compression.c 49.9 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Chris Mason 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (C) 2008 Oracle.  All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/bio.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/pagemap.h>
#include <linux/highmem.h>
#include <linux/time.h>
#include <linux/init.h>
#include <linux/string.h>
#include <linux/backing-dev.h>
#include <linux/writeback.h>
17
#include <linux/slab.h>
18
#include <linux/sched/mm.h>
19
#include <linux/log2.h>
20
#include <crypto/hash.h>
21
#include "misc.h"
C
Chris Mason 已提交
22 23 24 25 26 27 28 29 30
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "ordered-data.h"
#include "compression.h"
#include "extent_io.h"
#include "extent_map.h"
31
#include "subpage.h"
32
#include "zoned.h"
C
Chris Mason 已提交
33

34 35 36 37 38 39 40 41 42 43
static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };

const char* btrfs_compress_type2str(enum btrfs_compression_type type)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
	case BTRFS_COMPRESS_LZO:
	case BTRFS_COMPRESS_ZSTD:
	case BTRFS_COMPRESS_NONE:
		return btrfs_compress_types[type];
44 45
	default:
		break;
46 47 48 49 50
	}

	return NULL;
}

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
bool btrfs_compress_is_valid_type(const char *str, size_t len)
{
	int i;

	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
		size_t comp_len = strlen(btrfs_compress_types[i]);

		if (len < comp_len)
			continue;

		if (!strncmp(btrfs_compress_types[i], str, comp_len))
			return true;
	}
	return false;
}

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
static int compression_compress_pages(int type, struct list_head *ws,
               struct address_space *mapping, u64 start, struct page **pages,
               unsigned long *out_pages, unsigned long *total_in,
               unsigned long *total_out)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB:
		return zlib_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_LZO:
		return lzo_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_ZSTD:
		return zstd_compress_pages(ws, mapping, start, pages,
				out_pages, total_in, total_out);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
85 86 87 88 89 90 91
		 * This can happen when compression races with remount setting
		 * it to 'no compress', while caller doesn't call
		 * inode_need_compress() to check if we really need to
		 * compress.
		 *
		 * Not a big deal, just need to inform caller that we
		 * haven't allocated any pages yet.
92
		 */
93
		*out_pages = 0;
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
		return -E2BIG;
	}
}

static int compression_decompress_bio(int type, struct list_head *ws,
		struct compressed_bio *cb)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

static int compression_decompress(int type, struct list_head *ws,
               unsigned char *data_in, struct page *dest_page,
               unsigned long start_byte, size_t srclen, size_t destlen)
{
	switch (type) {
	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
						start_byte, srclen, destlen);
	case BTRFS_COMPRESS_NONE:
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

136
static int btrfs_decompress_bio(struct compressed_bio *cb);
137

138
static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
139 140 141
				      unsigned long disk_size)
{
	return sizeof(struct compressed_bio) +
142
		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
143 144
}

145
static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
146 147
				 u64 disk_start)
{
148
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
149
	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
150
	const u32 csum_size = fs_info->csum_size;
151
	const u32 sectorsize = fs_info->sectorsize;
152
	struct page *page;
153
	unsigned int i;
154
	char *kaddr;
155
	u8 csum[BTRFS_CSUM_SIZE];
156
	struct compressed_bio *cb = bio->bi_private;
157
	u8 *cb_sum = cb->sums;
158

159
	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
160 161
		return 0;

162 163
	shash->tfm = fs_info->csum_shash;

164
	for (i = 0; i < cb->nr_pages; i++) {
165 166
		u32 pg_offset;
		u32 bytes_left = PAGE_SIZE;
167 168
		page = cb->compressed_pages[i];

169 170 171 172 173 174 175
		/* Determine the remaining bytes inside the page first */
		if (i == cb->nr_pages - 1)
			bytes_left = cb->compressed_len - i * PAGE_SIZE;

		/* Hash through the page sector by sector */
		for (pg_offset = 0; pg_offset < bytes_left;
		     pg_offset += sectorsize) {
176
			kaddr = page_address(page);
177 178 179 180 181 182
			crypto_shash_digest(shash, kaddr + pg_offset,
					    sectorsize, csum);

			if (memcmp(&csum, cb_sum, csum_size) != 0) {
				btrfs_print_data_csum_error(inode, disk_start,
						csum, cb_sum, cb->mirror_num);
183
				if (btrfs_bio(bio)->device)
184
					btrfs_dev_stat_inc_and_print(
185
						btrfs_bio(bio)->device,
186 187 188 189 190
						BTRFS_DEV_STAT_CORRUPTION_ERRS);
				return -EIO;
			}
			cb_sum += csum_size;
			disk_start += sectorsize;
191 192
		}
	}
193
	return 0;
194 195
}

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
/*
 * Reduce bio and io accounting for a compressed_bio with its corresponding bio.
 *
 * Return true if there is no pending bio nor io.
 * Return false otherwise.
 */
static bool dec_and_test_compressed_bio(struct compressed_bio *cb, struct bio *bio)
{
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	unsigned int bi_size = 0;
	bool last_io = false;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	/*
	 * At endio time, bi_iter.bi_size doesn't represent the real bio size.
	 * Thus here we have to iterate through all segments to grab correct
	 * bio size.
	 */
	bio_for_each_segment_all(bvec, bio, iter_all)
		bi_size += bvec->bv_len;

	if (bio->bi_status)
		cb->errors = 1;

	ASSERT(bi_size && bi_size <= cb->compressed_len);
	last_io = refcount_sub_and_test(bi_size >> fs_info->sectorsize_bits,
					&cb->pending_sectors);
224 225 226 227 228 229 230
	/*
	 * Here we must wake up the possible error handler after all other
	 * operations on @cb finished, or we can race with
	 * finish_compressed_bio_*() which may free @cb.
	 */
	wake_up_var(cb);

231 232 233
	return last_io;
}

234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void finish_compressed_bio_read(struct compressed_bio *cb, struct bio *bio)
{
	unsigned int index;
	struct page *page;

	/* Release the compressed pages */
	for (index = 0; index < cb->nr_pages; index++) {
		page = cb->compressed_pages[index];
		page->mapping = NULL;
		put_page(page);
	}

	/* Do io completion on the original bio */
	if (cb->errors) {
		bio_io_error(cb->orig_bio);
	} else {
		struct bio_vec *bvec;
		struct bvec_iter_all iter_all;

		ASSERT(bio);
		ASSERT(!bio->bi_status);
		/*
		 * We have verified the checksum already, set page checked so
		 * the end_io handlers know about it
		 */
		ASSERT(!bio_flagged(bio, BIO_CLONED));
		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all) {
			u64 bvec_start = page_offset(bvec->bv_page) +
					 bvec->bv_offset;

			btrfs_page_set_checked(btrfs_sb(cb->inode->i_sb),
					bvec->bv_page, bvec_start,
					bvec->bv_len);
		}

		bio_endio(cb->orig_bio);
	}

	/* Finally free the cb struct */
	kfree(cb->compressed_pages);
	kfree(cb);
}

C
Chris Mason 已提交
277 278 279 280 281 282 283 284 285 286
/* when we finish reading compressed pages from the disk, we
 * decompress them and then run the bio end_io routines on the
 * decompressed pages (in the inode address space).
 *
 * This allows the checksumming and other IO error handling routines
 * to work normally
 *
 * The compressed pages are freed here, and it must be run
 * in process context
 */
287
static void end_compressed_bio_read(struct bio *bio)
C
Chris Mason 已提交
288 289 290
{
	struct compressed_bio *cb = bio->bi_private;
	struct inode *inode;
291
	unsigned int mirror = btrfs_bio(bio)->mirror_num;
292
	int ret = 0;
C
Chris Mason 已提交
293

294
	if (!dec_and_test_compressed_bio(cb, bio))
C
Chris Mason 已提交
295 296
		goto out;

297 298 299 300
	/*
	 * Record the correct mirror_num in cb->orig_bio so that
	 * read-repair can work properly.
	 */
301
	btrfs_bio(cb->orig_bio)->mirror_num = mirror;
302 303
	cb->mirror_num = mirror;

304 305 306 307 308 309 310
	/*
	 * Some IO in this cb have failed, just skip checksum as there
	 * is no way it could be correct.
	 */
	if (cb->errors == 1)
		goto csum_failed;

311
	inode = cb->inode;
312
	ret = check_compressed_csum(BTRFS_I(inode), bio,
D
David Sterba 已提交
313
				    bio->bi_iter.bi_sector << 9);
314 315 316
	if (ret)
		goto csum_failed;

C
Chris Mason 已提交
317 318 319
	/* ok, we're the last bio for this extent, lets start
	 * the decompression.
	 */
320 321
	ret = btrfs_decompress_bio(cb);

322
csum_failed:
C
Chris Mason 已提交
323 324
	if (ret)
		cb->errors = 1;
325
	finish_compressed_bio_read(cb, bio);
C
Chris Mason 已提交
326 327 328 329 330 331 332 333
out:
	bio_put(bio);
}

/*
 * Clear the writeback bits on all of the file
 * pages for a compressed write
 */
334 335
static noinline void end_compressed_writeback(struct inode *inode,
					      const struct compressed_bio *cb)
C
Chris Mason 已提交
336
{
337
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
338 339
	unsigned long index = cb->start >> PAGE_SHIFT;
	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
C
Chris Mason 已提交
340 341 342 343 344
	struct page *pages[16];
	unsigned long nr_pages = end_index - index + 1;
	int i;
	int ret;

345 346 347
	if (cb->errors)
		mapping_set_error(inode->i_mapping, -EIO);

C
Chris Mason 已提交
348
	while (nr_pages > 0) {
C
Chris Mason 已提交
349
		ret = find_get_pages_contig(inode->i_mapping, index,
350 351
				     min_t(unsigned long,
				     nr_pages, ARRAY_SIZE(pages)), pages);
C
Chris Mason 已提交
352 353 354 355 356 357
		if (ret == 0) {
			nr_pages -= 1;
			index += 1;
			continue;
		}
		for (i = 0; i < ret; i++) {
358 359
			if (cb->errors)
				SetPageError(pages[i]);
360 361
			btrfs_page_clamp_clear_writeback(fs_info, pages[i],
							 cb->start, cb->len);
362
			put_page(pages[i]);
C
Chris Mason 已提交
363 364 365 366 367 368 369
		}
		nr_pages -= ret;
		index += ret;
	}
	/* the inode may be gone now */
}

370
static void finish_compressed_bio_write(struct compressed_bio *cb)
C
Chris Mason 已提交
371
{
372
	struct inode *inode = cb->inode;
373
	unsigned int index;
C
Chris Mason 已提交
374

375 376 377
	/*
	 * Ok, we're the last bio for this extent, step one is to call back
	 * into the FS and do all the end_io operations.
C
Chris Mason 已提交
378
	 */
379
	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
380
			cb->start, cb->start + cb->len - 1,
381
			!cb->errors);
C
Chris Mason 已提交
382

383
	end_compressed_writeback(inode, cb);
384
	/* Note, our inode could be gone now */
C
Chris Mason 已提交
385 386

	/*
387
	 * Release the compressed pages, these came from alloc_page and
C
Chris Mason 已提交
388 389 390
	 * are not attached to the inode at all
	 */
	for (index = 0; index < cb->nr_pages; index++) {
391 392
		struct page *page = cb->compressed_pages[index];

C
Chris Mason 已提交
393
		page->mapping = NULL;
394
		put_page(page);
C
Chris Mason 已提交
395 396
	}

397
	/* Finally free the cb struct */
C
Chris Mason 已提交
398 399
	kfree(cb->compressed_pages);
	kfree(cb);
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
}

/*
 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 * writeback on the file pages and free the compressed pages.
 *
 * This also calls the writeback end hooks for the file pages so that metadata
 * and checksums can be updated in the file.
 */
static void end_compressed_bio_write(struct bio *bio)
{
	struct compressed_bio *cb = bio->bi_private;

	if (!dec_and_test_compressed_bio(cb, bio))
		goto out;

	btrfs_record_physical_zoned(cb->inode, cb->start, bio);

	finish_compressed_bio_write(cb);
C
Chris Mason 已提交
419 420 421 422
out:
	bio_put(bio);
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436
static blk_status_t submit_compressed_bio(struct btrfs_fs_info *fs_info,
					  struct compressed_bio *cb,
					  struct bio *bio, int mirror_num)
{
	blk_status_t ret;

	ASSERT(bio->bi_iter.bi_size);
	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
	if (ret)
		return ret;
	ret = btrfs_map_bio(fs_info, bio, mirror_num);
	return ret;
}

437
/*
438 439 440 441 442 443 444 445 446 447 448 449 450
 * Allocate a compressed_bio, which will be used to read/write on-disk
 * (aka, compressed) * data.
 *
 * @cb:                 The compressed_bio structure, which records all the needed
 *                      information to bind the compressed data to the uncompressed
 *                      page cache.
 * @disk_byten:         The logical bytenr where the compressed data will be read
 *                      from or written to.
 * @endio_func:         The endio function to call after the IO for compressed data
 *                      is finished.
 * @next_stripe_start:  Return value of logical bytenr of where next stripe starts.
 *                      Let the caller know to only fill the bio up to the stripe
 *                      boundary.
451
 */
452 453


454
static struct bio *alloc_compressed_bio(struct compressed_bio *cb, u64 disk_bytenr,
455 456
					unsigned int opf, bio_end_io_t endio_func,
					u64 *next_stripe_start)
457
{
458 459 460
	struct btrfs_fs_info *fs_info = btrfs_sb(cb->inode->i_sb);
	struct btrfs_io_geometry geom;
	struct extent_map *em;
461
	struct bio *bio;
462
	int ret;
463 464 465 466 467 468 469 470

	bio = btrfs_bio_alloc(BIO_MAX_VECS);

	bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
	bio->bi_opf = opf;
	bio->bi_private = cb;
	bio->bi_end_io = endio_func;

471 472 473 474 475
	em = btrfs_get_chunk_map(fs_info, disk_bytenr, fs_info->sectorsize);
	if (IS_ERR(em)) {
		bio_put(bio);
		return ERR_CAST(em);
	}
476

477 478 479 480 481 482 483 484
	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
		bio_set_dev(bio, em->map_lookup->stripes[0].dev->bdev);

	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio), disk_bytenr, &geom);
	free_extent_map(em);
	if (ret < 0) {
		bio_put(bio);
		return ERR_PTR(ret);
485
	}
486 487
	*next_stripe_start = disk_bytenr + geom.len;

488 489 490
	return bio;
}

C
Chris Mason 已提交
491 492 493 494 495 496 497 498 499
/*
 * worker function to build and submit bios for previously compressed pages.
 * The corresponding pages in the inode should be marked for writeback
 * and the compressed pages should have a reference on them for dropping
 * when the IO is complete.
 *
 * This also checksums the file bytes and gets things ready for
 * the end io hooks.
 */
500
blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
501 502
				 unsigned int len, u64 disk_start,
				 unsigned int compressed_len,
C
Chris Mason 已提交
503
				 struct page **compressed_pages,
504
				 unsigned int nr_pages,
505 506
				 unsigned int write_flags,
				 struct cgroup_subsys_state *blkcg_css)
C
Chris Mason 已提交
507
{
508
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
C
Chris Mason 已提交
509 510
	struct bio *bio = NULL;
	struct compressed_bio *cb;
511
	u64 cur_disk_bytenr = disk_start;
512
	u64 next_stripe_start;
513
	blk_status_t ret;
514
	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
515 516
	const bool use_append = btrfs_use_zone_append(inode, disk_start);
	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
C
Chris Mason 已提交
517

518 519
	ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
	       IS_ALIGNED(len, fs_info->sectorsize));
520
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
521
	if (!cb)
522
		return BLK_STS_RESOURCE;
523
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
C
Chris Mason 已提交
524
	cb->errors = 0;
525
	cb->inode = &inode->vfs_inode;
C
Chris Mason 已提交
526 527
	cb->start = start;
	cb->len = len;
528
	cb->mirror_num = 0;
C
Chris Mason 已提交
529 530 531 532 533
	cb->compressed_pages = compressed_pages;
	cb->compressed_len = compressed_len;
	cb->orig_bio = NULL;
	cb->nr_pages = nr_pages;

534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
	while (cur_disk_bytenr < disk_start + compressed_len) {
		u64 offset = cur_disk_bytenr - disk_start;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = compressed_pages[index];
		bool submit = false;

		/* Allocate new bio if submitted or not yet allocated */
		if (!bio) {
			bio = alloc_compressed_bio(cb, cur_disk_bytenr,
				bio_op | write_flags, end_compressed_bio_write,
				&next_stripe_start);
			if (IS_ERR(bio)) {
				ret = errno_to_blk_status(PTR_ERR(bio));
				bio = NULL;
				goto finish_cb;
			}
		}
553
		/*
554 555
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
556
		 */
557
		ASSERT(cur_disk_bytenr != next_stripe_start);
558

559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		/*
		 * We have various limits on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_bytenr);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));

		if (use_append)
			added = bio_add_zone_append_page(bio, page, real_size,
					offset_in_page(offset));
		else
			added = bio_add_page(bio, page, real_size,
					offset_in_page(offset));
		/* Reached zoned boundary */
		if (added == 0)
			submit = true;

		cur_disk_bytenr += added;
		/* Reached stripe boundary */
		if (cur_disk_bytenr == next_stripe_start)
			submit = true;

		/* Finished the range */
		if (cur_disk_bytenr == disk_start + compressed_len)
			submit = true;

		if (submit) {
590
			if (!skip_sum) {
591
				ret = btrfs_csum_one_bio(inode, bio, start, 1);
592 593
				if (ret)
					goto finish_cb;
594
			}
595

596
			ret = submit_compressed_bio(fs_info, cb, bio, 0);
597 598
			if (ret)
				goto finish_cb;
599
			bio = NULL;
C
Chris Mason 已提交
600
		}
601
		cond_resched();
C
Chris Mason 已提交
602
	}
603 604 605
	if (blkcg_css)
		kthread_associate_blkcg(NULL);

C
Chris Mason 已提交
606
	return 0;
607 608 609 610 611 612

finish_cb:
	if (bio) {
		bio->bi_status = ret;
		bio_endio(bio);
	}
613 614 615
	/* Last byte of @cb is submitted, endio will free @cb */
	if (cur_disk_bytenr == disk_start + compressed_len)
		return ret;
616

617 618 619
	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
			   (disk_start + compressed_len - cur_disk_bytenr) >>
			   fs_info->sectorsize_bits);
620 621 622 623 624 625 626 627
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
	finish_compressed_bio_write(cb);
	return ret;
C
Chris Mason 已提交
628 629
}

630 631
static u64 bio_end_offset(struct bio *bio)
{
M
Ming Lei 已提交
632
	struct bio_vec *last = bio_last_bvec_all(bio);
633 634 635 636

	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
}

637 638 639 640 641 642 643 644 645 646 647
/*
 * Add extra pages in the same compressed file extent so that we don't need to
 * re-read the same extent again and again.
 *
 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 * full page then submit bio for each compressed/regular extents.
 *
 * This means, if we have several sectors in the same page points to the same
 * on-disk compressed data, we will re-read the same extent many times and
 * this function can only help for the next page.
 */
648 649 650 651
static noinline int add_ra_bio_pages(struct inode *inode,
				     u64 compressed_end,
				     struct compressed_bio *cb)
{
652
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
653
	unsigned long end_index;
654
	u64 cur = bio_end_offset(cb->orig_bio);
655 656 657 658 659 660 661
	u64 isize = i_size_read(inode);
	int ret;
	struct page *page;
	struct extent_map *em;
	struct address_space *mapping = inode->i_mapping;
	struct extent_map_tree *em_tree;
	struct extent_io_tree *tree;
662
	int sectors_missed = 0;
663 664 665 666 667 668 669

	em_tree = &BTRFS_I(inode)->extent_tree;
	tree = &BTRFS_I(inode)->io_tree;

	if (isize == 0)
		return 0;

670 671 672 673 674 675 676 677 678 679
	/*
	 * For current subpage support, we only support 64K page size,
	 * which means maximum compressed extent size (128K) is just 2x page
	 * size.
	 * This makes readahead less effective, so here disable readahead for
	 * subpage for now, until full compressed write is supported.
	 */
	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
		return 0;

680
	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
681

682 683 684 685
	while (cur < compressed_end) {
		u64 page_end;
		u64 pg_index = cur >> PAGE_SHIFT;
		u32 add_size;
686

687
		if (pg_index > end_index)
688 689
			break;

690
		page = xa_load(&mapping->i_pages, pg_index);
691
		if (page && !xa_is_value(page)) {
692 693 694 695 696
			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
					  fs_info->sectorsize_bits;

			/* Beyond threshold, no need to continue */
			if (sectors_missed > 4)
697
				break;
698 699 700 701 702 703 704

			/*
			 * Jump to next page start as we already have page for
			 * current offset.
			 */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
705 706
		}

707 708
		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
								 ~__GFP_FS));
709 710 711
		if (!page)
			break;

712
		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
713
			put_page(page);
714 715 716
			/* There is already a page, skip to page end */
			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
			continue;
717 718
		}

719 720 721 722 723 724 725
		ret = set_page_extent_mapped(page);
		if (ret < 0) {
			unlock_page(page);
			put_page(page);
			break;
		}

726 727
		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
		lock_extent(tree, cur, page_end);
728
		read_lock(&em_tree->lock);
729
		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
730
		read_unlock(&em_tree->lock);
731

732 733 734 735 736 737 738
		/*
		 * At this point, we have a locked page in the page cache for
		 * these bytes in the file.  But, we have to make sure they map
		 * to this compressed extent on disk.
		 */
		if (!em || cur < em->start ||
		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
739
		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
740
			free_extent_map(em);
741
			unlock_extent(tree, cur, page_end);
742
			unlock_page(page);
743
			put_page(page);
744 745 746 747 748
			break;
		}
		free_extent_map(em);

		if (page->index == end_index) {
749
			size_t zero_offset = offset_in_page(isize);
750 751 752

			if (zero_offset) {
				int zeros;
753
				zeros = PAGE_SIZE - zero_offset;
754
				memzero_page(page, zero_offset, zeros);
755 756 757 758
				flush_dcache_page(page);
			}
		}

759 760 761 762
		add_size = min(em->start + em->len, page_end + 1) - cur;
		ret = bio_add_page(cb->orig_bio, page, add_size, offset_in_page(cur));
		if (ret != add_size) {
			unlock_extent(tree, cur, page_end);
763
			unlock_page(page);
764
			put_page(page);
765 766
			break;
		}
767 768 769 770 771 772 773 774 775
		/*
		 * If it's subpage, we also need to increase its
		 * subpage::readers number, as at endio we will decrease
		 * subpage::readers and to unlock the page.
		 */
		if (fs_info->sectorsize < PAGE_SIZE)
			btrfs_subpage_start_reader(fs_info, page, cur, add_size);
		put_page(page);
		cur += add_size;
776 777 778 779
	}
	return 0;
}

C
Chris Mason 已提交
780 781 782 783 784
/*
 * for a compressed read, the bio we get passed has all the inode pages
 * in it.  We don't actually do IO on those pages but allocate new ones
 * to hold the compressed pages on disk.
 *
785
 * bio->bi_iter.bi_sector points to the compressed extent on disk
C
Chris Mason 已提交
786 787 788 789 790
 * bio->bi_io_vec points to all of the inode pages
 *
 * After the compressed pages are read, we copy the bytes into the
 * bio we were passed and then call the bio end_io calls
 */
791
blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
C
Chris Mason 已提交
792 793
				 int mirror_num, unsigned long bio_flags)
{
794
	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
C
Chris Mason 已提交
795 796
	struct extent_map_tree *em_tree;
	struct compressed_bio *cb;
797 798 799
	unsigned int compressed_len;
	unsigned int nr_pages;
	unsigned int pg_index;
800 801 802 803
	struct bio *comp_bio = NULL;
	const u64 disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
	u64 cur_disk_byte = disk_bytenr;
	u64 next_stripe_start;
804
	u64 file_offset;
805 806
	u64 em_len;
	u64 em_start;
C
Chris Mason 已提交
807
	struct extent_map *em;
808
	blk_status_t ret = BLK_STS_RESOURCE;
809
	int faili = 0;
810
	u8 *sums;
C
Chris Mason 已提交
811 812 813

	em_tree = &BTRFS_I(inode)->extent_tree;

814 815 816
	file_offset = bio_first_bvec_all(bio)->bv_offset +
		      page_offset(bio_first_page_all(bio));

C
Chris Mason 已提交
817
	/* we need the actual starting offset of this extent in the file */
818
	read_lock(&em_tree->lock);
819
	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
820
	read_unlock(&em_tree->lock);
821
	if (!em)
822
		return BLK_STS_IOERR;
C
Chris Mason 已提交
823

824
	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
825
	compressed_len = em->block_len;
826
	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
827 828 829
	if (!cb)
		goto out;

830
	refcount_set(&cb->pending_sectors, compressed_len >> fs_info->sectorsize_bits);
C
Chris Mason 已提交
831 832
	cb->errors = 0;
	cb->inode = inode;
833
	cb->mirror_num = mirror_num;
834
	sums = cb->sums;
C
Chris Mason 已提交
835

836
	cb->start = em->orig_start;
837 838
	em_len = em->len;
	em_start = em->start;
839

C
Chris Mason 已提交
840
	free_extent_map(em);
841
	em = NULL;
C
Chris Mason 已提交
842

C
Christoph Hellwig 已提交
843
	cb->len = bio->bi_iter.bi_size;
C
Chris Mason 已提交
844
	cb->compressed_len = compressed_len;
845
	cb->compress_type = extent_compress_type(bio_flags);
C
Chris Mason 已提交
846 847
	cb->orig_bio = bio;

848
	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
849
	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
C
Chris Mason 已提交
850
				       GFP_NOFS);
851 852 853
	if (!cb->compressed_pages)
		goto fail1;

854
	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
855
		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
856 857
		if (!cb->compressed_pages[pg_index]) {
			faili = pg_index - 1;
D
Dan Carpenter 已提交
858
			ret = BLK_STS_RESOURCE;
859
			goto fail2;
860
		}
C
Chris Mason 已提交
861
	}
862
	faili = nr_pages - 1;
C
Chris Mason 已提交
863 864
	cb->nr_pages = nr_pages;

865
	add_ra_bio_pages(inode, em_start + em_len, cb);
866 867

	/* include any pages we added in add_ra-bio_pages */
C
Christoph Hellwig 已提交
868
	cb->len = bio->bi_iter.bi_size;
869

870 871 872 873 874 875 876
	while (cur_disk_byte < disk_bytenr + compressed_len) {
		u64 offset = cur_disk_byte - disk_bytenr;
		unsigned int index = offset >> PAGE_SHIFT;
		unsigned int real_size;
		unsigned int added;
		struct page *page = cb->compressed_pages[index];
		bool submit = false;
C
Chris Mason 已提交
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
		/* Allocate new bio if submitted or not yet allocated */
		if (!comp_bio) {
			comp_bio = alloc_compressed_bio(cb, cur_disk_byte,
					REQ_OP_READ, end_compressed_bio_read,
					&next_stripe_start);
			if (IS_ERR(comp_bio)) {
				ret = errno_to_blk_status(PTR_ERR(comp_bio));
				comp_bio = NULL;
				goto finish_cb;
			}
		}
		/*
		 * We should never reach next_stripe_start start as we will
		 * submit comp_bio when reach the boundary immediately.
		 */
		ASSERT(cur_disk_byte != next_stripe_start);
		/*
		 * We have various limit on the real read size:
		 * - stripe boundary
		 * - page boundary
		 * - compressed length boundary
		 */
		real_size = min_t(u64, U32_MAX, next_stripe_start - cur_disk_byte);
		real_size = min_t(u64, real_size, PAGE_SIZE - offset_in_page(offset));
		real_size = min_t(u64, real_size, compressed_len - offset);
		ASSERT(IS_ALIGNED(real_size, fs_info->sectorsize));
904

905
		added = bio_add_page(comp_bio, page, real_size, offset_in_page(offset));
906
		/*
907 908
		 * Maximum compressed extent is smaller than bio size limit,
		 * thus bio_add_page() should always success.
909
		 */
910 911
		ASSERT(added == real_size);
		cur_disk_byte += added;
912

913 914 915
		/* Reached stripe boundary, need to submit */
		if (cur_disk_byte == next_stripe_start)
			submit = true;
916

917 918 919
		/* Has finished the range, need to submit */
		if (cur_disk_byte == disk_bytenr + compressed_len)
			submit = true;
C
Chris Mason 已提交
920

921
		if (submit) {
922 923
			unsigned int nr_sectors;

924
			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
925 926
			if (ret)
				goto finish_cb;
927 928 929

			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
						  fs_info->sectorsize);
930
			sums += fs_info->csum_size * nr_sectors;
931

932
			ret = submit_compressed_bio(fs_info, cb, comp_bio, mirror_num);
933 934
			if (ret)
				goto finish_cb;
935
			comp_bio = NULL;
C
Chris Mason 已提交
936 937 938
		}
	}
	return 0;
939 940

fail2:
941 942 943 944
	while (faili >= 0) {
		__free_page(cb->compressed_pages[faili]);
		faili--;
	}
945 946 947 948 949 950 951

	kfree(cb->compressed_pages);
fail1:
	kfree(cb);
out:
	free_extent_map(em);
	return ret;
952 953 954 955 956
finish_cb:
	if (comp_bio) {
		comp_bio->bi_status = ret;
		bio_endio(comp_bio);
	}
957 958 959 960 961 962 963
	/* All bytes of @cb is submitted, endio will free @cb */
	if (cur_disk_byte == disk_bytenr + compressed_len)
		return ret;

	wait_var_event(cb, refcount_read(&cb->pending_sectors) ==
			   (disk_bytenr + compressed_len - cur_disk_byte) >>
			   fs_info->sectorsize_bits);
964 965 966 967 968 969 970 971
	/*
	 * Even with previous bio ended, we should still have io not yet
	 * submitted, thus need to finish @cb manually.
	 */
	ASSERT(refcount_read(&cb->pending_sectors));
	/* Now we are the only one referring @cb, can finish it safely. */
	finish_compressed_bio_read(cb, NULL);
	return ret;
C
Chris Mason 已提交
972
}
973

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/*
 * Heuristic uses systematic sampling to collect data from the input data
 * range, the logic can be tuned by the following constants:
 *
 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 */
#define SAMPLING_READ_SIZE	(16)
#define SAMPLING_INTERVAL	(256)

/*
 * For statistical analysis of the input data we consider bytes that form a
 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 * many times the object appeared in the sample.
 */
#define BUCKET_SIZE		(256)

/*
 * The size of the sample is based on a statistical sampling rule of thumb.
 * The common way is to perform sampling tests as long as the number of
 * elements in each cell is at least 5.
 *
 * Instead of 5, we choose 32 to obtain more accurate results.
 * If the data contain the maximum number of symbols, which is 256, we obtain a
 * sample size bound by 8192.
 *
 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 * from up to 512 locations.
 */
#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)

struct bucket_item {
	u32 count;
};
1009 1010

struct heuristic_ws {
1011 1012
	/* Partial copy of input data */
	u8 *sample;
1013
	u32 sample_size;
1014 1015
	/* Buckets store counters for each byte value */
	struct bucket_item *bucket;
1016 1017
	/* Sorting buffer */
	struct bucket_item *bucket_b;
1018 1019 1020
	struct list_head list;
};

1021 1022
static struct workspace_manager heuristic_wsm;

1023 1024 1025 1026 1027 1028
static void free_heuristic_ws(struct list_head *ws)
{
	struct heuristic_ws *workspace;

	workspace = list_entry(ws, struct heuristic_ws, list);

1029 1030
	kvfree(workspace->sample);
	kfree(workspace->bucket);
1031
	kfree(workspace->bucket_b);
1032 1033 1034
	kfree(workspace);
}

1035
static struct list_head *alloc_heuristic_ws(unsigned int level)
1036 1037 1038 1039 1040 1041 1042
{
	struct heuristic_ws *ws;

	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
	if (!ws)
		return ERR_PTR(-ENOMEM);

1043 1044 1045 1046 1047 1048 1049
	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
	if (!ws->sample)
		goto fail;

	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
	if (!ws->bucket)
		goto fail;
1050

1051 1052 1053 1054
	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
	if (!ws->bucket_b)
		goto fail;

1055
	INIT_LIST_HEAD(&ws->list);
1056
	return &ws->list;
1057 1058 1059
fail:
	free_heuristic_ws(&ws->list);
	return ERR_PTR(-ENOMEM);
1060 1061
}

1062
const struct btrfs_compress_op btrfs_heuristic_compress = {
1063
	.workspace_manager = &heuristic_wsm,
1064 1065
};

1066
static const struct btrfs_compress_op * const btrfs_compress_op[] = {
1067 1068
	/* The heuristic is represented as compression type 0 */
	&btrfs_heuristic_compress,
1069
	&btrfs_zlib_compress,
L
Li Zefan 已提交
1070
	&btrfs_lzo_compress,
N
Nick Terrell 已提交
1071
	&btrfs_zstd_compress,
1072 1073
};

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
static struct list_head *alloc_workspace(int type, unsigned int level)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
static void free_workspace(int type, struct list_head *ws)
{
	switch (type) {
	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
}

1106
static void btrfs_init_workspace_manager(int type)
1107
{
1108
	struct workspace_manager *wsm;
1109
	struct list_head *workspace;
1110

1111
	wsm = btrfs_compress_op[type]->workspace_manager;
1112 1113 1114 1115
	INIT_LIST_HEAD(&wsm->idle_ws);
	spin_lock_init(&wsm->ws_lock);
	atomic_set(&wsm->total_ws, 0);
	init_waitqueue_head(&wsm->ws_wait);
1116

1117 1118 1119 1120
	/*
	 * Preallocate one workspace for each compression type so we can
	 * guarantee forward progress in the worst case
	 */
1121
	workspace = alloc_workspace(type, 0);
1122 1123 1124 1125
	if (IS_ERR(workspace)) {
		pr_warn(
	"BTRFS: cannot preallocate compression workspace, will try later\n");
	} else {
1126 1127 1128
		atomic_set(&wsm->total_ws, 1);
		wsm->free_ws = 1;
		list_add(workspace, &wsm->idle_ws);
1129 1130 1131
	}
}

1132
static void btrfs_cleanup_workspace_manager(int type)
1133
{
1134
	struct workspace_manager *wsman;
1135 1136
	struct list_head *ws;

1137
	wsman = btrfs_compress_op[type]->workspace_manager;
1138 1139 1140
	while (!list_empty(&wsman->idle_ws)) {
		ws = wsman->idle_ws.next;
		list_del(ws);
1141
		free_workspace(type, ws);
1142
		atomic_dec(&wsman->total_ws);
1143 1144 1145 1146
	}
}

/*
1147 1148 1149 1150
 * This finds an available workspace or allocates a new one.
 * If it's not possible to allocate a new one, waits until there's one.
 * Preallocation makes a forward progress guarantees and we do not return
 * errors.
1151
 */
1152
struct list_head *btrfs_get_workspace(int type, unsigned int level)
1153
{
1154
	struct workspace_manager *wsm;
1155 1156
	struct list_head *workspace;
	int cpus = num_online_cpus();
1157
	unsigned nofs_flag;
1158 1159 1160 1161 1162 1163
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1164
	wsm = btrfs_compress_op[type]->workspace_manager;
1165 1166 1167 1168 1169
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1170 1171

again:
1172 1173 1174
	spin_lock(ws_lock);
	if (!list_empty(idle_ws)) {
		workspace = idle_ws->next;
1175
		list_del(workspace);
1176
		(*free_ws)--;
1177
		spin_unlock(ws_lock);
1178 1179 1180
		return workspace;

	}
1181
	if (atomic_read(total_ws) > cpus) {
1182 1183
		DEFINE_WAIT(wait);

1184 1185
		spin_unlock(ws_lock);
		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1186
		if (atomic_read(total_ws) > cpus && !*free_ws)
1187
			schedule();
1188
		finish_wait(ws_wait, &wait);
1189 1190
		goto again;
	}
1191
	atomic_inc(total_ws);
1192
	spin_unlock(ws_lock);
1193

1194 1195 1196 1197 1198 1199
	/*
	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
	 * to turn it off here because we might get called from the restricted
	 * context of btrfs_compress_bio/btrfs_compress_pages
	 */
	nofs_flag = memalloc_nofs_save();
1200
	workspace = alloc_workspace(type, level);
1201 1202
	memalloc_nofs_restore(nofs_flag);

1203
	if (IS_ERR(workspace)) {
1204
		atomic_dec(total_ws);
1205
		wake_up(ws_wait);
1206 1207 1208 1209 1210 1211

		/*
		 * Do not return the error but go back to waiting. There's a
		 * workspace preallocated for each type and the compression
		 * time is bounded so we get to a workspace eventually. This
		 * makes our caller's life easier.
1212 1213 1214 1215
		 *
		 * To prevent silent and low-probability deadlocks (when the
		 * initial preallocation fails), check if there are any
		 * workspaces at all.
1216
		 */
1217 1218 1219 1220 1221 1222
		if (atomic_read(total_ws) == 0) {
			static DEFINE_RATELIMIT_STATE(_rs,
					/* once per minute */ 60 * HZ,
					/* no burst */ 1);

			if (__ratelimit(&_rs)) {
1223
				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1224 1225
			}
		}
1226
		goto again;
1227 1228 1229 1230
	}
	return workspace;
}

1231
static struct list_head *get_workspace(int type, int level)
1232
{
1233
	switch (type) {
1234
	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1235
	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1236
	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1237 1238 1239 1240 1241 1242 1243 1244
	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1245 1246
}

1247 1248 1249 1250
/*
 * put a workspace struct back on the list or free it if we have enough
 * idle ones sitting around
 */
1251
void btrfs_put_workspace(int type, struct list_head *ws)
1252
{
1253
	struct workspace_manager *wsm;
1254 1255 1256 1257 1258 1259
	struct list_head *idle_ws;
	spinlock_t *ws_lock;
	atomic_t *total_ws;
	wait_queue_head_t *ws_wait;
	int *free_ws;

1260
	wsm = btrfs_compress_op[type]->workspace_manager;
1261 1262 1263 1264 1265
	idle_ws	 = &wsm->idle_ws;
	ws_lock	 = &wsm->ws_lock;
	total_ws = &wsm->total_ws;
	ws_wait	 = &wsm->ws_wait;
	free_ws	 = &wsm->free_ws;
1266 1267

	spin_lock(ws_lock);
1268
	if (*free_ws <= num_online_cpus()) {
1269
		list_add(ws, idle_ws);
1270
		(*free_ws)++;
1271
		spin_unlock(ws_lock);
1272 1273
		goto wake;
	}
1274
	spin_unlock(ws_lock);
1275

1276
	free_workspace(type, ws);
1277
	atomic_dec(total_ws);
1278
wake:
1279
	cond_wake_up(ws_wait);
1280 1281
}

1282 1283
static void put_workspace(int type, struct list_head *ws)
{
1284
	switch (type) {
1285 1286 1287
	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1288 1289 1290 1291 1292 1293 1294 1295
	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
	default:
		/*
		 * This can't happen, the type is validated several times
		 * before we get here.
		 */
		BUG();
	}
1296 1297
}

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
/*
 * Adjust @level according to the limits of the compression algorithm or
 * fallback to default
 */
static unsigned int btrfs_compress_set_level(int type, unsigned level)
{
	const struct btrfs_compress_op *ops = btrfs_compress_op[type];

	if (level == 0)
		level = ops->default_level;
	else
		level = min(level, ops->max_level);

	return level;
}

1314
/*
1315 1316
 * Given an address space and start and length, compress the bytes into @pages
 * that are allocated on demand.
1317
 *
1318 1319 1320 1321 1322
 * @type_level is encoded algorithm and level, where level 0 means whatever
 * default the algorithm chooses and is opaque here;
 * - compression algo are 0-3
 * - the level are bits 4-7
 *
1323 1324
 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 * and returns number of actually allocated pages
1325
 *
1326 1327
 * @total_in is used to return the number of bytes actually read.  It
 * may be smaller than the input length if we had to exit early because we
1328 1329 1330
 * ran out of room in the pages array or because we cross the
 * max_out threshold.
 *
1331 1332
 * @total_out is an in/out parameter, must be set to the input length and will
 * be also used to return the total number of compressed bytes
1333
 */
1334
int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1335
			 u64 start, struct page **pages,
1336 1337
			 unsigned long *out_pages,
			 unsigned long *total_in,
1338
			 unsigned long *total_out)
1339
{
1340
	int type = btrfs_compress_type(type_level);
1341
	int level = btrfs_compress_level(type_level);
1342 1343 1344
	struct list_head *workspace;
	int ret;

1345
	level = btrfs_compress_set_level(type, level);
1346
	workspace = get_workspace(type, level);
1347 1348
	ret = compression_compress_pages(type, workspace, mapping, start, pages,
					 out_pages, total_in, total_out);
1349
	put_workspace(type, workspace);
1350 1351 1352
	return ret;
}

1353
static int btrfs_decompress_bio(struct compressed_bio *cb)
1354 1355 1356
{
	struct list_head *workspace;
	int ret;
1357
	int type = cb->compress_type;
1358

1359
	workspace = get_workspace(type, 0);
1360
	ret = compression_decompress_bio(type, workspace, cb);
1361
	put_workspace(type, workspace);
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
	return ret;
}

/*
 * a less complex decompression routine.  Our compressed data fits in a
 * single page, and we want to read a single page out of it.
 * start_byte tells us the offset into the compressed data we're interested in
 */
int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
		     unsigned long start_byte, size_t srclen, size_t destlen)
{
	struct list_head *workspace;
	int ret;

1377
	workspace = get_workspace(type, 0);
1378 1379
	ret = compression_decompress(type, workspace, data_in, dest_page,
				     start_byte, srclen, destlen);
1380
	put_workspace(type, workspace);
1381

1382 1383 1384
	return ret;
}

1385 1386
void __init btrfs_init_compress(void)
{
1387 1388 1389 1390
	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_init_workspace_manager();
1391 1392
}

1393
void __cold btrfs_exit_compress(void)
1394
{
1395 1396 1397 1398
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
	zstd_cleanup_workspace_manager();
1399
}
1400 1401

/*
1402
 * Copy decompressed data from working buffer to pages.
1403
 *
1404 1405 1406 1407 1408 1409
 * @buf:		The decompressed data buffer
 * @buf_len:		The decompressed data length
 * @decompressed:	Number of bytes that are already decompressed inside the
 * 			compressed extent
 * @cb:			The compressed extent descriptor
 * @orig_bio:		The original bio that the caller wants to read for
1410
 *
1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
 * An easier to understand graph is like below:
 *
 * 		|<- orig_bio ->|     |<- orig_bio->|
 * 	|<-------      full decompressed extent      ----->|
 * 	|<-----------    @cb range   ---->|
 * 	|			|<-- @buf_len -->|
 * 	|<--- @decompressed --->|
 *
 * Note that, @cb can be a subpage of the full decompressed extent, but
 * @cb->start always has the same as the orig_file_offset value of the full
 * decompressed extent.
 *
 * When reading compressed extent, we have to read the full compressed extent,
 * while @orig_bio may only want part of the range.
 * Thus this function will ensure only data covered by @orig_bio will be copied
 * to.
 *
 * Return 0 if we have copied all needed contents for @orig_bio.
 * Return >0 if we need continue decompress.
1430
 */
1431 1432
int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
			      struct compressed_bio *cb, u32 decompressed)
1433
{
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
	struct bio *orig_bio = cb->orig_bio;
	/* Offset inside the full decompressed extent */
	u32 cur_offset;

	cur_offset = decompressed;
	/* The main loop to do the copy */
	while (cur_offset < decompressed + buf_len) {
		struct bio_vec bvec;
		size_t copy_len;
		u32 copy_start;
		/* Offset inside the full decompressed extent */
		u32 bvec_offset;

		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
		/*
		 * cb->start may underflow, but subtracting that value can still
		 * give us correct offset inside the full decompressed extent.
		 */
		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1453

1454 1455 1456
		/* Haven't reached the bvec range, exit */
		if (decompressed + buf_len <= bvec_offset)
			return 1;
1457

1458 1459 1460 1461
		copy_start = max(cur_offset, bvec_offset);
		copy_len = min(bvec_offset + bvec.bv_len,
			       decompressed + buf_len) - copy_start;
		ASSERT(copy_len);
1462

1463
		/*
1464 1465
		 * Extra range check to ensure we didn't go beyond
		 * @buf + @buf_len.
1466
		 */
1467 1468 1469 1470 1471
		ASSERT(copy_start - decompressed < buf_len);
		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
			       buf + copy_start - decompressed, copy_len);
		flush_dcache_page(bvec.bv_page);
		cur_offset += copy_len;
1472

1473 1474 1475 1476
		bio_advance(orig_bio, copy_len);
		/* Finished the bio */
		if (!orig_bio->bi_iter.bi_size)
			return 0;
1477 1478 1479
	}
	return 1;
}
1480

1481 1482 1483
/*
 * Shannon Entropy calculation
 *
1484
 * Pure byte distribution analysis fails to determine compressibility of data.
1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
 * Try calculating entropy to estimate the average minimum number of bits
 * needed to encode the sampled data.
 *
 * For convenience, return the percentage of needed bits, instead of amount of
 * bits directly.
 *
 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
 *			    and can be compressible with high probability
 *
 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
 *
 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
 */
#define ENTROPY_LVL_ACEPTABLE		(65)
#define ENTROPY_LVL_HIGH		(80)

/*
 * For increasead precision in shannon_entropy calculation,
 * let's do pow(n, M) to save more digits after comma:
 *
 * - maximum int bit length is 64
 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
 * - 13 * 4 = 52 < 64		-> M = 4
 *
 * So use pow(n, 4).
 */
static inline u32 ilog2_w(u64 n)
{
	return ilog2(n * n * n * n);
}

static u32 shannon_entropy(struct heuristic_ws *ws)
{
	const u32 entropy_max = 8 * ilog2_w(2);
	u32 entropy_sum = 0;
	u32 p, p_base, sz_base;
	u32 i;

	sz_base = ilog2_w(ws->sample_size);
	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
		p = ws->bucket[i].count;
		p_base = ilog2_w(p);
		entropy_sum += p * (sz_base - p_base);
	}

	entropy_sum /= ws->sample_size;
	return entropy_sum * 100 / entropy_max;
}

1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
#define RADIX_BASE		4U
#define COUNTERS_SIZE		(1U << RADIX_BASE)

static u8 get4bits(u64 num, int shift) {
	u8 low4bits;

	num >>= shift;
	/* Reverse order */
	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
	return low4bits;
}

/*
 * Use 4 bits as radix base
1548
 * Use 16 u32 counters for calculating new position in buf array
1549 1550 1551 1552 1553 1554
 *
 * @array     - array that will be sorted
 * @array_buf - buffer array to store sorting results
 *              must be equal in size to @array
 * @num       - array size
 */
1555
static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1556
		       int num)
1557
{
1558 1559 1560 1561 1562 1563 1564 1565
	u64 max_num;
	u64 buf_num;
	u32 counters[COUNTERS_SIZE];
	u32 new_addr;
	u32 addr;
	int bitlen;
	int shift;
	int i;
1566

1567 1568 1569 1570
	/*
	 * Try avoid useless loop iterations for small numbers stored in big
	 * counters.  Example: 48 33 4 ... in 64bit array
	 */
1571
	max_num = array[0].count;
1572
	for (i = 1; i < num; i++) {
1573
		buf_num = array[i].count;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
		if (buf_num > max_num)
			max_num = buf_num;
	}

	buf_num = ilog2(max_num);
	bitlen = ALIGN(buf_num, RADIX_BASE * 2);

	shift = 0;
	while (shift < bitlen) {
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i++) {
1586
			buf_num = array[i].count;
1587 1588 1589 1590 1591 1592 1593 1594
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1595
			buf_num = array[i].count;
1596 1597 1598
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1599
			array_buf[new_addr] = array[i];
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		}

		shift += RADIX_BASE;

		/*
		 * Normal radix expects to move data from a temporary array, to
		 * the main one.  But that requires some CPU time. Avoid that
		 * by doing another sort iteration to original array instead of
		 * memcpy()
		 */
		memset(counters, 0, sizeof(counters));

		for (i = 0; i < num; i ++) {
1613
			buf_num = array_buf[i].count;
1614 1615 1616 1617 1618 1619 1620 1621
			addr = get4bits(buf_num, shift);
			counters[addr]++;
		}

		for (i = 1; i < COUNTERS_SIZE; i++)
			counters[i] += counters[i - 1];

		for (i = num - 1; i >= 0; i--) {
1622
			buf_num = array_buf[i].count;
1623 1624 1625
			addr = get4bits(buf_num, shift);
			counters[addr]--;
			new_addr = counters[addr];
1626
			array[new_addr] = array_buf[i];
1627 1628 1629 1630
		}

		shift += RADIX_BASE;
	}
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
}

/*
 * Size of the core byte set - how many bytes cover 90% of the sample
 *
 * There are several types of structured binary data that use nearly all byte
 * values. The distribution can be uniform and counts in all buckets will be
 * nearly the same (eg. encrypted data). Unlikely to be compressible.
 *
 * Other possibility is normal (Gaussian) distribution, where the data could
 * be potentially compressible, but we have to take a few more steps to decide
 * how much.
 *
 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
 *                       compression algo can easy fix that
 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
 *                       probability is not compressible
 */
#define BYTE_CORE_SET_LOW		(64)
#define BYTE_CORE_SET_HIGH		(200)

static int byte_core_set_size(struct heuristic_ws *ws)
{
	u32 i;
	u32 coreset_sum = 0;
	const u32 core_set_threshold = ws->sample_size * 90 / 100;
	struct bucket_item *bucket = ws->bucket;

	/* Sort in reverse order */
1660
	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
		coreset_sum += bucket[i].count;

	if (coreset_sum > core_set_threshold)
		return i;

	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
		coreset_sum += bucket[i].count;
		if (coreset_sum > core_set_threshold)
			break;
	}

	return i;
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
/*
 * Count byte values in buckets.
 * This heuristic can detect textual data (configs, xml, json, html, etc).
 * Because in most text-like data byte set is restricted to limited number of
 * possible characters, and that restriction in most cases makes data easy to
 * compress.
 *
 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
 *	less - compressible
 *	more - need additional analysis
 */
#define BYTE_SET_THRESHOLD		(64)

static u32 byte_set_size(const struct heuristic_ws *ws)
{
	u32 i;
	u32 byte_set_size = 0;

	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
		if (ws->bucket[i].count > 0)
			byte_set_size++;
	}

	/*
	 * Continue collecting count of byte values in buckets.  If the byte
	 * set size is bigger then the threshold, it's pointless to continue,
	 * the detection technique would fail for this type of data.
	 */
	for (; i < BUCKET_SIZE; i++) {
		if (ws->bucket[i].count > 0) {
			byte_set_size++;
			if (byte_set_size > BYTE_SET_THRESHOLD)
				return byte_set_size;
		}
	}

	return byte_set_size;
}

1716 1717 1718 1719 1720 1721 1722 1723
static bool sample_repeated_patterns(struct heuristic_ws *ws)
{
	const u32 half_of_sample = ws->sample_size / 2;
	const u8 *data = ws->sample;

	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
}

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
				     struct heuristic_ws *ws)
{
	struct page *page;
	u64 index, index_end;
	u32 i, curr_sample_pos;
	u8 *in_data;

	/*
	 * Compression handles the input data by chunks of 128KiB
	 * (defined by BTRFS_MAX_UNCOMPRESSED)
	 *
	 * We do the same for the heuristic and loop over the whole range.
	 *
	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
	 */
	if (end - start > BTRFS_MAX_UNCOMPRESSED)
		end = start + BTRFS_MAX_UNCOMPRESSED;

	index = start >> PAGE_SHIFT;
	index_end = end >> PAGE_SHIFT;

	/* Don't miss unaligned end */
	if (!IS_ALIGNED(end, PAGE_SIZE))
		index_end++;

	curr_sample_pos = 0;
	while (index < index_end) {
		page = find_get_page(inode->i_mapping, index);
1754
		in_data = kmap_local_page(page);
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
		/* Handle case where the start is not aligned to PAGE_SIZE */
		i = start % PAGE_SIZE;
		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
			/* Don't sample any garbage from the last page */
			if (start > end - SAMPLING_READ_SIZE)
				break;
			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
					SAMPLING_READ_SIZE);
			i += SAMPLING_INTERVAL;
			start += SAMPLING_INTERVAL;
			curr_sample_pos += SAMPLING_READ_SIZE;
		}
1767
		kunmap_local(in_data);
1768 1769 1770 1771 1772 1773 1774 1775
		put_page(page);

		index++;
	}

	ws->sample_size = curr_sample_pos;
}

1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
/*
 * Compression heuristic.
 *
 * For now is's a naive and optimistic 'return true', we'll extend the logic to
 * quickly (compared to direct compression) detect data characteristics
 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
 * data.
 *
 * The following types of analysis can be performed:
 * - detect mostly zero data
 * - detect data with low "byte set" size (text, etc)
 * - detect data with low/high "core byte" set
 *
 * Return non-zero if the compression should be done, 0 otherwise.
 */
int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
{
1793
	struct list_head *ws_list = get_workspace(0, 0);
1794
	struct heuristic_ws *ws;
1795 1796
	u32 i;
	u8 byte;
1797
	int ret = 0;
1798

1799 1800
	ws = list_entry(ws_list, struct heuristic_ws, list);

1801 1802
	heuristic_collect_sample(inode, start, end, ws);

1803 1804 1805 1806 1807
	if (sample_repeated_patterns(ws)) {
		ret = 1;
		goto out;
	}

1808 1809 1810 1811 1812
	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);

	for (i = 0; i < ws->sample_size; i++) {
		byte = ws->sample[i];
		ws->bucket[byte].count++;
1813 1814
	}

1815 1816 1817 1818 1819 1820
	i = byte_set_size(ws);
	if (i < BYTE_SET_THRESHOLD) {
		ret = 2;
		goto out;
	}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
	i = byte_core_set_size(ws);
	if (i <= BYTE_CORE_SET_LOW) {
		ret = 3;
		goto out;
	}

	if (i >= BYTE_CORE_SET_HIGH) {
		ret = 0;
		goto out;
	}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
	i = shannon_entropy(ws);
	if (i <= ENTROPY_LVL_ACEPTABLE) {
		ret = 4;
		goto out;
	}

	/*
	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
	 * needed to give green light to compression.
	 *
	 * For now just assume that compression at that level is not worth the
	 * resources because:
	 *
	 * 1. it is possible to defrag the data later
	 *
	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
	 * values, every bucket has counter at level ~54. The heuristic would
	 * be confused. This can happen when data have some internal repeated
	 * patterns like "abbacbbc...". This can be detected by analyzing
	 * pairs of bytes, which is too costly.
	 */
	if (i < ENTROPY_LVL_HIGH) {
		ret = 5;
		goto out;
	} else {
		ret = 0;
		goto out;
	}

1861
out:
1862
	put_workspace(0, ws_list);
1863 1864
	return ret;
}
1865

1866 1867 1868 1869 1870
/*
 * Convert the compression suffix (eg. after "zlib" starting with ":") to
 * level, unrecognized string will set the default level
 */
unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1871
{
1872 1873 1874 1875
	unsigned int level = 0;
	int ret;

	if (!type)
1876 1877
		return 0;

1878 1879 1880 1881 1882 1883
	if (str[0] == ':') {
		ret = kstrtouint(str + 1, 10, &level);
		if (ret)
			level = 0;
	}

1884 1885 1886 1887
	level = btrfs_compress_set_level(type, level);

	return level;
}