964 965 966 967

			if (!amd_smn_read(pvt->mc_node_id, base_reg, base))
				edac_dbg(0, "  DCSB%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base, base_reg);
968 969 970 971

			if (!amd_smn_read(pvt->mc_node_id, base_reg_sec, base_sec))
				edac_dbg(0, "    DCSB_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *base_sec, base_reg_sec);
972 973 974
		}

		umc_mask_reg = get_umc_base(umc) + UMCCH_ADDR_MASK;
975
		umc_mask_reg_sec = get_umc_base(umc) + UMCCH_ADDR_MASK_SEC;
976 977 978

		for_each_chip_select_mask(cs, umc, pvt) {
			mask = &pvt->csels[umc].csmasks[cs];
979
			mask_sec = &pvt->csels[umc].csmasks_sec[cs];
980 981

			mask_reg = umc_mask_reg + (cs * 4);
982
			mask_reg_sec = umc_mask_reg_sec + (cs * 4);
983 984 985 986

			if (!amd_smn_read(pvt->mc_node_id, mask_reg, mask))
				edac_dbg(0, "  DCSM%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask, mask_reg);
987 988 989 990

			if (!amd_smn_read(pvt->mc_node_id, mask_reg_sec, mask_sec))
				edac_dbg(0, "    DCSM_SEC%d[%d]=0x%08x reg: 0x%x\n",
					 umc, cs, *mask_sec, mask_reg_sec);
991 992 993 994
		}
	}
}

995
/*
996
 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
997
 */
998
static void read_dct_base_mask(struct amd64_pvt *pvt)
999
{
1000
	int cs;
1001

1002
	prep_chip_selects(pvt);
1003

1004 1005
	if (pvt->umc)
		return read_umc_base_mask(pvt);
1006

1007
	for_each_chip_select(cs, 0, pvt) {
1008 1009
		int reg0   = DCSB0 + (cs * 4);
		int reg1   = DCSB1 + (cs * 4);
1010 1011
		u32 *base0 = &pvt->csels[0].csbases[cs];
		u32 *base1 = &pvt->csels[1].csbases[cs];
1012

1013 1014 1015
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
			edac_dbg(0, "  DCSB0[%d]=0x%08x reg: F2x%x\n",
				 cs, *base0, reg0);
1016

1017 1018
		if (pvt->fam == 0xf)
			continue;
1019

1020 1021 1022 1023
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
			edac_dbg(0, "  DCSB1[%d]=0x%08x reg: F2x%x\n",
				 cs, *base1, (pvt->fam == 0x10) ? reg1
							: reg0);
1024 1025
	}

1026
	for_each_chip_select_mask(cs, 0, pvt) {
1027 1028
		int reg0   = DCSM0 + (cs * 4);
		int reg1   = DCSM1 + (cs * 4);
1029 1030
		u32 *mask0 = &pvt->csels[0].csmasks[cs];
		u32 *mask1 = &pvt->csels[1].csmasks[cs];
1031

1032 1033 1034
		if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
			edac_dbg(0, "    DCSM0[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask0, reg0);
1035

1036 1037
		if (pvt->fam == 0xf)
			continue;
1038

1039 1040 1041 1042
		if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
			edac_dbg(0, "    DCSM1[%d]=0x%08x reg: F2x%x\n",
				 cs, *mask1, (pvt->fam == 0x10) ? reg1
							: reg0);
1043 1044 1045
	}
}

1046
static void determine_memory_type(struct amd64_pvt *pvt)
1047
{
1048
	u32 dram_ctrl, dcsm;
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
	if (pvt->umc) {
		if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(5))
			pvt->dram_type = MEM_LRDDR4;
		else if ((pvt->umc[0].dimm_cfg | pvt->umc[1].dimm_cfg) & BIT(4))
			pvt->dram_type = MEM_RDDR4;
		else
			pvt->dram_type = MEM_DDR4;
		return;
	}

1060 1061 1062 1063 1064 1065 1066 1067 1068
	switch (pvt->fam) {
	case 0xf:
		if (pvt->ext_model >= K8_REV_F)
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
		return;

	case 0x10:
1069
		if (pvt->dchr0 & DDR3_MODE)
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
			goto ddr3;

		pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
		return;

	case 0x15:
		if (pvt->model < 0x60)
			goto ddr3;

		/*
		 * Model 0x60h needs special handling:
		 *
		 * We use a Chip Select value of '0' to obtain dcsm.
		 * Theoretically, it is possible to populate LRDIMMs of different
		 * 'Rank' value on a DCT. But this is not the common case. So,
		 * it's reasonable to assume all DIMMs are going to be of same
		 * 'type' until proven otherwise.
		 */
		amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
		dcsm = pvt->csels[0].csmasks[0];

		if (((dram_ctrl >> 8) & 0x7) == 0x2)
			pvt->dram_type = MEM_DDR4;
		else if (pvt->dclr0 & BIT(16))
			pvt->dram_type = MEM_DDR3;
		else if (dcsm & 0x3)
			pvt->dram_type = MEM_LRDDR3;
1097
		else
1098
			pvt->dram_type = MEM_RDDR3;
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
		return;

	case 0x16:
		goto ddr3;

	default:
		WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
		pvt->dram_type = MEM_EMPTY;
	}
	return;
1110

1111 1112
ddr3:
	pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1113 1114
}

1115
/* Get the number of DCT channels the memory controller is using. */
1116 1117
static int k8_early_channel_count(struct amd64_pvt *pvt)
{
1118
	int flag;
1119

1120
	if (pvt->ext_model >= K8_REV_F)
1121
		/* RevF (NPT) and later */
1122
		flag = pvt->dclr0 & WIDTH_128;
1123
	else
1124 1125 1126 1127 1128 1129 1130 1131 1132
		/* RevE and earlier */
		flag = pvt->dclr0 & REVE_WIDTH_128;

	/* not used */
	pvt->dclr1 = 0;

	return (flag) ? 2 : 1;
}

1133
/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
1134
static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
1135
{
1136 1137
	u16 mce_nid = amd_get_nb_id(m->extcpu);
	struct mem_ctl_info *mci;
1138 1139
	u8 start_bit = 1;
	u8 end_bit   = 47;
1140 1141 1142 1143 1144 1145 1146
	u64 addr;

	mci = edac_mc_find(mce_nid);
	if (!mci)
		return 0;

	pvt = mci->pvt_info;
1147

1148
	if (pvt->fam == 0xf) {
1149 1150 1151 1152
		start_bit = 3;
		end_bit   = 39;
	}

1153
	addr = m->addr & GENMASK_ULL(end_bit, start_bit);
1154 1155 1156 1157

	/*
	 * Erratum 637 workaround
	 */
1158
	if (pvt->fam == 0x15) {
1159 1160
		u64 cc6_base, tmp_addr;
		u32 tmp;
1161
		u8 intlv_en;
1162

1163
		if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
1164 1165 1166 1167 1168 1169 1170
			return addr;


		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
		intlv_en = tmp >> 21 & 0x7;

		/* add [47:27] + 3 trailing bits */
1171
		cc6_base  = (tmp & GENMASK_ULL(20, 0)) << 3;
1172 1173 1174 1175 1176 1177 1178 1179

		/* reverse and add DramIntlvEn */
		cc6_base |= intlv_en ^ 0x7;

		/* pin at [47:24] */
		cc6_base <<= 24;

		if (!intlv_en)
1180
			return cc6_base | (addr & GENMASK_ULL(23, 0));
1181 1182 1183 1184

		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);

							/* faster log2 */
1185
		tmp_addr  = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
1186 1187

		/* OR DramIntlvSel into bits [14:12] */
1188
		tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
1189 1190

		/* add remaining [11:0] bits from original MC4_ADDR */
1191
		tmp_addr |= addr & GENMASK_ULL(11, 0);
1192 1193 1194 1195 1196

		return cc6_base | tmp_addr;
	}

	return addr;
1197 1198
}

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static struct pci_dev *pci_get_related_function(unsigned int vendor,
						unsigned int device,
						struct pci_dev *related)
{
	struct pci_dev *dev = NULL;

	while ((dev = pci_get_device(vendor, device, dev))) {
		if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
		    (dev->bus->number == related->bus->number) &&
		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
			break;
	}

	return dev;
}

1215
static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
1216
{
1217
	struct amd_northbridge *nb;
1218 1219
	struct pci_dev *f1 = NULL;
	unsigned int pci_func;
1220
	int off = range << 3;
1221
	u32 llim;
1222

1223 1224
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
1225

1226
	if (pvt->fam == 0xf)
1227
		return;
1228

1229 1230
	if (!dram_rw(pvt, range))
		return;
1231

1232 1233
	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
1234

1235
	/* F15h: factor in CC6 save area by reading dst node's limit reg */
1236
	if (pvt->fam != 0x15)
1237
		return;
1238

1239 1240 1241
	nb = node_to_amd_nb(dram_dst_node(pvt, range));
	if (WARN_ON(!nb))
		return;
1242

1243 1244 1245 1246 1247 1248
	if (pvt->model == 0x60)
		pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
	else if (pvt->model == 0x30)
		pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
	else
		pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
1249 1250

	f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
1251 1252
	if (WARN_ON(!f1))
		return;
1253

1254
	amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
1255

1256
	pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
1257

1258 1259
				    /* {[39:27],111b} */
	pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
1260

1261
	pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
1262

1263 1264 1265 1266
				    /* [47:40] */
	pvt->ranges[range].lim.hi |= llim >> 13;

	pci_dev_put(f1);
1267 1268
}

1269
static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1270
				    struct err_info *err)
1271
{
1272
	struct amd64_pvt *pvt = mci->pvt_info;
1273

1274
	error_address_to_page_and_offset(sys_addr, err);
1275 1276 1277 1278 1279

	/*
	 * Find out which node the error address belongs to. This may be
	 * different from the node that detected the error.
	 */
1280 1281
	err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
	if (!err->src_mci) {
1282 1283
		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
			     (unsigned long)sys_addr);
1284
		err->err_code = ERR_NODE;
1285 1286 1287 1288
		return;
	}

	/* Now map the sys_addr to a CSROW */
1289 1290 1291
	err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
1292 1293 1294
		return;
	}

1295
	/* CHIPKILL enabled */
1296
	if (pvt->nbcfg & NBCFG_CHIPKILL) {
1297 1298
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
		if (err->channel < 0) {
1299 1300 1301 1302 1303
			/*
			 * Syndrome didn't map, so we don't know which of the
			 * 2 DIMMs is in error. So we need to ID 'both' of them
			 * as suspect.
			 */
1304
			amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
1305
				      "possible error reporting race\n",
1306 1307
				      err->syndrome);
			err->err_code = ERR_CHANNEL;
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
			return;
		}
	} else {
		/*
		 * non-chipkill ecc mode
		 *
		 * The k8 documentation is unclear about how to determine the
		 * channel number when using non-chipkill memory.  This method
		 * was obtained from email communication with someone at AMD.
		 * (Wish the email was placed in this comment - norsk)
		 */
1319
		err->channel = ((sys_addr & BIT(3)) != 0);
1320 1321 1322
	}
}

1323
static int ddr2_cs_size(unsigned i, bool dct_width)
1324
{
1325
	unsigned shift = 0;
1326

1327 1328 1329 1330
	if (i <= 2)
		shift = i;
	else if (!(i & 0x1))
		shift = i >> 1;
1331
	else
1332
		shift = (i + 1) >> 1;
1333

1334 1335 1336 1337
	return 128 << (shift + !!dct_width);
}

static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1338
				  unsigned cs_mode, int cs_mask_nr)
1339 1340 1341 1342 1343 1344 1345 1346
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	if (pvt->ext_model >= K8_REV_F) {
		WARN_ON(cs_mode > 11);
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
	}
	else if (pvt->ext_model >= K8_REV_D) {
1347
		unsigned diff;
1348 1349
		WARN_ON(cs_mode > 10);

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
		/*
		 * the below calculation, besides trying to win an obfuscated C
		 * contest, maps cs_mode values to DIMM chip select sizes. The
		 * mappings are:
		 *
		 * cs_mode	CS size (mb)
		 * =======	============
		 * 0		32
		 * 1		64
		 * 2		128
		 * 3		128
		 * 4		256
		 * 5		512
		 * 6		256
		 * 7		512
		 * 8		1024
		 * 9		1024
		 * 10		2048
		 *
		 * Basically, it calculates a value with which to shift the
		 * smallest CS size of 32MB.
		 *
		 * ddr[23]_cs_size have a similar purpose.
		 */
		diff = cs_mode/3 + (unsigned)(cs_mode > 5);

		return 32 << (cs_mode - diff);
1377 1378 1379 1380 1381
	}
	else {
		WARN_ON(cs_mode > 6);
		return 32 << cs_mode;
	}
1382 1383
}

1384 1385 1386 1387 1388 1389 1390 1391
/*
 * Get the number of DCT channels in use.
 *
 * Return:
 *	number of Memory Channels in operation
 * Pass back:
 *	contents of the DCL0_LOW register
 */
1392
static int f1x_early_channel_count(struct amd64_pvt *pvt)
1393
{
1394
	int i, j, channels = 0;
1395

1396
	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1397
	if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
1398
		return 2;
1399 1400

	/*
1401 1402 1403
	 * Need to check if in unganged mode: In such, there are 2 channels,
	 * but they are not in 128 bit mode and thus the above 'dclr0' status
	 * bit will be OFF.
1404 1405 1406 1407
	 *
	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
	 * their CSEnable bit on. If so, then SINGLE DIMM case.
	 */
1408
	edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
1409

1410 1411 1412 1413 1414
	/*
	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
	 * is more than just one DIMM present in unganged mode. Need to check
	 * both controllers since DIMMs can be placed in either one.
	 */
1415 1416
	for (i = 0; i < 2; i++) {
		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1417

1418 1419 1420 1421 1422 1423
		for (j = 0; j < 4; j++) {
			if (DBAM_DIMM(j, dbam) > 0) {
				channels++;
				break;
			}
		}
1424 1425
	}

1426 1427 1428
	if (channels > 2)
		channels = 2;

1429
	amd64_info("MCT channel count: %d\n", channels);
1430 1431 1432 1433

	return channels;
}

1434 1435 1436 1437 1438
static int f17_early_channel_count(struct amd64_pvt *pvt)
{
	int i, channels = 0;

	/* SDP Control bit 31 (SdpInit) is clear for unused UMC channels */
1439
	for_each_umc(i)
1440 1441 1442 1443 1444 1445 1446
		channels += !!(pvt->umc[i].sdp_ctrl & UMC_SDP_INIT);

	amd64_info("MCT channel count: %d\n", channels);

	return channels;
}

1447
static int ddr3_cs_size(unsigned i, bool dct_width)
1448
{
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
	unsigned shift = 0;
	int cs_size = 0;

	if (i == 0 || i == 3 || i == 4)
		cs_size = -1;
	else if (i <= 2)
		shift = i;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = (128 * (1 << !!dct_width)) << shift;

	return cs_size;
}

1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
{
	unsigned shift = 0;
	int cs_size = 0;

	if (i < 4 || i == 6)
		cs_size = -1;
	else if (i == 12)
		shift = 7;
	else if (!(i & 0x1))
		shift = i >> 1;
	else
		shift = (i + 1) >> 1;

	if (cs_size != -1)
		cs_size = rank_multiply * (128 << shift);

	return cs_size;
}

static int ddr4_cs_size(unsigned i)
{
	int cs_size = 0;

	if (i == 0)
		cs_size = -1;
	else if (i == 1)
		cs_size = 1024;
	else
		/* Min cs_size = 1G */
		cs_size = 1024 * (1 << (i >> 1));

	return cs_size;
}

1504
static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1505
				   unsigned cs_mode, int cs_mask_nr)
1506 1507 1508 1509
{
	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;

	WARN_ON(cs_mode > 11);
1510 1511

	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1512
		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1513
	else
1514 1515 1516 1517 1518 1519 1520
		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
}

/*
 * F15h supports only 64bit DCT interfaces
 */
static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1521
				   unsigned cs_mode, int cs_mask_nr)
1522 1523
{
	WARN_ON(cs_mode > 12);
1524

1525
	return ddr3_cs_size(cs_mode, false);
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/* F15h M60h supports DDR4 mapping as well.. */
static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
					unsigned cs_mode, int cs_mask_nr)
{
	int cs_size;
	u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];

	WARN_ON(cs_mode > 12);

	if (pvt->dram_type == MEM_DDR4) {
		if (cs_mode > 9)
			return -1;

		cs_size = ddr4_cs_size(cs_mode);
	} else if (pvt->dram_type == MEM_LRDDR3) {
		unsigned rank_multiply = dcsm & 0xf;

		if (rank_multiply == 3)
			rank_multiply = 4;
		cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
	} else {
		/* Minimum cs size is 512mb for F15hM60h*/
		if (cs_mode == 0x1)
			return -1;

		cs_size = ddr3_cs_size(cs_mode, false);
	}

	return cs_size;
}

1559
/*
1560
 * F16h and F15h model 30h have only limited cs_modes.
1561 1562
 */
static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1563
				unsigned cs_mode, int cs_mask_nr)
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
{
	WARN_ON(cs_mode > 12);

	if (cs_mode == 6 || cs_mode == 8 ||
	    cs_mode == 9 || cs_mode == 12)
		return -1;
	else
		return ddr3_cs_size(cs_mode, false);
}

1574
static int f17_addr_mask_to_cs_size(struct amd64_pvt *pvt, u8 umc,
1575 1576
				    unsigned int cs_mode, int csrow_nr)
{
1577 1578 1579
	u32 addr_mask_orig, addr_mask_deinterleaved;
	u32 msb, weight, num_zero_bits;
	int dimm, size = 0;
1580

1581 1582 1583
	/* No Chip Selects are enabled. */
	if (!cs_mode)
		return size;
1584

1585 1586 1587
	/* Requested size of an even CS but none are enabled. */
	if (!(cs_mode & CS_EVEN) && !(csrow_nr & 1))
		return size;
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
	/* Requested size of an odd CS but none are enabled. */
	if (!(cs_mode & CS_ODD) && (csrow_nr & 1))
		return size;

	/*
	 * There is one mask per DIMM, and two Chip Selects per DIMM.
	 *	CS0 and CS1 -> DIMM0
	 *	CS2 and CS3 -> DIMM1
	 */
	dimm = csrow_nr >> 1;

1600 1601 1602 1603 1604
	/* Asymmetric dual-rank DIMM support. */
	if ((csrow_nr & 1) && (cs_mode & CS_ODD_SECONDARY))
		addr_mask_orig = pvt->csels[umc].csmasks_sec[dimm];
	else
		addr_mask_orig = pvt->csels[umc].csmasks[dimm];
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

	/*
	 * The number of zero bits in the mask is equal to the number of bits
	 * in a full mask minus the number of bits in the current mask.
	 *
	 * The MSB is the number of bits in the full mask because BIT[0] is
	 * always 0.
	 */
	msb = fls(addr_mask_orig) - 1;
	weight = hweight_long(addr_mask_orig);
	num_zero_bits = msb - weight;

	/* Take the number of zero bits off from the top of the mask. */
	addr_mask_deinterleaved = GENMASK_ULL(msb - num_zero_bits, 1);

	edac_dbg(1, "CS%d DIMM%d AddrMasks:\n", csrow_nr, dimm);
	edac_dbg(1, "  Original AddrMask: 0x%x\n", addr_mask_orig);
	edac_dbg(1, "  Deinterleaved AddrMask: 0x%x\n", addr_mask_deinterleaved);

	/* Register [31:1] = Address [39:9]. Size is in kBs here. */
	size = (addr_mask_deinterleaved >> 2) + 1;
1626 1627 1628 1629 1630

	/* Return size in MBs. */
	return size >> 10;
}

1631
static void read_dram_ctl_register(struct amd64_pvt *pvt)
1632 1633
{

1634
	if (pvt->fam == 0xf)
1635 1636
		return;

1637
	if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1638 1639
		edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
			 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1640

1641 1642
		edac_dbg(0, "  DCTs operate in %s mode\n",
			 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1643 1644

		if (!dct_ganging_enabled(pvt))
1645 1646
			edac_dbg(0, "  Address range split per DCT: %s\n",
				 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1647

1648 1649 1650
		edac_dbg(0, "  data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
			 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
			 (dct_memory_cleared(pvt) ? "yes" : "no"));
1651

1652 1653 1654 1655
		edac_dbg(0, "  channel interleave: %s, "
			 "interleave bits selector: 0x%x\n",
			 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
			 dct_sel_interleave_addr(pvt));
1656 1657
	}

1658
	amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
1659 1660
}

1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
/*
 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
 * 2.10.12 Memory Interleaving Modes).
 */
static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
				     u8 intlv_en, int num_dcts_intlv,
				     u32 dct_sel)
{
	u8 channel = 0;
	u8 select;

	if (!(intlv_en))
		return (u8)(dct_sel);

	if (num_dcts_intlv == 2) {
		select = (sys_addr >> 8) & 0x3;
		channel = select ? 0x3 : 0;
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688
	} else if (num_dcts_intlv == 4) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);
		switch (intlv_addr) {
		case 0x4:
			channel = (sys_addr >> 8) & 0x3;
			break;
		case 0x5:
			channel = (sys_addr >> 9) & 0x3;
			break;
		}
	}
1689 1690 1691
	return channel;
}

1692
/*
1693
 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1694 1695
 * Interleaving Modes.
 */
1696
static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1697
				bool hi_range_sel, u8 intlv_en)
1698
{
1699
	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1700 1701

	if (dct_ganging_enabled(pvt))
1702
		return 0;
1703

1704 1705
	if (hi_range_sel)
		return dct_sel_high;
1706

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	/*
	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
	 */
	if (dct_interleave_enabled(pvt)) {
		u8 intlv_addr = dct_sel_interleave_addr(pvt);

		/* return DCT select function: 0=DCT0, 1=DCT1 */
		if (!intlv_addr)
			return sys_addr >> 6 & 1;

		if (intlv_addr & 0x2) {
			u8 shift = intlv_addr & 0x1 ? 9 : 6;
1719
			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
1720 1721 1722 1723

			return ((sys_addr >> shift) & 1) ^ temp;
		}

1724 1725 1726 1727 1728 1729
		if (intlv_addr & 0x4) {
			u8 shift = intlv_addr & 0x1 ? 9 : 8;

			return (sys_addr >> shift) & 1;
		}

1730 1731 1732 1733 1734
		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
	}

	if (dct_high_range_enabled(pvt))
		return ~dct_sel_high & 1;
1735 1736 1737 1738

	return 0;
}

1739
/* Convert the sys_addr to the normalized DCT address */
1740
static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
1741 1742
				 u64 sys_addr, bool hi_rng,
				 u32 dct_sel_base_addr)
1743 1744
{
	u64 chan_off;
1745 1746
	u64 dram_base		= get_dram_base(pvt, range);
	u64 hole_off		= f10_dhar_offset(pvt);
1747
	u64 dct_sel_base_off	= (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1748

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
	if (hi_rng) {
		/*
		 * if
		 * base address of high range is below 4Gb
		 * (bits [47:27] at [31:11])
		 * DRAM address space on this DCT is hoisted above 4Gb	&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole offset from sys_addr
		 * else
		 *	remove high range offset from sys_addr
		 */
		if ((!(dct_sel_base_addr >> 16) ||
		     dct_sel_base_addr < dhar_base(pvt)) &&
1763
		    dhar_valid(pvt) &&
1764
		    (sys_addr >= BIT_64(32)))
1765
			chan_off = hole_off;
1766 1767 1768
		else
			chan_off = dct_sel_base_off;
	} else {
1769 1770 1771 1772 1773 1774 1775 1776 1777
		/*
		 * if
		 * we have a valid hole		&&
		 * sys_addr > 4Gb
		 *
		 *	remove hole
		 * else
		 *	remove dram base to normalize to DCT address
		 */
1778
		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
1779
			chan_off = hole_off;
1780
		else
1781
			chan_off = dram_base;
1782 1783
	}

1784
	return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
1785 1786 1787 1788 1789 1790
}

/*
 * checks if the csrow passed in is marked as SPARED, if so returns the new
 * spare row
 */
1791
static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1792
{
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
	int tmp_cs;

	if (online_spare_swap_done(pvt, dct) &&
	    csrow == online_spare_bad_dramcs(pvt, dct)) {

		for_each_chip_select(tmp_cs, dct, pvt) {
			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
				csrow = tmp_cs;
				break;
			}
		}
1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	}
	return csrow;
}

/*
 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
 *
 * Return:
 *	-EINVAL:  NOT FOUND
 *	0..csrow = Chip-Select Row
 */
1816
static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
1817 1818 1819
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
1820
	u64 cs_base, cs_mask;
1821 1822 1823
	int cs_found = -EINVAL;
	int csrow;

1824
	mci = edac_mc_find(nid);
1825 1826 1827 1828 1829
	if (!mci)
		return cs_found;

	pvt = mci->pvt_info;

1830
	edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1831

1832 1833
	for_each_chip_select(csrow, dct, pvt) {
		if (!csrow_enabled(csrow, dct, pvt))
1834 1835
			continue;

1836
		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1837

1838 1839
		edac_dbg(1, "    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
			 csrow, cs_base, cs_mask);
1840

1841
		cs_mask = ~cs_mask;
1842

1843 1844
		edac_dbg(1, "    (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
			 (in_addr & cs_mask), (cs_base & cs_mask));
1845

1846
		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1847 1848 1849 1850
			if (pvt->fam == 0x15 && pvt->model >= 0x30) {
				cs_found =  csrow;
				break;
			}
1851
			cs_found = f10_process_possible_spare(pvt, dct, csrow);
1852

1853
			edac_dbg(1, " MATCH csrow=%d\n", cs_found);
1854 1855 1856 1857 1858 1859
			break;
		}
	}
	return cs_found;
}

1860 1861 1862 1863 1864
/*
 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
 * swapped with a region located at the bottom of memory so that the GPU can use
 * the interleaved region and thus two channels.
 */
1865
static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1866 1867 1868
{
	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;

1869
	if (pvt->fam == 0x10) {
1870
		/* only revC3 and revE have that feature */
1871
		if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
1872 1873 1874
			return sys_addr;
	}

1875
	amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

	if (!(swap_reg & 0x1))
		return sys_addr;

	swap_base	= (swap_reg >> 3) & 0x7f;
	swap_limit	= (swap_reg >> 11) & 0x7f;
	rgn_size	= (swap_reg >> 20) & 0x7f;
	tmp_addr	= sys_addr >> 27;

	if (!(sys_addr >> 34) &&
	    (((tmp_addr >= swap_base) &&
	     (tmp_addr <= swap_limit)) ||
	     (tmp_addr < rgn_size)))
		return sys_addr ^ (u64)swap_base << 27;

	return sys_addr;
}

1894
/* For a given @dram_range, check if @sys_addr falls within it. */
1895
static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1896
				  u64 sys_addr, int *chan_sel)
1897
{
1898
	int cs_found = -EINVAL;
1899
	u64 chan_addr;
1900
	u32 dct_sel_base;
1901
	u8 channel;
1902
	bool high_range = false;
1903

1904
	u8 node_id    = dram_dst_node(pvt, range);
1905
	u8 intlv_en   = dram_intlv_en(pvt, range);
1906
	u32 intlv_sel = dram_intlv_sel(pvt, range);
1907

1908 1909
	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));
1910

1911 1912 1913 1914 1915 1916 1917 1918
	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

1919
	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1920 1921
		return -EINVAL;

1922
	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1923

1924 1925 1926 1927 1928 1929 1930 1931 1932
	dct_sel_base = dct_sel_baseaddr(pvt);

	/*
	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
	 * select between DCT0 and DCT1.
	 */
	if (dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt) &&
	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1933
		high_range = true;
1934

1935
	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1936

1937
	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1938
					  high_range, dct_sel_base);
1939

1940 1941 1942 1943
	/* Remove node interleaving, see F1x120 */
	if (intlv_en)
		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
			    (chan_addr & 0xfff);
1944

1945
	/* remove channel interleave */
1946 1947 1948
	if (dct_interleave_enabled(pvt) &&
	   !dct_high_range_enabled(pvt) &&
	   !dct_ganging_enabled(pvt)) {
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962

		if (dct_sel_interleave_addr(pvt) != 1) {
			if (dct_sel_interleave_addr(pvt) == 0x3)
				/* hash 9 */
				chan_addr = ((chan_addr >> 10) << 9) |
					     (chan_addr & 0x1ff);
			else
				/* A[6] or hash 6 */
				chan_addr = ((chan_addr >> 7) << 6) |
					     (chan_addr & 0x3f);
		} else
			/* A[12] */
			chan_addr = ((chan_addr >> 13) << 12) |
				     (chan_addr & 0xfff);
1963 1964
	}

1965
	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);
1966

1967
	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1968

1969
	if (cs_found >= 0)
1970
		*chan_sel = channel;
1971

1972 1973 1974
	return cs_found;
}

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
					u64 sys_addr, int *chan_sel)
{
	int cs_found = -EINVAL;
	int num_dcts_intlv = 0;
	u64 chan_addr, chan_offset;
	u64 dct_base, dct_limit;
	u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
	u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;

	u64 dhar_offset		= f10_dhar_offset(pvt);
	u8 intlv_addr		= dct_sel_interleave_addr(pvt);
	u8 node_id		= dram_dst_node(pvt, range);
	u8 intlv_en		= dram_intlv_en(pvt, range);

	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
	amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);

	dct_offset_en		= (u8) ((dct_cont_base_reg >> 3) & BIT(0));
	dct_sel			= (u8) ((dct_cont_base_reg >> 4) & 0x7);

	edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
		 range, sys_addr, get_dram_limit(pvt, range));

	if (!(get_dram_base(pvt, range)  <= sys_addr) &&
	    !(get_dram_limit(pvt, range) >= sys_addr))
		return -EINVAL;

	if (dhar_valid(pvt) &&
	    dhar_base(pvt) <= sys_addr &&
	    sys_addr < BIT_64(32)) {
		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
			    sys_addr);
		return -EINVAL;
	}

	/* Verify sys_addr is within DCT Range. */
2012 2013
	dct_base = (u64) dct_sel_baseaddr(pvt);
	dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
2014 2015

	if (!(dct_cont_base_reg & BIT(0)) &&
2016 2017
	    !(dct_base <= (sys_addr >> 27) &&
	      dct_limit >= (sys_addr >> 27)))
2018 2019 2020 2021 2022 2023 2024 2025
		return -EINVAL;

	/* Verify number of dct's that participate in channel interleaving. */
	num_dcts_intlv = (int) hweight8(intlv_en);

	if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
		return -EINVAL;

2026 2027 2028 2029 2030
	if (pvt->model >= 0x60)
		channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
	else
		channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
						     num_dcts_intlv, dct_sel);
2031 2032

	/* Verify we stay within the MAX number of channels allowed */
2033
	if (channel > 3)
2034 2035 2036 2037 2038 2039 2040 2041
		return -EINVAL;

	leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));

	/* Get normalized DCT addr */
	if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
		chan_offset = dhar_offset;
	else
2042
		chan_offset = dct_base << 27;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

	chan_addr = sys_addr - chan_offset;

	/* remove channel interleave */
	if (num_dcts_intlv == 2) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 9) << 8) |
						(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 10) << 9) |
						(chan_addr & 0x1ff);
		else
			return -EINVAL;

	} else if (num_dcts_intlv == 4) {
		if (intlv_addr == 0x4)
			chan_addr = ((chan_addr >> 10) << 8) |
							(chan_addr & 0xff);
		else if (intlv_addr == 0x5)
			chan_addr = ((chan_addr >> 11) << 9) |
							(chan_addr & 0x1ff);
		else
			return -EINVAL;
	}

	if (dct_offset_en) {
		amd64_read_pci_cfg(pvt->F1,
				   DRAM_CONT_HIGH_OFF + (int) channel * 4,
				   &tmp);
2072
		chan_addr +=  (u64) ((tmp >> 11) & 0xfff) << 27;
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	}

	f15h_select_dct(pvt, channel);

	edac_dbg(1, "   Normalized DCT addr: 0x%llx\n", chan_addr);

	/*
	 * Find Chip select:
	 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
	 * there is support for 4 DCT's, but only 2 are currently functional.
	 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
	 * pvt->csels[1]. So we need to use '1' here to get correct info.
	 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
	 */
	alias_channel =  (channel == 3) ? 1 : channel;

	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);

	if (cs_found >= 0)
		*chan_sel = alias_channel;

	return cs_found;
}

static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
					u64 sys_addr,
					int *chan_sel)
2100
{
2101 2102
	int cs_found = -EINVAL;
	unsigned range;
2103

2104 2105
	for (range = 0; range < DRAM_RANGES; range++) {
		if (!dram_rw(pvt, range))
2106 2107
			continue;

2108 2109 2110 2111
		if (pvt->fam == 0x15 && pvt->model >= 0x30)
			cs_found = f15_m30h_match_to_this_node(pvt, range,
							       sys_addr,
							       chan_sel);
2112

2113 2114
		else if ((get_dram_base(pvt, range)  <= sys_addr) &&
			 (get_dram_limit(pvt, range) >= sys_addr)) {
2115
			cs_found = f1x_match_to_this_node(pvt, range,
2116
							  sys_addr, chan_sel);
2117 2118 2119 2120 2121 2122 2123 2124
			if (cs_found >= 0)
				break;
		}
	}
	return cs_found;
}

/*
2125 2126
 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
2127
 *
2128 2129
 * The @sys_addr is usually an error address received from the hardware
 * (MCX_ADDR).
2130
 */
2131
static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
2132
				     struct err_info *err)
2133 2134 2135
{
	struct amd64_pvt *pvt = mci->pvt_info;

2136
	error_address_to_page_and_offset(sys_addr, err);
2137

2138 2139 2140
	err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
	if (err->csrow < 0) {
		err->err_code = ERR_CSROW;
2141 2142 2143 2144 2145 2146 2147 2148
		return;
	}

	/*
	 * We need the syndromes for channel detection only when we're
	 * ganged. Otherwise @chan should already contain the channel at
	 * this point.
	 */
2149
	if (dct_ganging_enabled(pvt))
2150
		err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
2151 2152 2153
}

/*
2154
 * debug routine to display the memory sizes of all logical DIMMs and its
2155
 * CSROWs
2156
 */
2157
static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
2158
{
2159
	int dimm, size0, size1;
2160 2161
	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
2162

2163
	if (pvt->fam == 0xf) {
2164
		/* K8 families < revF not supported yet */
2165
	       if (pvt->ext_model < K8_REV_F)
2166 2167 2168 2169 2170
			return;
	       else
		       WARN_ON(ctrl != 0);
	}

2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
	if (pvt->fam == 0x10) {
		dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
							   : pvt->dbam0;
		dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
				 pvt->csels[1].csbases :
				 pvt->csels[0].csbases;
	} else if (ctrl) {
		dbam = pvt->dbam0;
		dcsb = pvt->csels[1].csbases;
	}
2181 2182
	edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
		 ctrl, dbam);
2183

2184 2185
	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);

2186 2187 2188 2189
	/* Dump memory sizes for DIMM and its CSROWs */
	for (dimm = 0; dimm < 4; dimm++) {

		size0 = 0;
2190
		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
2191 2192 2193
			/*
			 * For F15m60h, we need multiplier for LRDIMM cs_size
			 * calculation. We pass dimm value to the dbam_to_cs
2194 2195 2196
			 * mapper so we can find the multiplier from the
			 * corresponding DCSM.
			 */
2197
			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
2198 2199
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2200 2201

		size1 = 0;
2202
		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
2203
			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
2204 2205
						     DBAM_DIMM(dimm, dbam),
						     dimm);
2206

2207
		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
2208 2209
				dimm * 2,     size0,
				dimm * 2 + 1, size1);
2210 2211 2212
	}
}

2213
static struct amd64_family_type family_types[] = {
2214
	[K8_CPUS] = {
2215
		.ctl_name = "K8",
2216
		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
2217
		.f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2218
		.max_mcs = 2,
2219
		.ops = {
2220 2221 2222
			.early_channel_count	= k8_early_channel_count,
			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
			.dbam_to_cs		= k8_dbam_to_chip_select,
2223 2224 2225
		}
	},
	[F10_CPUS] = {
2226
		.ctl_name = "F10h",
2227
		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
2228
		.f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2229
		.max_mcs = 2,
2230
		.ops = {
2231
			.early_channel_count	= f1x_early_channel_count,
2232
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2233
			.dbam_to_cs		= f10_dbam_to_chip_select,
2234 2235 2236 2237
		}
	},
	[F15_CPUS] = {
		.ctl_name = "F15h",
2238
		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
2239
		.f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
2240
		.max_mcs = 2,
2241
		.ops = {
2242
			.early_channel_count	= f1x_early_channel_count,
2243
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
2244
			.dbam_to_cs		= f15_dbam_to_chip_select,
2245 2246
		}
	},
2247 2248 2249
	[F15_M30H_CPUS] = {
		.ctl_name = "F15h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
2250
		.f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
2251
		.max_mcs = 2,
2252 2253 2254 2255 2256 2257
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2258 2259 2260
	[F15_M60H_CPUS] = {
		.ctl_name = "F15h_M60h",
		.f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
2261
		.f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
2262
		.max_mcs = 2,
2263 2264 2265 2266 2267 2268
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f15_m60h_dbam_to_chip_select,
		}
	},
2269 2270 2271
	[F16_CPUS] = {
		.ctl_name = "F16h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
2272
		.f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
2273
		.max_mcs = 2,
2274 2275 2276 2277 2278 2279
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2280 2281 2282
	[F16_M30H_CPUS] = {
		.ctl_name = "F16h_M30h",
		.f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
2283
		.f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
2284
		.max_mcs = 2,
2285 2286 2287 2288 2289 2290
		.ops = {
			.early_channel_count	= f1x_early_channel_count,
			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
			.dbam_to_cs		= f16_dbam_to_chip_select,
		}
	},
2291 2292 2293 2294
	[F17_CPUS] = {
		.ctl_name = "F17h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_DF_F6,
2295
		.max_mcs = 2,
2296 2297
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2298
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2299 2300
		}
	},
2301 2302 2303 2304
	[F17_M10H_CPUS] = {
		.ctl_name = "F17h_M10h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M10H_DF_F6,
2305
		.max_mcs = 2,
2306 2307
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2308
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2309 2310
		}
	},
2311 2312 2313 2314
	[F17_M30H_CPUS] = {
		.ctl_name = "F17h_M30h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M30H_DF_F6,
2315
		.max_mcs = 8,
2316 2317
		.ops = {
			.early_channel_count	= f17_early_channel_count,
2318
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
2319 2320
		}
	},
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	[F17_M60H_CPUS] = {
		.ctl_name = "F17h_M60h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M60H_DF_F6,
		.max_mcs = 2,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2331 2332 2333 2334
	[F17_M70H_CPUS] = {
		.ctl_name = "F17h_M70h",
		.f0_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_17H_M70H_DF_F6,
2335
		.max_mcs = 2,
2336 2337 2338 2339 2340
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	[F19_CPUS] = {
		.ctl_name = "F19h",
		.f0_id = PCI_DEVICE_ID_AMD_19H_DF_F0,
		.f6_id = PCI_DEVICE_ID_AMD_19H_DF_F6,
		.max_mcs = 8,
		.ops = {
			.early_channel_count	= f17_early_channel_count,
			.dbam_to_cs		= f17_addr_mask_to_cs_size,
		}
	},
2351 2352
};

2353
/*
2354 2355 2356
 * These are tables of eigenvectors (one per line) which can be used for the
 * construction of the syndrome tables. The modified syndrome search algorithm
 * uses those to find the symbol in error and thus the DIMM.
2357
 *
2358
 * Algorithm courtesy of Ross LaFetra from AMD.
2359
 */
2360
static const u16 x4_vectors[] = {
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396
	0x2f57, 0x1afe, 0x66cc, 0xdd88,
	0x11eb, 0x3396, 0x7f4c, 0xeac8,
	0x0001, 0x0002, 0x0004, 0x0008,
	0x1013, 0x3032, 0x4044, 0x8088,
	0x106b, 0x30d6, 0x70fc, 0xe0a8,
	0x4857, 0xc4fe, 0x13cc, 0x3288,
	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
	0x15c1, 0x2a42, 0x89ac, 0x4758,
	0x2b03, 0x1602, 0x4f0c, 0xca08,
	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
	0x8ba7, 0x465e, 0x244c, 0x1cc8,
	0x2b87, 0x164e, 0x642c, 0xdc18,
	0x40b9, 0x80de, 0x1094, 0x20e8,
	0x27db, 0x1eb6, 0x9dac, 0x7b58,
	0x11c1, 0x2242, 0x84ac, 0x4c58,
	0x1be5, 0x2d7a, 0x5e34, 0xa718,
	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
	0x4c97, 0xc87e, 0x11fc, 0x33a8,
	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
	0x16b3, 0x3d62, 0x4f34, 0x8518,
	0x1e2f, 0x391a, 0x5cac, 0xf858,
	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
	0x4397, 0xc27e, 0x17fc, 0x3ea8,
	0x1617, 0x3d3e, 0x6464, 0xb8b8,
	0x23ff, 0x12aa, 0xab6c, 0x56d8,
	0x2dfb, 0x1ba6, 0x913c, 0x7328,
	0x185d, 0x2ca6, 0x7914, 0x9e28,
	0x171b, 0x3e36, 0x7d7c, 0xebe8,
	0x4199, 0x82ee, 0x19f4, 0x2e58,
	0x4807, 0xc40e, 0x130c, 0x3208,
	0x1905, 0x2e0a, 0x5804, 0xac08,
	0x213f, 0x132a, 0xadfc, 0x5ba8,
	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
2397 2398
};

2399
static const u16 x8_vectors[] = {
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
};

2421
static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
2422
			   unsigned v_dim)
2423
{
2424 2425 2426 2427
	unsigned int i, err_sym;

	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
		u16 s = syndrome;
2428 2429
		unsigned v_idx =  err_sym * v_dim;
		unsigned v_end = (err_sym + 1) * v_dim;
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441

		/* walk over all 16 bits of the syndrome */
		for (i = 1; i < (1U << 16); i <<= 1) {

			/* if bit is set in that eigenvector... */
			if (v_idx < v_end && vectors[v_idx] & i) {
				u16 ev_comp = vectors[v_idx++];

				/* ... and bit set in the modified syndrome, */
				if (s & i) {
					/* remove it. */
					s ^= ev_comp;
2442

2443 2444 2445
					if (!s)
						return err_sym;
				}
2446

2447 2448 2449 2450
			} else if (s & i)
				/* can't get to zero, move to next symbol */
				break;
		}
2451 2452
	}

2453
	edac_dbg(0, "syndrome(%x) not found\n", syndrome);
2454 2455
	return -1;
}
2456

2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498
static int map_err_sym_to_channel(int err_sym, int sym_size)
{
	if (sym_size == 4)
		switch (err_sym) {
		case 0x20:
		case 0x21:
			return 0;
			break;
		case 0x22:
		case 0x23:
			return 1;
			break;
		default:
			return err_sym >> 4;
			break;
		}
	/* x8 symbols */
	else
		switch (err_sym) {
		/* imaginary bits not in a DIMM */
		case 0x10:
			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
					  err_sym);
			return -1;
			break;

		case 0x11:
			return 0;
			break;
		case 0x12:
			return 1;
			break;
		default:
			return err_sym >> 3;
			break;
		}
	return -1;
}

static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
{
	struct amd64_pvt *pvt = mci->pvt_info;
2499 2500
	int err_sym = -1;

2501
	if (pvt->ecc_sym_sz == 8)
2502 2503
		err_sym = decode_syndrome(syndrome, x8_vectors,
					  ARRAY_SIZE(x8_vectors),
2504 2505
					  pvt->ecc_sym_sz);
	else if (pvt->ecc_sym_sz == 4)
2506 2507
		err_sym = decode_syndrome(syndrome, x4_vectors,
					  ARRAY_SIZE(x4_vectors),
2508
					  pvt->ecc_sym_sz);
2509
	else {
2510
		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
2511
		return err_sym;
2512
	}
2513

2514
	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
2515 2516
}

2517
static void __log_ecc_error(struct mem_ctl_info *mci, struct err_info *err,
2518
			    u8 ecc_type)
2519
{
2520 2521
	enum hw_event_mc_err_type err_type;
	const char *string;
2522

2523 2524 2525 2526
	if (ecc_type == 2)
		err_type = HW_EVENT_ERR_CORRECTED;
	else if (ecc_type == 1)
		err_type = HW_EVENT_ERR_UNCORRECTED;
2527 2528
	else if (ecc_type == 3)
		err_type = HW_EVENT_ERR_DEFERRED;
2529 2530
	else {
		WARN(1, "Something is rotten in the state of Denmark.\n");
2531 2532 2533
		return;
	}

2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	switch (err->err_code) {
	case DECODE_OK:
		string = "";
		break;
	case ERR_NODE:
		string = "Failed to map error addr to a node";
		break;
	case ERR_CSROW:
		string = "Failed to map error addr to a csrow";
		break;
	case ERR_CHANNEL:
2545 2546 2547 2548 2549 2550 2551
		string = "Unknown syndrome - possible error reporting race";
		break;
	case ERR_SYND:
		string = "MCA_SYND not valid - unknown syndrome and csrow";
		break;
	case ERR_NORM_ADDR:
		string = "Cannot decode normalized address";
2552 2553 2554 2555
		break;
	default:
		string = "WTF error";
		break;
2556
	}
2557 2558 2559 2560 2561

	edac_mc_handle_error(err_type, mci, 1,
			     err->page, err->offset, err->syndrome,
			     err->csrow, err->channel, -1,
			     string, "");
2562 2563
}

2564
static inline void decode_bus_error(int node_id, struct mce *m)
2565
{
2566 2567
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
2568
	u8 ecc_type = (m->status >> 45) & 0x3;
2569 2570
	u8 xec = XEC(m->status, 0x1f);
	u16 ec = EC(m->status);
2571 2572
	u64 sys_addr;
	struct err_info err;
2573

2574 2575 2576 2577 2578 2579
	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

2580
	/* Bail out early if this was an 'observed' error */
2581
	if (PP(ec) == NBSL_PP_OBS)
2582
		return;
2583

2584 2585
	/* Do only ECC errors */
	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2586 2587
		return;

2588 2589
	memset(&err, 0, sizeof(err));

2590
	sys_addr = get_error_address(pvt, m);
2591

2592
	if (ecc_type == 2)
2593 2594 2595 2596
		err.syndrome = extract_syndrome(m->status);

	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);

2597
	__log_ecc_error(mci, &err, ecc_type);
2598 2599
}

2600 2601 2602 2603
/*
 * To find the UMC channel represented by this bank we need to match on its
 * instance_id. The instance_id of a bank is held in the lower 32 bits of its
 * IPID.
2604 2605 2606 2607
 *
 * Currently, we can derive the channel number by looking at the 6th nibble in
 * the instance_id. For example, instance_id=0xYXXXXX where Y is the channel
 * number.
2608
 */
2609
static int find_umc_channel(struct mce *m)
2610
{
2611
	return (m->ipid & GENMASK(31, 0)) >> 20;
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
}

static void decode_umc_error(int node_id, struct mce *m)
{
	u8 ecc_type = (m->status >> 45) & 0x3;
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
	struct err_info err;
	u64 sys_addr;

	mci = edac_mc_find(node_id);
	if (!mci)
		return;

	pvt = mci->pvt_info;

	memset(&err, 0, sizeof(err));

	if (m->status & MCI_STATUS_DEFERRED)
		ecc_type = 3;

2633
	err.channel = find_umc_channel(m);
2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650

	if (!(m->status & MCI_STATUS_SYNDV)) {
		err.err_code = ERR_SYND;
		goto log_error;
	}

	if (ecc_type == 2) {
		u8 length = (m->synd >> 18) & 0x3f;

		if (length)
			err.syndrome = (m->synd >> 32) & GENMASK(length - 1, 0);
		else
			err.err_code = ERR_CHANNEL;
	}

	err.csrow = m->synd & 0x7;

2651 2652 2653 2654 2655 2656 2657
	if (umc_normaddr_to_sysaddr(m->addr, pvt->mc_node_id, err.channel, &sys_addr)) {
		err.err_code = ERR_NORM_ADDR;
		goto log_error;
	}

	error_address_to_page_and_offset(sys_addr, &err);

2658 2659 2660 2661
log_error:
	__log_ecc_error(mci, &err, ecc_type);
}

2662
/*
2663 2664
 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
2665
 * Reserve F0 and F6 on systems with a UMC.
2666
 */
2667 2668 2669 2670 2671 2672
static int
reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 pci_id1, u16 pci_id2)
{
	if (pvt->umc) {
		pvt->F0 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
		if (!pvt->F0) {
2673
			amd64_err("F0 not found, device 0x%x (broken BIOS?)\n", pci_id1);
2674 2675 2676 2677 2678 2679 2680 2681
			return -ENODEV;
		}

		pvt->F6 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
		if (!pvt->F6) {
			pci_dev_put(pvt->F0);
			pvt->F0 = NULL;

2682
			amd64_err("F6 not found: device 0x%x (broken BIOS?)\n", pci_id2);
2683 2684
			return -ENODEV;
		}
2685

2686 2687 2688 2689 2690 2691 2692
		edac_dbg(1, "F0: %s\n", pci_name(pvt->F0));
		edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
		edac_dbg(1, "F6: %s\n", pci_name(pvt->F6));

		return 0;
	}

2693
	/* Reserve the ADDRESS MAP Device */
2694
	pvt->F1 = pci_get_related_function(pvt->F3->vendor, pci_id1, pvt->F3);
2695
	if (!pvt->F1) {
2696
		amd64_err("F1 not found: device 0x%x (broken BIOS?)\n", pci_id1);
2697
		return -ENODEV;
2698 2699
	}

2700
	/* Reserve the DCT Device */
2701
	pvt->F2 = pci_get_related_function(pvt->F3->vendor, pci_id2, pvt->F3);
2702
	if (!pvt->F2) {
2703 2704
		pci_dev_put(pvt->F1);
		pvt->F1 = NULL;
2705

2706 2707
		amd64_err("F2 not found: device 0x%x (broken BIOS?)\n", pci_id2);
		return -ENODEV;
2708
	}
2709

2710 2711 2712
	edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
	edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
	edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
2713 2714 2715 2716

	return 0;
}

2717
static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2718
{
2719 2720 2721 2722 2723 2724 2725
	if (pvt->umc) {
		pci_dev_put(pvt->F0);
		pci_dev_put(pvt->F6);
	} else {
		pci_dev_put(pvt->F1);
		pci_dev_put(pvt->F2);
	}
2726 2727
}

2728 2729 2730 2731 2732 2733 2734
static void determine_ecc_sym_sz(struct amd64_pvt *pvt)
{
	pvt->ecc_sym_sz = 4;

	if (pvt->umc) {
		u8 i;

2735
		for_each_umc(i) {
2736
			/* Check enabled channels only: */
2737 2738 2739 2740 2741 2742 2743 2744
			if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
				if (pvt->umc[i].ecc_ctrl & BIT(9)) {
					pvt->ecc_sym_sz = 16;
					return;
				} else if (pvt->umc[i].ecc_ctrl & BIT(7)) {
					pvt->ecc_sym_sz = 8;
					return;
				}
2745 2746
			}
		}
2747
	} else if (pvt->fam >= 0x10) {
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
		u32 tmp;

		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
		/* F16h has only DCT0, so no need to read dbam1. */
		if (pvt->fam != 0x16)
			amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);

		/* F10h, revD and later can do x8 ECC too. */
		if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
			pvt->ecc_sym_sz = 8;
	}
}

/*
 * Retrieve the hardware registers of the memory controller.
 */
static void __read_mc_regs_df(struct amd64_pvt *pvt)
{
	u8 nid = pvt->mc_node_id;
	struct amd64_umc *umc;
	u32 i, umc_base;

	/* Read registers from each UMC */
2771
	for_each_umc(i) {
2772 2773 2774 2775

		umc_base = get_umc_base(i);
		umc = &pvt->umc[i];

2776 2777
		amd_smn_read(nid, umc_base + UMCCH_DIMM_CFG, &umc->dimm_cfg);
		amd_smn_read(nid, umc_base + UMCCH_UMC_CFG, &umc->umc_cfg);
2778 2779
		amd_smn_read(nid, umc_base + UMCCH_SDP_CTRL, &umc->sdp_ctrl);
		amd_smn_read(nid, umc_base + UMCCH_ECC_CTRL, &umc->ecc_ctrl);
2780
		amd_smn_read(nid, umc_base + UMCCH_UMC_CAP_HI, &umc->umc_cap_hi);
2781 2782 2783
	}
}

2784 2785 2786 2787
/*
 * Retrieve the hardware registers of the memory controller (this includes the
 * 'Address Map' and 'Misc' device regs)
 */
2788
static void read_mc_regs(struct amd64_pvt *pvt)
2789
{
2790
	unsigned int range;
2791 2792 2793 2794
	u64 msr_val;

	/*
	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2795
	 * those are Read-As-Zero.
2796
	 */
2797
	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2798
	edac_dbg(0, "  TOP_MEM:  0x%016llx\n", pvt->top_mem);
2799

2800
	/* Check first whether TOP_MEM2 is enabled: */
2801
	rdmsrl(MSR_K8_SYSCFG, msr_val);
2802
	if (msr_val & BIT(21)) {
2803
		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2804
		edac_dbg(0, "  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2805
	} else {
2806
		edac_dbg(0, "  TOP_MEM2 disabled\n");
2807 2808 2809 2810 2811 2812 2813 2814
	}

	if (pvt->umc) {
		__read_mc_regs_df(pvt);
		amd64_read_pci_cfg(pvt->F0, DF_DHAR, &pvt->dhar);

		goto skip;
	}
2815

2816
	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
2817

2818
	read_dram_ctl_register(pvt);
2819

2820 2821
	for (range = 0; range < DRAM_RANGES; range++) {
		u8 rw;
2822

2823 2824 2825 2826 2827 2828 2829
		/* read settings for this DRAM range */
		read_dram_base_limit_regs(pvt, range);

		rw = dram_rw(pvt, range);
		if (!rw)
			continue;

2830 2831 2832 2833
		edac_dbg(1, "  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
			 range,
			 get_dram_base(pvt, range),
			 get_dram_limit(pvt, range));
2834

2835 2836 2837 2838 2839 2840
		edac_dbg(1, "   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
			 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
			 (rw & 0x1) ? "R" : "-",
			 (rw & 0x2) ? "W" : "-",
			 dram_intlv_sel(pvt, range),
			 dram_dst_node(pvt, range));
2841 2842
	}

2843
	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
2844
	amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
2845

2846
	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2847

2848 2849
	amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
	amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
2850

2851
	if (!dct_ganging_enabled(pvt)) {
2852 2853
		amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
		amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
2854
	}
2855

2856 2857 2858
skip:
	read_dct_base_mask(pvt);

2859 2860
	determine_memory_type(pvt);
	edac_dbg(1, "  DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
2861

2862
	determine_ecc_sym_sz(pvt);
2863 2864 2865 2866 2867 2868
}

/*
 * NOTE: CPU Revision Dependent code
 *
 * Input:
2869
 *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
 *	k8 private pointer to -->
 *			DRAM Bank Address mapping register
 *			node_id
 *			DCL register where dual_channel_active is
 *
 * The DBAM register consists of 4 sets of 4 bits each definitions:
 *
 * Bits:	CSROWs
 * 0-3		CSROWs 0 and 1
 * 4-7		CSROWs 2 and 3
 * 8-11		CSROWs 4 and 5
 * 12-15	CSROWs 6 and 7
 *
 * Values range from: 0 to 15
 * The meaning of the values depends on CPU revision and dual-channel state,
 * see relevant BKDG more info.
 *
 * The memory controller provides for total of only 8 CSROWs in its current
 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
 * single channel or two (2) DIMMs in dual channel mode.
 *
 * The following code logic collapses the various tables for CSROW based on CPU
 * revision.
 *
 * Returns:
 *	The number of PAGE_SIZE pages on the specified CSROW number it
 *	encompasses
 *
 */
2899
static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr_orig)
2900
{
2901
	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
2902 2903
	int csrow_nr = csrow_nr_orig;
	u32 cs_mode, nr_pages;
2904

2905
	if (!pvt->umc) {
2906
		csrow_nr >>= 1;
2907 2908 2909 2910
		cs_mode = DBAM_DIMM(csrow_nr, dbam);
	} else {
		cs_mode = f17_get_cs_mode(csrow_nr >> 1, dct, pvt);
	}
2911

2912 2913
	nr_pages   = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, csrow_nr);
	nr_pages <<= 20 - PAGE_SHIFT;
2914

2915
	edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2916
		    csrow_nr_orig, dct,  cs_mode);
2917
	edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
2918 2919 2920 2921

	return nr_pages;
}

2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
static int init_csrows_df(struct mem_ctl_info *mci)
{
	struct amd64_pvt *pvt = mci->pvt_info;
	enum edac_type edac_mode = EDAC_NONE;
	enum dev_type dev_type = DEV_UNKNOWN;
	struct dimm_info *dimm;
	int empty = 1;
	u8 umc, cs;

	if (mci->edac_ctl_cap & EDAC_FLAG_S16ECD16ED) {
		edac_mode = EDAC_S16ECD16ED;
		dev_type = DEV_X16;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S8ECD8ED) {
		edac_mode = EDAC_S8ECD8ED;
		dev_type = DEV_X8;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_S4ECD4ED) {
		edac_mode = EDAC_S4ECD4ED;
		dev_type = DEV_X4;
	} else if (mci->edac_ctl_cap & EDAC_FLAG_SECDED) {
		edac_mode = EDAC_SECDED;
	}

	for_each_umc(umc) {
		for_each_chip_select(cs, umc, pvt) {
			if (!csrow_enabled(cs, umc, pvt))
				continue;

			empty = 0;
			dimm = mci->csrows[cs]->channels[umc]->dimm;

			edac_dbg(1, "MC node: %d, csrow: %d\n",
					pvt->mc_node_id, cs);

			dimm->nr_pages = get_csrow_nr_pages(pvt, umc, cs);
			dimm->mtype = pvt->dram_type;
			dimm->edac_mode = edac_mode;
			dimm->dtype = dev_type;
Y
Yazen Ghannam 已提交
2959
			dimm->grain = 64;
2960 2961 2962 2963 2964 2965
		}
	}

	return empty;
}

2966 2967 2968 2969
/*
 * Initialize the array of csrow attribute instances, based on the values
 * from pci config hardware registers.
 */
2970
static int init_csrows(struct mem_ctl_info *mci)
2971
{
2972
	struct amd64_pvt *pvt = mci->pvt_info;
2973
	enum edac_type edac_mode = EDAC_NONE;
2974
	struct csrow_info *csrow;
2975
	struct dimm_info *dimm;
2976
	int i, j, empty = 1;
2977
	int nr_pages = 0;
2978
	u32 val;
2979

2980 2981
	if (pvt->umc)
		return init_csrows_df(mci);
2982

2983
	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2984

2985 2986 2987 2988 2989
	pvt->nbcfg = val;

	edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
		 pvt->mc_node_id, val,
		 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2990

2991 2992 2993
	/*
	 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
	 */
2994
	for_each_chip_select(i, 0, pvt) {
2995 2996
		bool row_dct0 = !!csrow_enabled(i, 0, pvt);
		bool row_dct1 = false;
2997

2998
		if (pvt->fam != 0xf)
2999 3000 3001
			row_dct1 = !!csrow_enabled(i, 1, pvt);

		if (!row_dct0 && !row_dct1)
3002 3003
			continue;

3004
		csrow = mci->csrows[i];
3005
		empty = 0;
3006 3007 3008 3009

		edac_dbg(1, "MC node: %d, csrow: %d\n",
			    pvt->mc_node_id, i);

3010
		if (row_dct0) {
3011
			nr_pages = get_csrow_nr_pages(pvt, 0, i);
3012 3013
			csrow->channels[0]->dimm->nr_pages = nr_pages;
		}
3014

3015
		/* K8 has only one DCT */
3016
		if (pvt->fam != 0xf && row_dct1) {
3017
			int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
3018 3019 3020 3021

			csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
			nr_pages += row_dct1_pages;
		}
3022

3023
		edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
3024

3025
		/* Determine DIMM ECC mode: */
3026
		if (pvt->nbcfg & NBCFG_ECC_ENABLE) {
3027 3028 3029 3030
			edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL)
					? EDAC_S4ECD4ED
					: EDAC_SECDED;
		}
3031 3032

		for (j = 0; j < pvt->channel_count; j++) {
3033
			dimm = csrow->channels[j]->dimm;
3034
			dimm->mtype = pvt->dram_type;
3035
			dimm->edac_mode = edac_mode;
Y
Yazen Ghannam 已提交
3036
			dimm->grain = 64;
3037
		}
3038 3039 3040 3041
	}

	return empty;
}
3042

3043
/* get all cores on this DCT */
3044
static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
3045 3046 3047 3048 3049 3050 3051 3052 3053
{
	int cpu;

	for_each_online_cpu(cpu)
		if (amd_get_nb_id(cpu) == nid)
			cpumask_set_cpu(cpu, mask);
}

/* check MCG_CTL on all the cpus on this node */
3054
static bool nb_mce_bank_enabled_on_node(u16 nid)
3055 3056
{
	cpumask_var_t mask;
3057
	int cpu, nbe;
3058 3059 3060
	bool ret = false;

	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
3061
		amd64_warn("%s: Error allocating mask\n", __func__);
3062 3063 3064 3065 3066 3067 3068 3069
		return false;
	}

	get_cpus_on_this_dct_cpumask(mask, nid);

	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, mask) {
3070
		struct msr *reg = per_cpu_ptr(msrs, cpu);
3071
		nbe = reg->l & MSR_MCGCTL_NBE;
3072

3073 3074 3075
		edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
			 cpu, reg->q,
			 (nbe ? "enabled" : "disabled"));
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086

		if (!nbe)
			goto out;
	}
	ret = true;

out:
	free_cpumask_var(mask);
	return ret;
}

3087
static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
3088 3089
{
	cpumask_var_t cmask;
3090
	int cpu;
3091 3092

	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
3093
		amd64_warn("%s: error allocating mask\n", __func__);
P
Pan Bian 已提交
3094
		return -ENOMEM;
3095 3096
	}

3097
	get_cpus_on_this_dct_cpumask(cmask, nid);
3098 3099 3100 3101 3102

	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	for_each_cpu(cpu, cmask) {

3103 3104
		struct msr *reg = per_cpu_ptr(msrs, cpu);

3105
		if (on) {
3106
			if (reg->l & MSR_MCGCTL_NBE)
3107
				s->flags.nb_mce_enable = 1;
3108

3109
			reg->l |= MSR_MCGCTL_NBE;
3110 3111
		} else {
			/*
3112
			 * Turn off NB MCE reporting only when it was off before
3113
			 */
3114
			if (!s->flags.nb_mce_enable)
3115
				reg->l &= ~MSR_MCGCTL_NBE;
3116 3117 3118 3119 3120 3121 3122 3123 3124
		}
	}
	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);

	free_cpumask_var(cmask);

	return 0;
}

3125
static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3126
				       struct pci_dev *F3)
3127
{
3128
	bool ret = true;
B
Borislav Petkov 已提交
3129
	u32 value, mask = 0x3;		/* UECC/CECC enable */
3130

3131 3132 3133 3134 3135
	if (toggle_ecc_err_reporting(s, nid, ON)) {
		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
		return false;
	}

B
Borislav Petkov 已提交
3136
	amd64_read_pci_cfg(F3, NBCTL, &value);
3137

3138 3139
	s->old_nbctl   = value & mask;
	s->nbctl_valid = true;
3140 3141

	value |= mask;
B
Borislav Petkov 已提交
3142
	amd64_write_pci_cfg(F3, NBCTL, value);
3143

3144
	amd64_read_pci_cfg(F3, NBCFG, &value);
3145

3146 3147
	edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3148

3149
	if (!(value & NBCFG_ECC_ENABLE)) {
3150
		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
3151

3152
		s->flags.nb_ecc_prev = 0;
3153

3154
		/* Attempt to turn on DRAM ECC Enable */
3155 3156
		value |= NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3157

3158
		amd64_read_pci_cfg(F3, NBCFG, &value);
3159

3160
		if (!(value & NBCFG_ECC_ENABLE)) {
3161 3162
			amd64_warn("Hardware rejected DRAM ECC enable,"
				   "check memory DIMM configuration.\n");
3163
			ret = false;
3164
		} else {
3165
			amd64_info("Hardware accepted DRAM ECC Enable\n");
3166
		}
3167
	} else {
3168
		s->flags.nb_ecc_prev = 1;
3169
	}
3170

3171 3172
	edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
		 nid, value, !!(value & NBCFG_ECC_ENABLE));
3173

3174
	return ret;
3175 3176
}

3177
static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
3178
					struct pci_dev *F3)
3179
{
B
Borislav Petkov 已提交
3180 3181
	u32 value, mask = 0x3;		/* UECC/CECC enable */

3182
	if (!s->nbctl_valid)
3183 3184
		return;

B
Borislav Petkov 已提交
3185
	amd64_read_pci_cfg(F3, NBCTL, &value);
3186
	value &= ~mask;
3187
	value |= s->old_nbctl;
3188

B
Borislav Petkov 已提交
3189
	amd64_write_pci_cfg(F3, NBCTL, value);
3190

3191 3192
	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
	if (!s->flags.nb_ecc_prev) {
3193 3194 3195
		amd64_read_pci_cfg(F3, NBCFG, &value);
		value &= ~NBCFG_ECC_ENABLE;
		amd64_write_pci_cfg(F3, NBCFG, value);
3196 3197 3198
	}

	/* restore the NB Enable MCGCTL bit */
3199
	if (toggle_ecc_err_reporting(s, nid, OFF))
3200
		amd64_warn("Error restoring NB MCGCTL settings!\n");
3201 3202
}

3203
static bool ecc_enabled(struct amd64_pvt *pvt)
3204
{
3205
	u16 nid = pvt->mc_node_id;
3206
	bool nb_mce_en = false;
3207 3208
	u8 ecc_en = 0, i;
	u32 value;
3209

3210 3211
	if (boot_cpu_data.x86 >= 0x17) {
		u8 umc_en_mask = 0, ecc_en_mask = 0;
3212
		struct amd64_umc *umc;
3213

3214
		for_each_umc(i) {
3215
			umc = &pvt->umc[i];
3216 3217

			/* Only check enabled UMCs. */
3218
			if (!(umc->sdp_ctrl & UMC_SDP_INIT))
3219 3220 3221 3222
				continue;

			umc_en_mask |= BIT(i);

3223
			if (umc->umc_cap_hi & UMC_ECC_ENABLED)
3224 3225 3226 3227 3228 3229
				ecc_en_mask |= BIT(i);
		}

		/* Check whether at least one UMC is enabled: */
		if (umc_en_mask)
			ecc_en = umc_en_mask == ecc_en_mask;
3230 3231
		else
			edac_dbg(0, "Node %d: No enabled UMCs.\n", nid);
3232 3233 3234 3235

		/* Assume UMC MCA banks are enabled. */
		nb_mce_en = true;
	} else {
3236
		amd64_read_pci_cfg(pvt->F3, NBCFG, &value);
3237

3238 3239 3240 3241
		ecc_en = !!(value & NBCFG_ECC_ENABLE);

		nb_mce_en = nb_mce_bank_enabled_on_node(nid);
		if (!nb_mce_en)
3242
			edac_dbg(0, "NB MCE bank disabled, set MSR 0x%08x[4] on node %d to enable.\n",
3243 3244 3245
				     MSR_IA32_MCG_CTL, nid);
	}

3246 3247
	amd64_info("Node %d: DRAM ECC %s.\n",
		   nid, (ecc_en ? "enabled" : "disabled"));
3248

3249
	if (!ecc_en || !nb_mce_en)
3250
		return false;
3251 3252
	else
		return true;
3253 3254
}

3255 3256 3257
static inline void
f17h_determine_edac_ctl_cap(struct mem_ctl_info *mci, struct amd64_pvt *pvt)
{
3258
	u8 i, ecc_en = 1, cpk_en = 1, dev_x4 = 1, dev_x16 = 1;
3259

3260
	for_each_umc(i) {
3261 3262 3263
		if (pvt->umc[i].sdp_ctrl & UMC_SDP_INIT) {
			ecc_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_ENABLED);
			cpk_en &= !!(pvt->umc[i].umc_cap_hi & UMC_ECC_CHIPKILL_CAP);
3264 3265 3266

			dev_x4  &= !!(pvt->umc[i].dimm_cfg & BIT(6));
			dev_x16 &= !!(pvt->umc[i].dimm_cfg & BIT(7));
3267 3268 3269 3270 3271 3272 3273
		}
	}

	/* Set chipkill only if ECC is enabled: */
	if (ecc_en) {
		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;

3274 3275 3276 3277
		if (!cpk_en)
			return;

		if (dev_x4)
3278
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
3279 3280 3281 3282
		else if (dev_x16)
			mci->edac_ctl_cap |= EDAC_FLAG_S16ECD16ED;
		else
			mci->edac_ctl_cap |= EDAC_FLAG_S8ECD8ED;
3283 3284 3285
	}
}

3286
static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
3287 3288 3289 3290 3291 3292
{
	struct amd64_pvt *pvt = mci->pvt_info;

	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
	mci->edac_ctl_cap	= EDAC_FLAG_NONE;

3293 3294 3295 3296 3297
	if (pvt->umc) {
		f17h_determine_edac_ctl_cap(mci, pvt);
	} else {
		if (pvt->nbcap & NBCAP_SECDED)
			mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
3298

3299 3300 3301
		if (pvt->nbcap & NBCAP_CHIPKILL)
			mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
	}
3302

3303
	mci->edac_cap		= determine_edac_cap(pvt);
3304
	mci->mod_name		= EDAC_MOD_STR;
3305
	mci->ctl_name		= fam_type->ctl_name;
3306
	mci->dev_name		= pci_name(pvt->F3);
3307 3308 3309
	mci->ctl_page_to_phys	= NULL;

	/* memory scrubber interface */
3310 3311
	mci->set_sdram_scrub_rate = set_scrub_rate;
	mci->get_sdram_scrub_rate = get_scrub_rate;
3312 3313
}

3314 3315 3316
/*
 * returns a pointer to the family descriptor on success, NULL otherwise.
 */
3317
static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
3318
{
3319
	pvt->ext_model  = boot_cpu_data.x86_model >> 4;
3320
	pvt->stepping	= boot_cpu_data.x86_stepping;
3321 3322 3323 3324
	pvt->model	= boot_cpu_data.x86_model;
	pvt->fam	= boot_cpu_data.x86;

	switch (pvt->fam) {
3325
	case 0xf:
3326 3327
		fam_type	= &family_types[K8_CPUS];
		pvt->ops	= &family_types[K8_CPUS].ops;
3328
		break;
3329

3330
	case 0x10:
3331 3332
		fam_type	= &family_types[F10_CPUS];
		pvt->ops	= &family_types[F10_CPUS].ops;
3333 3334 3335
		break;

	case 0x15:
3336
		if (pvt->model == 0x30) {
3337 3338
			fam_type = &family_types[F15_M30H_CPUS];
			pvt->ops = &family_types[F15_M30H_CPUS].ops;
3339
			break;
3340 3341 3342 3343
		} else if (pvt->model == 0x60) {
			fam_type = &family_types[F15_M60H_CPUS];
			pvt->ops = &family_types[F15_M60H_CPUS].ops;
			break;
3344 3345
		}

3346 3347
		fam_type	= &family_types[F15_CPUS];
		pvt->ops	= &family_types[F15_CPUS].ops;
3348 3349
		break;

3350
	case 0x16:
3351 3352 3353 3354 3355
		if (pvt->model == 0x30) {
			fam_type = &family_types[F16_M30H_CPUS];
			pvt->ops = &family_types[F16_M30H_CPUS].ops;
			break;
		}
3356 3357
		fam_type	= &family_types[F16_CPUS];
		pvt->ops	= &family_types[F16_CPUS].ops;
3358 3359
		break;

3360
	case 0x17:
3361 3362 3363 3364
		if (pvt->model >= 0x10 && pvt->model <= 0x2f) {
			fam_type = &family_types[F17_M10H_CPUS];
			pvt->ops = &family_types[F17_M10H_CPUS].ops;
			break;
3365 3366 3367 3368
		} else if (pvt->model >= 0x30 && pvt->model <= 0x3f) {
			fam_type = &family_types[F17_M30H_CPUS];
			pvt->ops = &family_types[F17_M30H_CPUS].ops;
			break;
3369 3370 3371 3372
		} else if (pvt->model >= 0x60 && pvt->model <= 0x6f) {
			fam_type = &family_types[F17_M60H_CPUS];
			pvt->ops = &family_types[F17_M60H_CPUS].ops;
			break;
3373 3374 3375 3376
		} else if (pvt->model >= 0x70 && pvt->model <= 0x7f) {
			fam_type = &family_types[F17_M70H_CPUS];
			pvt->ops = &family_types[F17_M70H_CPUS].ops;
			break;
3377
		}
P
Pu Wen 已提交
3378 3379
		/* fall through */
	case 0x18:
3380 3381
		fam_type	= &family_types[F17_CPUS];
		pvt->ops	= &family_types[F17_CPUS].ops;
P
Pu Wen 已提交
3382 3383 3384

		if (pvt->fam == 0x18)
			family_types[F17_CPUS].ctl_name = "F18h";
3385 3386
		break;

3387 3388 3389 3390 3391 3392
	case 0x19:
		fam_type	= &family_types[F19_CPUS];
		pvt->ops	= &family_types[F19_CPUS].ops;
		family_types[F19_CPUS].ctl_name = "F19h";
		break;

3393
	default:
3394
		amd64_err("Unsupported family!\n");
3395
		return NULL;
3396
	}
3397

3398
	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
3399
		     (pvt->fam == 0xf ?
3400 3401 3402
				(pvt->ext_model >= K8_REV_F  ? "revF or later "
							     : "revE or earlier ")
				 : ""), pvt->mc_node_id);
3403
	return fam_type;
3404 3405
}

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
static const struct attribute_group *amd64_edac_attr_groups[] = {
#ifdef CONFIG_EDAC_DEBUG
	&amd64_edac_dbg_group,
#endif
#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
	&amd64_edac_inj_group,
#endif
	NULL
};

3416
static int hw_info_get(struct amd64_pvt *pvt)
3417
{
3418
	u16 pci_id1, pci_id2;
3419
	int ret;
3420

3421
	if (pvt->fam >= 0x17) {
3422
		pvt->umc = kcalloc(fam_type->max_mcs, sizeof(struct amd64_umc), GFP_KERNEL);
3423 3424
		if (!pvt->umc)
			return -ENOMEM;
3425 3426 3427 3428 3429 3430 3431 3432

		pci_id1 = fam_type->f0_id;
		pci_id2 = fam_type->f6_id;
	} else {
		pci_id1 = fam_type->f1_id;
		pci_id2 = fam_type->f2_id;
	}

3433 3434 3435
	ret = reserve_mc_sibling_devs(pvt, pci_id1, pci_id2);
	if (ret)
		return ret;
3436

3437
	read_mc_regs(pvt);
3438

3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
	return 0;
}

static void hw_info_put(struct amd64_pvt *pvt)
{
	if (pvt->F0 || pvt->F1)
		free_mc_sibling_devs(pvt);

	kfree(pvt->umc);
}

static int init_one_instance(struct amd64_pvt *pvt)
{
	struct mem_ctl_info *mci = NULL;
	struct edac_mc_layer layers[2];
	int ret = -EINVAL;

3456 3457 3458
	/*
	 * We need to determine how many memory channels there are. Then use
	 * that information for calculating the size of the dynamic instance
3459
	 * tables in the 'mci' structure.
3460 3461 3462
	 */
	pvt->channel_count = pvt->ops->early_channel_count(pvt);
	if (pvt->channel_count < 0)
3463
		return ret;
3464 3465

	ret = -ENOMEM;
3466 3467 3468 3469
	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
	layers[0].size = pvt->csels[0].b_cnt;
	layers[0].is_virt_csrow = true;
	layers[1].type = EDAC_MC_LAYER_CHANNEL;
3470 3471 3472 3473 3474 3475

	/*
	 * Always allocate two channels since we can have setups with DIMMs on
	 * only one channel. Also, this simplifies handling later for the price
	 * of a couple of KBs tops.
	 */
3476
	layers[1].size = fam_type->max_mcs;
3477
	layers[1].is_virt_csrow = false;
3478

3479
	mci = edac_mc_alloc(pvt->mc_node_id, ARRAY_SIZE(layers), layers, 0);
3480
	if (!mci)
3481
		return ret;
3482 3483

	mci->pvt_info = pvt;
3484
	mci->pdev = &pvt->F3->dev;
3485

3486
	setup_mci_misc_attrs(mci);
3487 3488

	if (init_csrows(mci))
3489 3490 3491
		mci->edac_cap = EDAC_FLAG_NONE;

	ret = -ENODEV;
3492
	if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
3493
		edac_dbg(1, "failed edac_mc_add_mc()\n");
3494 3495
		edac_mc_free(mci);
		return ret;
3496 3497 3498 3499 3500
	}

	return 0;
}

3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
static bool instance_has_memory(struct amd64_pvt *pvt)
{
	bool cs_enabled = false;
	int cs = 0, dct = 0;

	for (dct = 0; dct < fam_type->max_mcs; dct++) {
		for_each_chip_select(cs, dct, pvt)
			cs_enabled |= csrow_enabled(cs, dct, pvt);
	}

	return cs_enabled;
}

3514
static int probe_one_instance(unsigned int nid)
3515
{
3516
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
3517
	struct amd64_pvt *pvt = NULL;
3518
	struct ecc_settings *s;
3519
	int ret;
3520

3521 3522 3523
	ret = -ENOMEM;
	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
	if (!s)
3524
		goto err_out;
3525 3526 3527

	ecc_stngs[nid] = s;

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
	if (!pvt)
		goto err_settings;

	pvt->mc_node_id	= nid;
	pvt->F3 = F3;

	fam_type = per_family_init(pvt);
	if (!fam_type)
		goto err_enable;

	ret = hw_info_get(pvt);
	if (ret < 0)
		goto err_enable;

3543 3544 3545 3546 3547 3548
	ret = 0;
	if (!instance_has_memory(pvt)) {
		amd64_info("Node %d: No DIMMs detected.\n", nid);
		goto err_enable;
	}

3549
	if (!ecc_enabled(pvt)) {
3550
		ret = -ENODEV;
3551 3552 3553 3554

		if (!ecc_enable_override)
			goto err_enable;

3555 3556 3557 3558 3559
		if (boot_cpu_data.x86 >= 0x17) {
			amd64_warn("Forcing ECC on is not recommended on newer systems. Please enable ECC in BIOS.");
			goto err_enable;
		} else
			amd64_warn("Forcing ECC on!\n");
3560 3561 3562 3563 3564

		if (!enable_ecc_error_reporting(s, nid, F3))
			goto err_enable;
	}

3565
	ret = init_one_instance(pvt);
3566
	if (ret < 0) {
3567
		amd64_err("Error probing instance: %d\n", nid);
3568 3569 3570

		if (boot_cpu_data.x86 < 0x17)
			restore_ecc_error_reporting(s, nid, F3);
3571 3572

		goto err_enable;
3573
	}
3574

3575 3576
	dump_misc_regs(pvt);

3577
	return ret;
3578 3579

err_enable:
3580 3581 3582 3583
	hw_info_put(pvt);
	kfree(pvt);

err_settings:
3584 3585 3586 3587 3588
	kfree(s);
	ecc_stngs[nid] = NULL;

err_out:
	return ret;
3589 3590
}

3591
static void remove_one_instance(unsigned int nid)
3592
{
3593 3594
	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
	struct ecc_settings *s = ecc_stngs[nid];
3595 3596
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;
3597 3598

	/* Remove from EDAC CORE tracking list */
3599
	mci = edac_mc_del_mc(&F3->dev);
3600 3601 3602 3603 3604
	if (!mci)
		return;

	pvt = mci->pvt_info;

3605
	restore_ecc_error_reporting(s, nid, F3);
3606

3607 3608
	kfree(ecc_stngs[nid]);
	ecc_stngs[nid] = NULL;
3609

3610
	/* Free the EDAC CORE resources */
3611 3612
	mci->pvt_info = NULL;

3613
	hw_info_put(pvt);
3614
	kfree(pvt);
3615 3616 3617
	edac_mc_free(mci);
}

3618
static void setup_pci_device(void)
3619 3620 3621 3622
{
	struct mem_ctl_info *mci;
	struct amd64_pvt *pvt;

3623
	if (pci_ctl)
3624 3625
		return;

3626
	mci = edac_mc_find(0);
3627 3628
	if (!mci)
		return;
3629

3630
	pvt = mci->pvt_info;
3631 3632 3633 3634
	if (pvt->umc)
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F0->dev, EDAC_MOD_STR);
	else
		pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
3635 3636 3637
	if (!pci_ctl) {
		pr_warn("%s(): Unable to create PCI control\n", __func__);
		pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
3638 3639 3640
	}
}

3641
static const struct x86_cpu_id amd64_cpuids[] = {
3642 3643 3644 3645 3646 3647 3648
	X86_MATCH_VENDOR_FAM(AMD,	0x0F, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x10, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x15, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x16, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x17, NULL),
	X86_MATCH_VENDOR_FAM(HYGON,	0x18, NULL),
	X86_MATCH_VENDOR_FAM(AMD,	0x19, NULL),
3649 3650 3651 3652
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);

3653 3654
static int __init amd64_edac_init(void)
{
3655
	const char *owner;
3656
	int err = -ENODEV;
3657
	int i;
3658

3659 3660 3661 3662
	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

3663 3664 3665
	if (!x86_match_cpu(amd64_cpuids))
		return -ENODEV;

3666
	if (amd_cache_northbridges() < 0)
3667
		return -ENODEV;
3668

3669 3670
	opstate_init();

3671
	err = -ENOMEM;
K
Kees Cook 已提交
3672
	ecc_stngs = kcalloc(amd_nb_num(), sizeof(ecc_stngs[0]), GFP_KERNEL);
3673
	if (!ecc_stngs)
3674
		goto err_free;
3675

3676
	msrs = msrs_alloc();
3677
	if (!msrs)
3678
		goto err_free;
3679

3680 3681 3682
	for (i = 0; i < amd_nb_num(); i++) {
		err = probe_one_instance(i);
		if (err) {
3683 3684 3685
			/* unwind properly */
			while (--i >= 0)
				remove_one_instance(i);
3686

3687 3688
			goto err_pci;
		}
3689
	}
3690

3691 3692 3693 3694 3695
	if (!edac_has_mcs()) {
		err = -ENODEV;
		goto err_pci;
	}

3696 3697 3698 3699 3700 3701
	/* register stuff with EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_register_ecc_decoder(decode_umc_error);
	else
		amd_register_ecc_decoder(decode_bus_error);

3702
	setup_pci_device();
T
Tomasz Pala 已提交
3703 3704 3705 3706 3707

#ifdef CONFIG_X86_32
	amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
#endif

3708 3709
	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);

3710
	return 0;
3711

3712 3713 3714
err_pci:
	msrs_free(msrs);
	msrs = NULL;
3715

3716 3717 3718 3719
err_free:
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3720 3721 3722 3723 3724
	return err;
}

static void __exit amd64_edac_exit(void)
{
3725 3726
	int i;

3727 3728
	if (pci_ctl)
		edac_pci_release_generic_ctl(pci_ctl);
3729

3730 3731 3732 3733 3734 3735
	/* unregister from EDAC MCE */
	if (boot_cpu_data.x86 >= 0x17)
		amd_unregister_ecc_decoder(decode_umc_error);
	else
		amd_unregister_ecc_decoder(decode_bus_error);

3736 3737
	for (i = 0; i < amd_nb_num(); i++)
		remove_one_instance(i);
3738

3739 3740 3741
	kfree(ecc_stngs);
	ecc_stngs = NULL;

3742 3743
	msrs_free(msrs);
	msrs = NULL;
3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
}

module_init(amd64_edac_init);
module_exit(amd64_edac_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
		"Dave Peterson, Thayne Harbaugh");
MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
		EDAC_AMD64_VERSION);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");