i915_gem.c 133.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_vgpu.h"
C
Chris Wilson 已提交
33
#include "i915_trace.h"
34
#include "intel_drv.h"
35
#include <linux/shmem_fs.h>
36
#include <linux/slab.h>
37
#include <linux/swap.h>
J
Jesse Barnes 已提交
38
#include <linux/pci.h>
39
#include <linux/dma-buf.h>
40

41
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
43
static __must_check int
44 45
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly);
46 47 48
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj);

49 50 51 52 53 54
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj);
static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable);

55 56 57 58 59 60
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

61 62 63 64 65 66 67 68
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

69 70 71 72 73 74 75 76
static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
{
	if (obj->tiling_mode)
		i915_gem_release_mmap(obj);

	/* As we do not have an associated fence register, we will force
	 * a tiling change if we ever need to acquire one.
	 */
77
	obj->fence_dirty = false;
78 79 80
	obj->fence_reg = I915_FENCE_REG_NONE;
}

81 82 83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
85
	spin_lock(&dev_priv->mm.object_stat_lock);
86 87
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
88
	spin_unlock(&dev_priv->mm.object_stat_lock);
89 90 91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
94
	spin_lock(&dev_priv->mm.object_stat_lock);
95 96
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
97
	spin_unlock(&dev_priv->mm.object_stat_lock);
98 99
}

100
static int
101
i915_gem_wait_for_error(struct i915_gpu_error *error)
102 103 104
{
	int ret;

105 106
#define EXIT_COND (!i915_reset_in_progress(error) || \
		   i915_terminally_wedged(error))
107
	if (EXIT_COND)
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115 116 117
	ret = wait_event_interruptible_timeout(error->reset_queue,
					       EXIT_COND,
					       10*HZ);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123
	}
124
#undef EXIT_COND
125

126
	return 0;
127 128
}

129
int i915_mutex_lock_interruptible(struct drm_device *dev)
130
{
131
	struct drm_i915_private *dev_priv = dev->dev_private;
132 133
	int ret;

134
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135 136 137 138 139 140 141
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

142
	WARN_ON(i915_verify_lists(dev));
143 144
	return 0;
}
145

146 147
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148
			    struct drm_file *file)
149
{
150
	struct drm_i915_private *dev_priv = dev->dev_private;
151
	struct drm_i915_gem_get_aperture *args = data;
152 153
	struct drm_i915_gem_object *obj;
	size_t pinned;
154

155
	pinned = 0;
156
	mutex_lock(&dev->struct_mutex);
157
	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
B
Ben Widawsky 已提交
158
		if (i915_gem_obj_is_pinned(obj))
159
			pinned += i915_gem_obj_ggtt_size(obj);
160
	mutex_unlock(&dev->struct_mutex);
161

162
	args->aper_size = dev_priv->gtt.base.total;
163
	args->aper_available_size = args->aper_size - pinned;
164

165 166 167
	return 0;
}

168 169
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
170
{
171 172 173 174 175
	struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

		page_cache_release(page);
		vaddr += PAGE_SIZE;
	}

	i915_gem_chipset_flush(obj->base.dev);

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	obj->has_dma_mapping = true;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
226

227 228 229 230 231 232 233 234 235 236 237 238 239
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			page_cache_release(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
	sg_free_table(obj->pages);
	kfree(obj->pages);

	obj->has_dma_mapping = false;
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

static int
drop_pages(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma, *next;
	int ret;

	drm_gem_object_reference(&obj->base);
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link)
		if (i915_vma_unbind(vma))
			break;

	ret = i915_gem_object_put_pages(obj);
	drm_gem_object_unreference(&obj->base);

	return ret;
299 300 301 302 303 304 305
}

int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
306
	int ret;
307 308 309 310 311 312 313 314 315 316 317 318 319 320

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

321 322 323 324
	ret = drop_pages(obj);
	if (ret)
		return ret;

325 326 327 328 329 330
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
331 332 333
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
334 335 336 337 338 339 340 341 342 343
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
	char __user *user_data = to_user_ptr(args->data_ptr);
344
	int ret = 0;
345 346 347 348 349 350 351

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
	ret = i915_gem_object_wait_rendering(obj, false);
	if (ret)
		return ret;
352

353
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
354 355 356 357 358 359 360 361 362 363
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
364 365 366 367
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
368 369
	}

370
	drm_clflush_virt_range(vaddr, args->size);
371
	i915_gem_chipset_flush(dev);
372 373 374 375

out:
	intel_fb_obj_flush(obj, false);
	return ret;
376 377
}

378 379 380
void *i915_gem_object_alloc(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
381
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 383 384 385 386
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
387
	kmem_cache_free(dev_priv->objects, obj);
388 389
}

390 391 392 393 394
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
395
{
396
	struct drm_i915_gem_object *obj;
397 398
	int ret;
	u32 handle;
399

400
	size = roundup(size, PAGE_SIZE);
401 402
	if (size == 0)
		return -EINVAL;
403 404

	/* Allocate the new object */
405
	obj = i915_gem_alloc_object(dev, size);
406 407 408
	if (obj == NULL)
		return -ENOMEM;

409
	ret = drm_gem_handle_create(file, &obj->base, &handle);
410
	/* drop reference from allocate - handle holds it now */
411 412 413
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;
414

415
	*handle_p = handle;
416 417 418
	return 0;
}

419 420 421 422 423 424
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
425
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426 427
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
428
			       args->size, &args->handle);
429 430 431 432 433 434 435 436 437 438
}

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
439

440
	return i915_gem_create(file, dev,
441
			       args->size, &args->handle);
442 443
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

470
static inline int
471 472
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
				    int *needs_clflush)
{
	int ret;

	*needs_clflush = 0;

	if (!obj->base.filp)
		return -EINVAL;

	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
		/* If we're not in the cpu read domain, set ourself into the gtt
		 * read domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will dirty the data
		 * anyway again before the next pread happens. */
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
		ret = i915_gem_object_wait_rendering(obj, true);
		if (ret)
			return ret;
521 522

		i915_gem_object_retire(obj);
523 524 525 526 527 528 529 530 531 532 533
	}

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

	return ret;
}

534 535 536
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
537
static int
538 539 540 541 542 543 544
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

545
	if (unlikely(page_do_bit17_swizzling))
546 547 548 549 550 551 552 553 554 555 556
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

557
	return ret ? -EFAULT : 0;
558 559
}

560 561 562 563
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
564
	if (unlikely(swizzled)) {
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

582 583 584 585 586 587 588 589 590 591 592 593
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
594 595 596
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
597 598 599 600 601 602 603 604 605 606 607

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

608
	return ret ? - EFAULT : 0;
609 610
}

611
static int
612 613 614 615
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
616
{
617
	char __user *user_data;
618
	ssize_t remain;
619
	loff_t offset;
620
	int shmem_page_offset, page_length, ret = 0;
621
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
622
	int prefaulted = 0;
623
	int needs_clflush = 0;
624
	struct sg_page_iter sg_iter;
625

V
Ville Syrjälä 已提交
626
	user_data = to_user_ptr(args->data_ptr);
627 628
	remain = args->size;

629
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
630

631
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
632 633 634
	if (ret)
		return ret;

635
	offset = args->offset;
636

637 638
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
639
		struct page *page = sg_page_iter_page(&sg_iter);
640 641 642 643

		if (remain <= 0)
			break;

644 645 646 647 648
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
649
		shmem_page_offset = offset_in_page(offset);
650 651 652 653
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

654 655 656
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

657 658 659 660 661
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
662 663 664

		mutex_unlock(&dev->struct_mutex);

665
		if (likely(!i915.prefault_disable) && !prefaulted) {
666
			ret = fault_in_multipages_writeable(user_data, remain);
667 668 669 670 671 672 673
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
674

675 676 677
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
678

679
		mutex_lock(&dev->struct_mutex);
680 681

		if (ret)
682 683
			goto out;

684
next_page:
685
		remain -= page_length;
686
		user_data += page_length;
687 688 689
		offset += page_length;
	}

690
out:
691 692
	i915_gem_object_unpin_pages(obj);

693 694 695
	return ret;
}

696 697 698 699 700 701 702
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
703
		     struct drm_file *file)
704 705
{
	struct drm_i915_gem_pread *args = data;
706
	struct drm_i915_gem_object *obj;
707
	int ret = 0;
708

709 710 711 712
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
V
Ville Syrjälä 已提交
713
		       to_user_ptr(args->data_ptr),
714 715 716
		       args->size))
		return -EFAULT;

717
	ret = i915_mutex_lock_interruptible(dev);
718
	if (ret)
719
		return ret;
720

721
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
722
	if (&obj->base == NULL) {
723 724
		ret = -ENOENT;
		goto unlock;
725
	}
726

727
	/* Bounds check source.  */
728 729
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
730
		ret = -EINVAL;
731
		goto out;
C
Chris Wilson 已提交
732 733
	}

734 735 736 737 738 739 740 741
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
742 743
	trace_i915_gem_object_pread(obj, args->offset, args->size);

744
	ret = i915_gem_shmem_pread(dev, obj, args, file);
745

746
out:
747
	drm_gem_object_unreference(&obj->base);
748
unlock:
749
	mutex_unlock(&dev->struct_mutex);
750
	return ret;
751 752
}

753 754
/* This is the fast write path which cannot handle
 * page faults in the source data
755
 */
756 757 758 759 760 761

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
762
{
763 764
	void __iomem *vaddr_atomic;
	void *vaddr;
765
	unsigned long unwritten;
766

P
Peter Zijlstra 已提交
767
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
768 769 770
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
771
						      user_data, length);
P
Peter Zijlstra 已提交
772
	io_mapping_unmap_atomic(vaddr_atomic);
773
	return unwritten;
774 775
}

776 777 778 779
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
780
static int
781 782
i915_gem_gtt_pwrite_fast(struct drm_device *dev,
			 struct drm_i915_gem_object *obj,
783
			 struct drm_i915_gem_pwrite *args,
784
			 struct drm_file *file)
785
{
786
	struct drm_i915_private *dev_priv = dev->dev_private;
787
	ssize_t remain;
788
	loff_t offset, page_base;
789
	char __user *user_data;
D
Daniel Vetter 已提交
790 791
	int page_offset, page_length, ret;

792
	ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
D
Daniel Vetter 已提交
793 794 795 796 797 798 799 800 801 802
	if (ret)
		goto out;

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

	ret = i915_gem_object_put_fence(obj);
	if (ret)
		goto out_unpin;
803

V
Ville Syrjälä 已提交
804
	user_data = to_user_ptr(args->data_ptr);
805 806
	remain = args->size;

807
	offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
808

809 810
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);

811 812 813
	while (remain > 0) {
		/* Operation in this page
		 *
814 815 816
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
817
		 */
818 819
		page_base = offset & PAGE_MASK;
		page_offset = offset_in_page(offset);
820 821 822 823 824
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
825 826
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
827
		 */
B
Ben Widawsky 已提交
828
		if (fast_user_write(dev_priv->gtt.mappable, page_base,
D
Daniel Vetter 已提交
829 830
				    page_offset, user_data, page_length)) {
			ret = -EFAULT;
831
			goto out_flush;
D
Daniel Vetter 已提交
832
		}
833

834 835 836
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
837 838
	}

839 840
out_flush:
	intel_fb_obj_flush(obj, false);
D
Daniel Vetter 已提交
841
out_unpin:
B
Ben Widawsky 已提交
842
	i915_gem_object_ggtt_unpin(obj);
D
Daniel Vetter 已提交
843
out:
844
	return ret;
845 846
}

847 848 849 850
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
851
static int
852 853 854 855 856
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
857
{
858
	char *vaddr;
859
	int ret;
860

861
	if (unlikely(page_do_bit17_swizzling))
862
		return -EINVAL;
863

864 865 866 867
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
868 869
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
870 871 872 873
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
874

875
	return ret ? -EFAULT : 0;
876 877
}

878 879
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
880
static int
881 882 883 884 885
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
886
{
887 888
	char *vaddr;
	int ret;
889

890
	vaddr = kmap(page);
891
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
892 893 894
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
895 896
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
897 898
						user_data,
						page_length);
899 900 901 902 903
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
904 905 906
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
907
	kunmap(page);
908

909
	return ret ? -EFAULT : 0;
910 911 912
}

static int
913 914 915 916
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
917 918
{
	ssize_t remain;
919 920
	loff_t offset;
	char __user *user_data;
921
	int shmem_page_offset, page_length, ret = 0;
922
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
923
	int hit_slowpath = 0;
924 925
	int needs_clflush_after = 0;
	int needs_clflush_before = 0;
926
	struct sg_page_iter sg_iter;
927

V
Ville Syrjälä 已提交
928
	user_data = to_user_ptr(args->data_ptr);
929 930
	remain = args->size;

931
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
932

933 934 935 936 937
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
		/* If we're not in the cpu write domain, set ourself into the gtt
		 * write domain and manually flush cachelines (if required). This
		 * optimizes for the case when the gpu will use the data
		 * right away and we therefore have to clflush anyway. */
938
		needs_clflush_after = cpu_write_needs_clflush(obj);
939 940 941
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
942 943

		i915_gem_object_retire(obj);
944
	}
945 946 947 948 949
	/* Same trick applies to invalidate partially written cachelines read
	 * before writing. */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
		needs_clflush_before =
			!cpu_cache_is_coherent(dev, obj->cache_level);
950

951 952 953 954
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

955 956
	intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);

957 958
	i915_gem_object_pin_pages(obj);

959
	offset = args->offset;
960
	obj->dirty = 1;
961

962 963
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
964
		struct page *page = sg_page_iter_page(&sg_iter);
965
		int partial_cacheline_write;
966

967 968 969
		if (remain <= 0)
			break;

970 971 972 973 974
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
975
		shmem_page_offset = offset_in_page(offset);
976 977 978 979 980

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

981 982 983 984 985 986 987
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
		partial_cacheline_write = needs_clflush_before &&
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

988 989 990
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

991 992 993 994 995 996
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
		if (ret == 0)
			goto next_page;
997 998 999

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1000 1001 1002 1003
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
					needs_clflush_after);
1004

1005
		mutex_lock(&dev->struct_mutex);
1006 1007

		if (ret)
1008 1009
			goto out;

1010
next_page:
1011
		remain -= page_length;
1012
		user_data += page_length;
1013
		offset += page_length;
1014 1015
	}

1016
out:
1017 1018
	i915_gem_object_unpin_pages(obj);

1019
	if (hit_slowpath) {
1020 1021 1022 1023 1024 1025 1026
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
		if (!needs_clflush_after &&
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1027 1028
			if (i915_gem_clflush_object(obj, obj->pin_display))
				i915_gem_chipset_flush(dev);
1029
		}
1030
	}
1031

1032
	if (needs_clflush_after)
1033
		i915_gem_chipset_flush(dev);
1034

1035
	intel_fb_obj_flush(obj, false);
1036
	return ret;
1037 1038 1039 1040 1041 1042 1043 1044 1045
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1046
		      struct drm_file *file)
1047
{
1048
	struct drm_i915_private *dev_priv = dev->dev_private;
1049
	struct drm_i915_gem_pwrite *args = data;
1050
	struct drm_i915_gem_object *obj;
1051 1052 1053 1054 1055 1056
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
V
Ville Syrjälä 已提交
1057
		       to_user_ptr(args->data_ptr),
1058 1059 1060
		       args->size))
		return -EFAULT;

1061
	if (likely(!i915.prefault_disable)) {
1062 1063 1064 1065 1066
		ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
						   args->size);
		if (ret)
			return -EFAULT;
	}
1067

1068 1069
	intel_runtime_pm_get(dev_priv);

1070
	ret = i915_mutex_lock_interruptible(dev);
1071
	if (ret)
1072
		goto put_rpm;
1073

1074
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1075
	if (&obj->base == NULL) {
1076 1077
		ret = -ENOENT;
		goto unlock;
1078
	}
1079

1080
	/* Bounds check destination. */
1081 1082
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1083
		ret = -EINVAL;
1084
		goto out;
C
Chris Wilson 已提交
1085 1086
	}

1087 1088 1089 1090 1091 1092 1093 1094
	/* prime objects have no backing filp to GEM pread/pwrite
	 * pages from.
	 */
	if (!obj->base.filp) {
		ret = -EINVAL;
		goto out;
	}

C
Chris Wilson 已提交
1095 1096
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

D
Daniel Vetter 已提交
1097
	ret = -EFAULT;
1098 1099 1100 1101 1102 1103
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1104 1105 1106
	if (obj->tiling_mode == I915_TILING_NONE &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
1107
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
D
Daniel Vetter 已提交
1108 1109 1110
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
		 * textures). Fallback to the shmem path in that case. */
1111
	}
1112

1113 1114 1115 1116 1117 1118
	if (ret == -EFAULT || ret == -ENOSPC) {
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
		else
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
	}
1119

1120
out:
1121
	drm_gem_object_unreference(&obj->base);
1122
unlock:
1123
	mutex_unlock(&dev->struct_mutex);
1124 1125 1126
put_rpm:
	intel_runtime_pm_put(dev_priv);

1127 1128 1129
	return ret;
}

1130
int
1131
i915_gem_check_wedge(struct i915_gpu_error *error,
1132 1133
		     bool interruptible)
{
1134
	if (i915_reset_in_progress(error)) {
1135 1136 1137 1138 1139
		/* Non-interruptible callers can't handle -EAGAIN, hence return
		 * -EIO unconditionally for these. */
		if (!interruptible)
			return -EIO;

1140 1141
		/* Recovery complete, but the reset failed ... */
		if (i915_terminally_wedged(error))
1142 1143
			return -EIO;

1144 1145 1146 1147 1148 1149 1150
		/*
		 * Check if GPU Reset is in progress - we need intel_ring_begin
		 * to work properly to reinit the hw state while the gpu is
		 * still marked as reset-in-progress. Handle this with a flag.
		 */
		if (!error->reload_in_reset)
			return -EAGAIN;
1151 1152 1153 1154 1155 1156
	}

	return 0;
}

/*
1157
 * Compare arbitrary request against outstanding lazy request. Emit on match.
1158
 */
1159
int
1160
i915_gem_check_olr(struct drm_i915_gem_request *req)
1161 1162 1163
{
	int ret;

1164
	WARN_ON(!mutex_is_locked(&req->ring->dev->struct_mutex));
1165 1166

	ret = 0;
1167
	if (req == req->ring->outstanding_lazy_request)
1168
		ret = i915_add_request(req->ring);
1169 1170 1171 1172

	return ret;
}

1173 1174 1175 1176 1177 1178
static void fake_irq(unsigned long data)
{
	wake_up_process((struct task_struct *)data);
}

static bool missed_irq(struct drm_i915_private *dev_priv,
1179
		       struct intel_engine_cs *ring)
1180 1181 1182 1183
{
	return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
}

1184
static int __i915_spin_request(struct drm_i915_gem_request *rq)
1185
{
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
	unsigned long timeout;

	if (i915_gem_request_get_ring(rq)->irq_refcount)
		return -EBUSY;

	timeout = jiffies + 1;
	while (!need_resched()) {
		if (i915_gem_request_completed(rq, true))
			return 0;

		if (time_after_eq(jiffies, timeout))
			break;
1198

1199 1200 1201 1202 1203 1204
		cpu_relax_lowlatency();
	}
	if (i915_gem_request_completed(rq, false))
		return 0;

	return -EAGAIN;
1205 1206
}

1207
/**
1208 1209 1210
 * __i915_wait_request - wait until execution of request has finished
 * @req: duh!
 * @reset_counter: reset sequence associated with the given request
1211 1212 1213
 * @interruptible: do an interruptible wait (normally yes)
 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
 *
1214 1215 1216 1217 1218 1219 1220
 * Note: It is of utmost importance that the passed in seqno and reset_counter
 * values have been read by the caller in an smp safe manner. Where read-side
 * locks are involved, it is sufficient to read the reset_counter before
 * unlocking the lock that protects the seqno. For lockless tricks, the
 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
 * inserted.
 *
1221
 * Returns 0 if the request was found within the alloted time. Else returns the
1222 1223
 * errno with remaining time filled in timeout argument.
 */
1224
int __i915_wait_request(struct drm_i915_gem_request *req,
1225
			unsigned reset_counter,
1226
			bool interruptible,
1227
			s64 *timeout,
1228
			struct drm_i915_file_private *file_priv)
1229
{
1230
	struct intel_engine_cs *ring = i915_gem_request_get_ring(req);
1231
	struct drm_device *dev = ring->dev;
1232
	struct drm_i915_private *dev_priv = dev->dev_private;
1233 1234
	const bool irq_test_in_progress =
		ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1235
	DEFINE_WAIT(wait);
1236
	unsigned long timeout_expire;
1237
	s64 before, now;
1238 1239
	int ret;

1240
	WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1241

1242
	if (i915_gem_request_completed(req, true))
1243 1244
		return 0;

1245 1246
	timeout_expire = timeout ?
		jiffies + nsecs_to_jiffies_timeout((u64)*timeout) : 0;
1247

1248
	if (INTEL_INFO(dev)->gen >= 6)
1249
		gen6_rps_boost(dev_priv, file_priv);
1250

1251
	/* Record current time in case interrupted by signal, or wedged */
1252
	trace_i915_gem_request_wait_begin(req);
1253
	before = ktime_get_raw_ns();
1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

	/* Optimistic spin for the next jiffie before touching IRQs */
	ret = __i915_spin_request(req);
	if (ret == 0)
		goto out;

	if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring))) {
		ret = -ENODEV;
		goto out;
	}

1265 1266
	for (;;) {
		struct timer_list timer;
1267

1268 1269
		prepare_to_wait(&ring->irq_queue, &wait,
				interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1270

1271 1272
		/* We need to check whether any gpu reset happened in between
		 * the caller grabbing the seqno and now ... */
1273 1274 1275 1276 1277 1278 1279 1280
		if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
			/* ... but upgrade the -EAGAIN to an -EIO if the gpu
			 * is truely gone. */
			ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
			if (ret == 0)
				ret = -EAGAIN;
			break;
		}
1281

1282
		if (i915_gem_request_completed(req, false)) {
1283 1284 1285
			ret = 0;
			break;
		}
1286

1287 1288 1289 1290 1291
		if (interruptible && signal_pending(current)) {
			ret = -ERESTARTSYS;
			break;
		}

1292
		if (timeout && time_after_eq(jiffies, timeout_expire)) {
1293 1294 1295 1296 1297 1298
			ret = -ETIME;
			break;
		}

		timer.function = NULL;
		if (timeout || missed_irq(dev_priv, ring)) {
1299 1300
			unsigned long expire;

1301
			setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1302
			expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1303 1304 1305
			mod_timer(&timer, expire);
		}

1306
		io_schedule();
1307 1308 1309 1310 1311 1312

		if (timer.function) {
			del_singleshot_timer_sync(&timer);
			destroy_timer_on_stack(&timer);
		}
	}
1313 1314
	if (!irq_test_in_progress)
		ring->irq_put(ring);
1315 1316

	finish_wait(&ring->irq_queue, &wait);
1317

1318 1319 1320 1321
out:
	now = ktime_get_raw_ns();
	trace_i915_gem_request_wait_end(req);

1322
	if (timeout) {
1323 1324 1325
		s64 tres = *timeout - (now - before);

		*timeout = tres < 0 ? 0 : tres;
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regrssion from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
			*timeout = 0;
1336 1337
	}

1338
	return ret;
1339 1340 1341
}

/**
1342
 * Waits for a request to be signaled, and cleans up the
1343 1344 1345
 * request and object lists appropriately for that event.
 */
int
1346
i915_wait_request(struct drm_i915_gem_request *req)
1347
{
1348 1349 1350
	struct drm_device *dev;
	struct drm_i915_private *dev_priv;
	bool interruptible;
1351
	unsigned reset_counter;
1352 1353
	int ret;

1354 1355 1356 1357 1358 1359
	BUG_ON(req == NULL);

	dev = req->ring->dev;
	dev_priv = dev->dev_private;
	interruptible = dev_priv->mm.interruptible;

1360 1361
	BUG_ON(!mutex_is_locked(&dev->struct_mutex));

1362
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1363 1364 1365
	if (ret)
		return ret;

1366
	ret = i915_gem_check_olr(req);
1367 1368 1369
	if (ret)
		return ret;

1370
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1371
	i915_gem_request_reference(req);
1372 1373
	ret = __i915_wait_request(req, reset_counter,
				  interruptible, NULL, NULL);
1374 1375
	i915_gem_request_unreference(req);
	return ret;
1376 1377
}

1378
static int
1379
i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj)
1380
{
1381 1382
	if (!obj->active)
		return 0;
1383 1384 1385 1386

	/* Manually manage the write flush as we may have not yet
	 * retired the buffer.
	 *
1387 1388
	 * Note that the last_write_req is always the earlier of
	 * the two (read/write) requests, so if we haved successfully waited,
1389 1390
	 * we know we have passed the last write.
	 */
1391
	i915_gem_request_assign(&obj->last_write_req, NULL);
1392 1393 1394 1395

	return 0;
}

1396 1397 1398 1399 1400 1401 1402 1403
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static __must_check int
i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
			       bool readonly)
{
1404
	struct drm_i915_gem_request *req;
1405 1406
	int ret;

1407 1408
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1409 1410
		return 0;

1411
	ret = i915_wait_request(req);
1412 1413 1414
	if (ret)
		return ret;

1415
	return i915_gem_object_wait_rendering__tail(obj);
1416 1417
}

1418 1419 1420 1421 1422
/* A nonblocking variant of the above wait. This is a highly dangerous routine
 * as the object state may change during this call.
 */
static __must_check int
i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1423
					    struct drm_i915_file_private *file_priv,
1424 1425
					    bool readonly)
{
1426
	struct drm_i915_gem_request *req;
1427 1428
	struct drm_device *dev = obj->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1429
	unsigned reset_counter;
1430 1431 1432 1433 1434
	int ret;

	BUG_ON(!mutex_is_locked(&dev->struct_mutex));
	BUG_ON(!dev_priv->mm.interruptible);

1435 1436
	req = readonly ? obj->last_write_req : obj->last_read_req;
	if (!req)
1437 1438
		return 0;

1439
	ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1440 1441 1442
	if (ret)
		return ret;

1443
	ret = i915_gem_check_olr(req);
1444 1445 1446
	if (ret)
		return ret;

1447
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1448
	i915_gem_request_reference(req);
1449
	mutex_unlock(&dev->struct_mutex);
1450
	ret = __i915_wait_request(req, reset_counter, true, NULL, file_priv);
1451
	mutex_lock(&dev->struct_mutex);
1452
	i915_gem_request_unreference(req);
1453 1454
	if (ret)
		return ret;
1455

1456
	return i915_gem_object_wait_rendering__tail(obj);
1457 1458
}

1459
/**
1460 1461
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1462 1463 1464
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1465
			  struct drm_file *file)
1466 1467
{
	struct drm_i915_gem_set_domain *args = data;
1468
	struct drm_i915_gem_object *obj;
1469 1470
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1471 1472
	int ret;

1473
	/* Only handle setting domains to types used by the CPU. */
1474
	if (write_domain & I915_GEM_GPU_DOMAINS)
1475 1476
		return -EINVAL;

1477
	if (read_domains & I915_GEM_GPU_DOMAINS)
1478 1479 1480 1481 1482 1483 1484 1485
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1486
	ret = i915_mutex_lock_interruptible(dev);
1487
	if (ret)
1488
		return ret;
1489

1490
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1491
	if (&obj->base == NULL) {
1492 1493
		ret = -ENOENT;
		goto unlock;
1494
	}
1495

1496 1497 1498 1499
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1500 1501 1502
	ret = i915_gem_object_wait_rendering__nonblocking(obj,
							  file->driver_priv,
							  !write_domain);
1503 1504 1505
	if (ret)
		goto unref;

1506
	if (read_domains & I915_GEM_DOMAIN_GTT)
1507
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1508
	else
1509
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1510

1511
unref:
1512
	drm_gem_object_unreference(&obj->base);
1513
unlock:
1514 1515 1516 1517 1518 1519 1520 1521 1522
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1523
			 struct drm_file *file)
1524 1525
{
	struct drm_i915_gem_sw_finish *args = data;
1526
	struct drm_i915_gem_object *obj;
1527 1528
	int ret = 0;

1529
	ret = i915_mutex_lock_interruptible(dev);
1530
	if (ret)
1531
		return ret;
1532

1533
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1534
	if (&obj->base == NULL) {
1535 1536
		ret = -ENOENT;
		goto unlock;
1537 1538 1539
	}

	/* Pinned buffers may be scanout, so flush the cache */
1540
	if (obj->pin_display)
1541
		i915_gem_object_flush_cpu_write_domain(obj);
1542

1543
	drm_gem_object_unreference(&obj->base);
1544
unlock:
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1565 1566 1567
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1568
		    struct drm_file *file)
1569 1570 1571 1572 1573
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	unsigned long addr;

1574 1575 1576 1577 1578 1579
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

	if (args->flags & I915_MMAP_WC && !cpu_has_pat)
		return -ENODEV;

1580
	obj = drm_gem_object_lookup(dev, file, args->handle);
1581
	if (obj == NULL)
1582
		return -ENOENT;
1583

1584 1585 1586 1587 1588 1589 1590 1591
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
	if (!obj->filp) {
		drm_gem_object_unreference_unlocked(obj);
		return -EINVAL;
	}

1592
	addr = vm_mmap(obj->filp, 0, args->size,
1593 1594
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

		down_write(&mm->mmap_sem);
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
	}
1608
	drm_gem_object_unreference_unlocked(obj);
1609 1610 1611 1612 1613 1614 1615 1616
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
1635 1636
	struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
	struct drm_device *dev = obj->base.dev;
1637
	struct drm_i915_private *dev_priv = dev->dev_private;
1638
	struct i915_ggtt_view view = i915_ggtt_view_normal;
1639 1640 1641
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1642
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1643

1644 1645
	intel_runtime_pm_get(dev_priv);

1646 1647 1648 1649
	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

1650 1651 1652
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
1653

C
Chris Wilson 已提交
1654 1655
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1656 1657 1658 1659 1660 1661 1662 1663 1664
	/* Try to flush the object off the GPU first without holding the lock.
	 * Upon reacquiring the lock, we will perform our sanity checks and then
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
	ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
	if (ret)
		goto unlock;

1665 1666
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1667
		ret = -EFAULT;
1668 1669 1670
		goto unlock;
	}

1671
	/* Use a partial view if the object is bigger than the aperture. */
1672 1673
	if (obj->base.size >= dev_priv->gtt.mappable_end &&
	    obj->tiling_mode == I915_TILING_NONE) {
1674
		static const unsigned int chunk_size = 256; // 1 MiB
1675

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
			min_t(unsigned int,
			      chunk_size,
			      (vma->vm_end - vma->vm_start)/PAGE_SIZE -
			      view.params.partial.offset);
	}

	/* Now pin it into the GTT if needed */
	ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
1688 1689
	if (ret)
		goto unlock;
1690

1691 1692 1693
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unpin;
1694

1695
	ret = i915_gem_object_get_fence(obj);
1696
	if (ret)
1697
		goto unpin;
1698

1699
	/* Finally, remap it using the new GTT offset */
1700 1701
	pfn = dev_priv->gtt.mappable_base +
		i915_gem_obj_ggtt_offset_view(obj, &view);
1702
	pfn >>= PAGE_SHIFT;
1703

1704 1705 1706 1707 1708 1709 1710 1711 1712
	if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
		/* Overriding existing pages in partial view does not cause
		 * us any trouble as TLBs are still valid because the fault
		 * is due to userspace losing part of the mapping or never
		 * having accessed it before (at this partials' range).
		 */
		unsigned long base = vma->vm_start +
				     (view.params.partial.offset << PAGE_SHIFT);
		unsigned int i;
1713

1714 1715
		for (i = 0; i < view.params.partial.size; i++) {
			ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
1716 1717 1718 1719 1720
			if (ret)
				break;
		}

		obj->fault_mappable = true;
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
	} else {
		if (!obj->fault_mappable) {
			unsigned long size = min_t(unsigned long,
						   vma->vm_end - vma->vm_start,
						   obj->base.size);
			int i;

			for (i = 0; i < size >> PAGE_SHIFT; i++) {
				ret = vm_insert_pfn(vma,
						    (unsigned long)vma->vm_start + i * PAGE_SIZE,
						    pfn + i);
				if (ret)
					break;
			}

			obj->fault_mappable = true;
		} else
			ret = vm_insert_pfn(vma,
					    (unsigned long)vmf->virtual_address,
					    pfn + page_offset);
	}
1742
unpin:
1743
	i915_gem_object_ggtt_unpin_view(obj, &view);
1744
unlock:
1745
	mutex_unlock(&dev->struct_mutex);
1746
out:
1747
	switch (ret) {
1748
	case -EIO:
1749 1750 1751 1752 1753 1754 1755
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1756 1757 1758
			ret = VM_FAULT_SIGBUS;
			break;
		}
1759
	case -EAGAIN:
D
Daniel Vetter 已提交
1760 1761 1762 1763
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1764
		 */
1765 1766
	case 0:
	case -ERESTARTSYS:
1767
	case -EINTR:
1768 1769 1770 1771 1772
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1773 1774
		ret = VM_FAULT_NOPAGE;
		break;
1775
	case -ENOMEM:
1776 1777
		ret = VM_FAULT_OOM;
		break;
1778
	case -ENOSPC:
1779
	case -EFAULT:
1780 1781
		ret = VM_FAULT_SIGBUS;
		break;
1782
	default:
1783
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1784 1785
		ret = VM_FAULT_SIGBUS;
		break;
1786
	}
1787 1788 1789

	intel_runtime_pm_put(dev_priv);
	return ret;
1790 1791
}

1792 1793 1794 1795
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1796
 * Preserve the reservation of the mmapping with the DRM core code, but
1797 1798 1799 1800 1801 1802 1803 1804 1805
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1806
void
1807
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1808
{
1809 1810
	if (!obj->fault_mappable)
		return;
1811

1812 1813
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1814
	obj->fault_mappable = false;
1815 1816
}

1817 1818 1819 1820 1821 1822 1823 1824 1825
void
i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;

	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
		i915_gem_release_mmap(obj);
}

1826
uint32_t
1827
i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1828
{
1829
	uint32_t gtt_size;
1830 1831

	if (INTEL_INFO(dev)->gen >= 4 ||
1832 1833
	    tiling_mode == I915_TILING_NONE)
		return size;
1834 1835 1836

	/* Previous chips need a power-of-two fence region when tiling */
	if (INTEL_INFO(dev)->gen == 3)
1837
		gtt_size = 1024*1024;
1838
	else
1839
		gtt_size = 512*1024;
1840

1841 1842
	while (gtt_size < size)
		gtt_size <<= 1;
1843

1844
	return gtt_size;
1845 1846
}

1847 1848 1849 1850 1851
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1852
 * potential fence register mapping.
1853
 */
1854 1855 1856
uint32_t
i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
			   int tiling_mode, bool fenced)
1857 1858 1859 1860 1861
{
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1862
	if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1863
	    tiling_mode == I915_TILING_NONE)
1864 1865
		return 4096;

1866 1867 1868 1869
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1870
	return i915_gem_get_gtt_size(dev, size, tiling_mode);
1871 1872
}

1873 1874 1875 1876 1877
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	int ret;

1878
	if (drm_vma_node_has_offset(&obj->base.vma_node))
1879 1880
		return 0;

1881 1882
	dev_priv->mm.shrinker_no_lock_stealing = true;

1883 1884
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1885
		goto out;
1886 1887 1888 1889 1890 1891 1892 1893

	/* Badly fragmented mmap space? The only way we can recover
	 * space is by destroying unwanted objects. We can't randomly release
	 * mmap_offsets as userspace expects them to be persistent for the
	 * lifetime of the objects. The closest we can is to release the
	 * offsets on purgeable objects by truncating it and marking it purged,
	 * which prevents userspace from ever using that object again.
	 */
1894 1895 1896 1897 1898
	i915_gem_shrink(dev_priv,
			obj->base.size >> PAGE_SHIFT,
			I915_SHRINK_BOUND |
			I915_SHRINK_UNBOUND |
			I915_SHRINK_PURGEABLE);
1899 1900
	ret = drm_gem_create_mmap_offset(&obj->base);
	if (ret != -ENOSPC)
1901
		goto out;
1902 1903

	i915_gem_shrink_all(dev_priv);
1904 1905 1906 1907 1908
	ret = drm_gem_create_mmap_offset(&obj->base);
out:
	dev_priv->mm.shrinker_no_lock_stealing = false;

	return ret;
1909 1910 1911 1912 1913 1914 1915
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

1916
int
1917 1918
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
1919
		  uint32_t handle,
1920
		  uint64_t *offset)
1921
{
1922
	struct drm_i915_gem_object *obj;
1923 1924
	int ret;

1925
	ret = i915_mutex_lock_interruptible(dev);
1926
	if (ret)
1927
		return ret;
1928

1929
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1930
	if (&obj->base == NULL) {
1931 1932 1933
		ret = -ENOENT;
		goto unlock;
	}
1934

1935
	if (obj->madv != I915_MADV_WILLNEED) {
1936
		DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1937
		ret = -EFAULT;
1938
		goto out;
1939 1940
	}

1941 1942 1943
	ret = i915_gem_object_create_mmap_offset(obj);
	if (ret)
		goto out;
1944

1945
	*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1946

1947
out:
1948
	drm_gem_object_unreference(&obj->base);
1949
unlock:
1950
	mutex_unlock(&dev->struct_mutex);
1951
	return ret;
1952 1953
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

1975
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1976 1977
}

D
Daniel Vetter 已提交
1978 1979 1980
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1981
{
1982
	i915_gem_object_free_mmap_offset(obj);
1983

1984 1985
	if (obj->base.filp == NULL)
		return;
1986

D
Daniel Vetter 已提交
1987 1988 1989 1990 1991
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
1992
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
1993 1994
	obj->madv = __I915_MADV_PURGED;
}
1995

1996 1997 1998
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
1999
{
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

	mapping = file_inode(obj->base.filp)->i_mapping,
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2014 2015
}

2016
static void
2017
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2018
{
2019 2020
	struct sg_page_iter sg_iter;
	int ret;
2021

2022
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2023

C
Chris Wilson 已提交
2024 2025 2026 2027 2028 2029
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret) {
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		WARN_ON(ret != -EIO);
2030
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2031 2032 2033
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

2034
	if (i915_gem_object_needs_bit17_swizzle(obj))
2035 2036
		i915_gem_object_save_bit_17_swizzle(obj);

2037 2038
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2039

2040
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
2041
		struct page *page = sg_page_iter_page(&sg_iter);
2042

2043
		if (obj->dirty)
2044
			set_page_dirty(page);
2045

2046
		if (obj->madv == I915_MADV_WILLNEED)
2047
			mark_page_accessed(page);
2048

2049
		page_cache_release(page);
2050
	}
2051
	obj->dirty = 0;
2052

2053 2054
	sg_free_table(obj->pages);
	kfree(obj->pages);
2055
}
C
Chris Wilson 已提交
2056

2057
int
2058 2059 2060 2061
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2062
	if (obj->pages == NULL)
2063 2064
		return 0;

2065 2066 2067
	if (obj->pages_pin_count)
		return -EBUSY;

2068
	BUG_ON(i915_gem_obj_bound_any(obj));
B
Ben Widawsky 已提交
2069

2070 2071 2072
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2073
	list_del(&obj->global_list);
2074

2075
	ops->put_pages(obj);
2076
	obj->pages = NULL;
2077

2078
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2079 2080 2081 2082

	return 0;
}

2083
static int
C
Chris Wilson 已提交
2084
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2085
{
C
Chris Wilson 已提交
2086
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2087 2088
	int page_count, i;
	struct address_space *mapping;
2089 2090
	struct sg_table *st;
	struct scatterlist *sg;
2091
	struct sg_page_iter sg_iter;
2092
	struct page *page;
2093
	unsigned long last_pfn = 0;	/* suppress gcc warning */
C
Chris Wilson 已提交
2094
	gfp_t gfp;
2095

C
Chris Wilson 已提交
2096 2097 2098 2099 2100 2101 2102
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2103 2104 2105 2106
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2107
	page_count = obj->base.size / PAGE_SIZE;
2108 2109
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2110
		return -ENOMEM;
2111
	}
2112

2113 2114 2115 2116 2117
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
A
Al Viro 已提交
2118
	mapping = file_inode(obj->base.filp)->i_mapping;
C
Chris Wilson 已提交
2119
	gfp = mapping_gfp_mask(mapping);
2120
	gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
C
Chris Wilson 已提交
2121
	gfp &= ~(__GFP_IO | __GFP_WAIT);
2122 2123 2124
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2125 2126
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2127 2128 2129 2130 2131
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2132 2133 2134 2135 2136 2137 2138 2139
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
			i915_gem_shrink_all(dev_priv);
2140
			page = shmem_read_mapping_page(mapping, i);
C
Chris Wilson 已提交
2141 2142 2143
			if (IS_ERR(page))
				goto err_pages;
		}
2144 2145 2146 2147 2148 2149 2150 2151
#ifdef CONFIG_SWIOTLB
		if (swiotlb_nr_tbl()) {
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
			sg = sg_next(sg);
			continue;
		}
#endif
2152 2153 2154 2155 2156 2157 2158 2159 2160
		if (!i || page_to_pfn(page) != last_pfn + 1) {
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2161 2162 2163

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2164
	}
2165 2166 2167 2168
#ifdef CONFIG_SWIOTLB
	if (!swiotlb_nr_tbl())
#endif
		sg_mark_end(sg);
2169 2170
	obj->pages = st;

2171
	if (i915_gem_object_needs_bit17_swizzle(obj))
2172 2173
		i915_gem_object_do_bit_17_swizzle(obj);

2174 2175 2176 2177
	if (obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2178 2179 2180
	return 0;

err_pages:
2181 2182
	sg_mark_end(sg);
	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2183
		page_cache_release(sg_page_iter_page(&sg_iter));
2184 2185
	sg_free_table(st);
	kfree(st);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
	if (PTR_ERR(page) == -ENOSPC)
		return -ENOMEM;
	else
		return PTR_ERR(page);
2199 2200
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2215
	if (obj->pages)
2216 2217
		return 0;

2218
	if (obj->madv != I915_MADV_WILLNEED) {
2219
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2220
		return -EFAULT;
2221 2222
	}

2223 2224
	BUG_ON(obj->pages_pin_count);

2225 2226 2227 2228
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2229
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2230 2231 2232 2233

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2234
	return 0;
2235 2236
}

B
Ben Widawsky 已提交
2237
static void
2238
i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2239
			       struct intel_engine_cs *ring)
2240
{
2241 2242
	struct drm_i915_gem_request *req;
	struct intel_engine_cs *old_ring;
2243

2244
	BUG_ON(ring == NULL);
2245 2246 2247 2248 2249

	req = intel_ring_get_request(ring);
	old_ring = i915_gem_request_get_ring(obj->last_read_req);

	if (old_ring != ring && obj->last_write_req) {
2250 2251
		/* Keep the request relative to the current ring */
		i915_gem_request_assign(&obj->last_write_req, req);
2252
	}
2253 2254

	/* Add a reference if we're newly entering the active list. */
2255 2256 2257
	if (!obj->active) {
		drm_gem_object_reference(&obj->base);
		obj->active = 1;
2258
	}
2259

2260
	list_move_tail(&obj->ring_list, &ring->active_list);
2261

2262
	i915_gem_request_assign(&obj->last_read_req, req);
2263 2264
}

B
Ben Widawsky 已提交
2265
void i915_vma_move_to_active(struct i915_vma *vma,
2266
			     struct intel_engine_cs *ring)
B
Ben Widawsky 已提交
2267 2268 2269 2270 2271
{
	list_move_tail(&vma->mm_list, &vma->vm->active_list);
	return i915_gem_object_move_to_active(vma->obj, ring);
}

2272 2273
static void
i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2274
{
2275
	struct i915_vma *vma;
2276

2277
	BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2278
	BUG_ON(!obj->active);
2279

2280 2281 2282
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (!list_empty(&vma->mm_list))
			list_move_tail(&vma->mm_list, &vma->vm->inactive_list);
2283
	}
2284

2285 2286
	intel_fb_obj_flush(obj, true);

2287
	list_del_init(&obj->ring_list);
2288

2289 2290
	i915_gem_request_assign(&obj->last_read_req, NULL);
	i915_gem_request_assign(&obj->last_write_req, NULL);
2291 2292
	obj->base.write_domain = 0;

2293
	i915_gem_request_assign(&obj->last_fenced_req, NULL);
2294 2295 2296 2297 2298

	obj->active = 0;
	drm_gem_object_unreference(&obj->base);

	WARN_ON(i915_verify_lists(dev));
2299
}
2300

2301 2302 2303
static void
i915_gem_object_retire(struct drm_i915_gem_object *obj)
{
2304
	if (obj->last_read_req == NULL)
2305 2306
		return;

2307
	if (i915_gem_request_completed(obj->last_read_req, true))
2308 2309 2310
		i915_gem_object_move_to_inactive(obj);
}

2311
static int
2312
i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2313
{
2314
	struct drm_i915_private *dev_priv = dev->dev_private;
2315
	struct intel_engine_cs *ring;
2316
	int ret, i, j;
2317

2318
	/* Carefully retire all requests without writing to the rings */
2319
	for_each_ring(ring, dev_priv, i) {
2320 2321 2322
		ret = intel_ring_idle(ring);
		if (ret)
			return ret;
2323 2324
	}
	i915_gem_retire_requests(dev);
2325 2326

	/* Finally reset hw state */
2327
	for_each_ring(ring, dev_priv, i) {
2328
		intel_ring_init_seqno(ring, seqno);
2329

2330 2331
		for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
			ring->semaphore.sync_seqno[j] = 0;
2332
	}
2333

2334
	return 0;
2335 2336
}

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	if (seqno == 0)
		return -EINVAL;

	/* HWS page needs to be set less than what we
	 * will inject to ring
	 */
	ret = i915_gem_init_seqno(dev, seqno - 1);
	if (ret)
		return ret;

	/* Carefully set the last_seqno value so that wrap
	 * detection still works
	 */
	dev_priv->next_seqno = seqno;
	dev_priv->last_seqno = seqno - 1;
	if (dev_priv->last_seqno == 0)
		dev_priv->last_seqno--;

	return 0;
}

2363 2364
int
i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2365
{
2366 2367 2368 2369
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* reserve 0 for non-seqno */
	if (dev_priv->next_seqno == 0) {
2370
		int ret = i915_gem_init_seqno(dev, 0);
2371 2372
		if (ret)
			return ret;
2373

2374 2375
		dev_priv->next_seqno = 1;
	}
2376

2377
	*seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2378
	return 0;
2379 2380
}

2381
int __i915_add_request(struct intel_engine_cs *ring,
2382
		       struct drm_file *file,
2383
		       struct drm_i915_gem_object *obj)
2384
{
2385
	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2386
	struct drm_i915_gem_request *request;
2387
	struct intel_ringbuffer *ringbuf;
2388
	u32 request_start;
2389 2390
	int ret;

2391
	request = ring->outstanding_lazy_request;
2392 2393 2394 2395
	if (WARN_ON(request == NULL))
		return -ENOMEM;

	if (i915.enable_execlists) {
2396
		ringbuf = request->ctx->engine[ring->id].ringbuf;
2397 2398 2399 2400
	} else
		ringbuf = ring->buffer;

	request_start = intel_ring_get_tail(ringbuf);
2401 2402 2403 2404 2405 2406 2407
	/*
	 * Emit any outstanding flushes - execbuf can fail to emit the flush
	 * after having emitted the batchbuffer command. Hence we need to fix
	 * things up similar to emitting the lazy request. The difference here
	 * is that the flush _must_ happen before the next request, no matter
	 * what.
	 */
2408
	if (i915.enable_execlists) {
2409
		ret = logical_ring_flush_all_caches(ringbuf, request->ctx);
2410 2411 2412 2413 2414 2415 2416
		if (ret)
			return ret;
	} else {
		ret = intel_ring_flush_all_caches(ring);
		if (ret)
			return ret;
	}
2417

2418 2419 2420 2421 2422
	/* Record the position of the start of the request so that
	 * should we detect the updated seqno part-way through the
	 * GPU processing the request, we never over-estimate the
	 * position of the head.
	 */
2423
	request->postfix = intel_ring_get_tail(ringbuf);
2424

2425
	if (i915.enable_execlists) {
2426
		ret = ring->emit_request(ringbuf, request);
2427 2428 2429 2430 2431 2432
		if (ret)
			return ret;
	} else {
		ret = ring->add_request(ring);
		if (ret)
			return ret;
2433 2434

		request->tail = intel_ring_get_tail(ringbuf);
2435
	}
2436

2437 2438 2439 2440 2441 2442 2443 2444
	request->head = request_start;

	/* Whilst this request exists, batch_obj will be on the
	 * active_list, and so will hold the active reference. Only when this
	 * request is retired will the the batch_obj be moved onto the
	 * inactive_list and lose its active reference. Hence we do not need
	 * to explicitly hold another reference here.
	 */
2445
	request->batch_obj = obj;
2446

2447 2448 2449 2450 2451 2452 2453 2454
	if (!i915.enable_execlists) {
		/* Hold a reference to the current context so that we can inspect
		 * it later in case a hangcheck error event fires.
		 */
		request->ctx = ring->last_context;
		if (request->ctx)
			i915_gem_context_reference(request->ctx);
	}
2455

2456
	request->emitted_jiffies = jiffies;
2457
	list_add_tail(&request->list, &ring->request_list);
2458
	request->file_priv = NULL;
2459

C
Chris Wilson 已提交
2460 2461 2462
	if (file) {
		struct drm_i915_file_private *file_priv = file->driver_priv;

2463
		spin_lock(&file_priv->mm.lock);
2464
		request->file_priv = file_priv;
2465
		list_add_tail(&request->client_list,
2466
			      &file_priv->mm.request_list);
2467
		spin_unlock(&file_priv->mm.lock);
2468 2469

		request->pid = get_pid(task_pid(current));
2470
	}
2471

2472
	trace_i915_gem_request_add(request);
2473
	ring->outstanding_lazy_request = NULL;
C
Chris Wilson 已提交
2474

2475
	i915_queue_hangcheck(ring->dev);
2476

2477 2478 2479 2480
	queue_delayed_work(dev_priv->wq,
			   &dev_priv->mm.retire_work,
			   round_jiffies_up_relative(HZ));
	intel_mark_busy(dev_priv->dev);
2481

2482
	return 0;
2483 2484
}

2485 2486
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2487
{
2488
	struct drm_i915_file_private *file_priv = request->file_priv;
2489

2490 2491
	if (!file_priv)
		return;
C
Chris Wilson 已提交
2492

2493
	spin_lock(&file_priv->mm.lock);
2494 2495
	list_del(&request->client_list);
	request->file_priv = NULL;
2496
	spin_unlock(&file_priv->mm.lock);
2497 2498
}

2499
static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2500
				   const struct intel_context *ctx)
2501
{
2502
	unsigned long elapsed;
2503

2504 2505 2506
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;

	if (ctx->hang_stats.banned)
2507 2508
		return true;

2509 2510
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2511
		if (!i915_gem_context_is_default(ctx)) {
2512
			DRM_DEBUG("context hanging too fast, banning!\n");
2513
			return true;
2514 2515 2516
		} else if (i915_stop_ring_allow_ban(dev_priv)) {
			if (i915_stop_ring_allow_warn(dev_priv))
				DRM_ERROR("gpu hanging too fast, banning!\n");
2517
			return true;
2518
		}
2519 2520 2521 2522 2523
	}

	return false;
}

2524
static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2525
				  struct intel_context *ctx,
2526
				  const bool guilty)
2527
{
2528 2529 2530 2531
	struct i915_ctx_hang_stats *hs;

	if (WARN_ON(!ctx))
		return;
2532

2533 2534 2535
	hs = &ctx->hang_stats;

	if (guilty) {
2536
		hs->banned = i915_context_is_banned(dev_priv, ctx);
2537 2538 2539 2540
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2541 2542 2543
	}
}

2544 2545 2546 2547 2548
static void i915_gem_free_request(struct drm_i915_gem_request *request)
{
	list_del(&request->list);
	i915_gem_request_remove_from_client(request);

2549 2550
	put_pid(request->pid);

2551 2552 2553 2554 2555 2556 2557 2558 2559
	i915_gem_request_unreference(request);
}

void i915_gem_request_free(struct kref *req_ref)
{
	struct drm_i915_gem_request *req = container_of(req_ref,
						 typeof(*req), ref);
	struct intel_context *ctx = req->ctx;

2560 2561
	if (ctx) {
		if (i915.enable_execlists) {
2562
			struct intel_engine_cs *ring = req->ring;
2563

2564 2565 2566
			if (ctx != ring->default_context)
				intel_lr_context_unpin(ring, ctx);
		}
2567

2568 2569
		i915_gem_context_unreference(ctx);
	}
2570

2571
	kmem_cache_free(req->i915->requests, req);
2572 2573
}

2574 2575 2576
int i915_gem_request_alloc(struct intel_engine_cs *ring,
			   struct intel_context *ctx)
{
2577 2578
	struct drm_i915_private *dev_priv = to_i915(ring->dev);
	struct drm_i915_gem_request *rq;
2579 2580 2581 2582 2583
	int ret;

	if (ring->outstanding_lazy_request)
		return 0;

2584 2585
	rq = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
	if (rq == NULL)
2586 2587
		return -ENOMEM;

2588 2589 2590 2591
	kref_init(&rq->ref);
	rq->i915 = dev_priv;

	ret = i915_gem_get_seqno(ring->dev, &rq->seqno);
2592
	if (ret) {
2593
		kfree(rq);
2594 2595 2596
		return ret;
	}

2597
	rq->ring = ring;
2598 2599

	if (i915.enable_execlists)
2600
		ret = intel_logical_ring_alloc_request_extras(rq, ctx);
2601
	else
2602
		ret = intel_ring_alloc_request_extras(rq);
2603
	if (ret) {
2604
		kfree(rq);
2605 2606 2607
		return ret;
	}

2608
	ring->outstanding_lazy_request = rq;
2609
	return 0;
2610 2611
}

2612
struct drm_i915_gem_request *
2613
i915_gem_find_active_request(struct intel_engine_cs *ring)
2614
{
2615 2616 2617
	struct drm_i915_gem_request *request;

	list_for_each_entry(request, &ring->request_list, list) {
2618
		if (i915_gem_request_completed(request, false))
2619
			continue;
2620

2621
		return request;
2622
	}
2623 2624 2625 2626 2627

	return NULL;
}

static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2628
				       struct intel_engine_cs *ring)
2629 2630 2631 2632
{
	struct drm_i915_gem_request *request;
	bool ring_hung;

2633
	request = i915_gem_find_active_request(ring);
2634 2635 2636 2637 2638 2639

	if (request == NULL)
		return;

	ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;

2640
	i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2641 2642

	list_for_each_entry_continue(request, &ring->request_list, list)
2643
		i915_set_reset_status(dev_priv, request->ctx, false);
2644
}
2645

2646
static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2647
					struct intel_engine_cs *ring)
2648
{
2649
	while (!list_empty(&ring->active_list)) {
2650
		struct drm_i915_gem_object *obj;
2651

2652 2653 2654
		obj = list_first_entry(&ring->active_list,
				       struct drm_i915_gem_object,
				       ring_list);
2655

2656
		i915_gem_object_move_to_inactive(obj);
2657
	}
2658

2659 2660 2661 2662 2663 2664
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */
	while (!list_empty(&ring->execlist_queue)) {
2665
		struct drm_i915_gem_request *submit_req;
2666 2667

		submit_req = list_first_entry(&ring->execlist_queue,
2668
				struct drm_i915_gem_request,
2669 2670
				execlist_link);
		list_del(&submit_req->execlist_link);
2671 2672 2673 2674

		if (submit_req->ctx != ring->default_context)
			intel_lr_context_unpin(ring, submit_req->ctx);

2675
		i915_gem_request_unreference(submit_req);
2676 2677
	}

2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
	/*
	 * We must free the requests after all the corresponding objects have
	 * been moved off active lists. Which is the same order as the normal
	 * retire_requests function does. This is important if object hold
	 * implicit references on things like e.g. ppgtt address spaces through
	 * the request.
	 */
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		i915_gem_free_request(request);
	}
2694

2695 2696
	/* This may not have been flushed before the reset, so clean it now */
	i915_gem_request_assign(&ring->outstanding_lazy_request, NULL);
2697 2698
}

2699
void i915_gem_restore_fences(struct drm_device *dev)
2700 2701 2702 2703
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int i;

2704
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
2705
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2706

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (reg->obj) {
			i915_gem_object_update_fence(reg->obj, reg,
						     reg->obj->tiling_mode);
		} else {
			i915_gem_write_fence(dev, i, NULL);
		}
2717 2718 2719
	}
}

2720
void i915_gem_reset(struct drm_device *dev)
2721
{
2722
	struct drm_i915_private *dev_priv = dev->dev_private;
2723
	struct intel_engine_cs *ring;
2724
	int i;
2725

2726 2727 2728 2729 2730 2731 2732 2733
	/*
	 * Before we free the objects from the requests, we need to inspect
	 * them for finding the guilty party. As the requests only borrow
	 * their reference to the objects, the inspection must be done first.
	 */
	for_each_ring(ring, dev_priv, i)
		i915_gem_reset_ring_status(dev_priv, ring);

2734
	for_each_ring(ring, dev_priv, i)
2735
		i915_gem_reset_ring_cleanup(dev_priv, ring);
2736

2737 2738
	i915_gem_context_reset(dev);

2739
	i915_gem_restore_fences(dev);
2740 2741 2742 2743 2744
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
2745
void
2746
i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2747
{
C
Chris Wilson 已提交
2748
	if (list_empty(&ring->request_list))
2749 2750
		return;

C
Chris Wilson 已提交
2751
	WARN_ON(i915_verify_lists(ring->dev));
2752

2753 2754 2755 2756
	/* Retire requests first as we use it above for the early return.
	 * If we retire requests last, we may use a later seqno and so clear
	 * the requests lists without clearing the active list, leading to
	 * confusion.
2757
	 */
2758
	while (!list_empty(&ring->request_list)) {
2759 2760
		struct drm_i915_gem_request *request;

2761
		request = list_first_entry(&ring->request_list,
2762 2763 2764
					   struct drm_i915_gem_request,
					   list);

2765
		if (!i915_gem_request_completed(request, true))
2766 2767
			break;

2768
		trace_i915_gem_request_retire(request);
2769

2770 2771 2772 2773 2774
		/* We know the GPU must have read the request to have
		 * sent us the seqno + interrupt, so use the position
		 * of tail of the request to update the last known position
		 * of the GPU head.
		 */
2775
		request->ringbuf->last_retired_head = request->postfix;
2776

2777
		i915_gem_free_request(request);
2778
	}
2779

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate,
	 * before we free the context associated with the requests.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_i915_gem_object *obj;

		obj = list_first_entry(&ring->active_list,
				      struct drm_i915_gem_object,
				      ring_list);

		if (!i915_gem_request_completed(obj->last_read_req, true))
			break;

		i915_gem_object_move_to_inactive(obj);
	}

2797 2798
	if (unlikely(ring->trace_irq_req &&
		     i915_gem_request_completed(ring->trace_irq_req, true))) {
2799
		ring->irq_put(ring);
2800
		i915_gem_request_assign(&ring->trace_irq_req, NULL);
2801
	}
2802

C
Chris Wilson 已提交
2803
	WARN_ON(i915_verify_lists(ring->dev));
2804 2805
}

2806
bool
2807 2808
i915_gem_retire_requests(struct drm_device *dev)
{
2809
	struct drm_i915_private *dev_priv = dev->dev_private;
2810
	struct intel_engine_cs *ring;
2811
	bool idle = true;
2812
	int i;
2813

2814
	for_each_ring(ring, dev_priv, i) {
2815
		i915_gem_retire_requests_ring(ring);
2816
		idle &= list_empty(&ring->request_list);
2817 2818 2819 2820 2821 2822 2823 2824 2825
		if (i915.enable_execlists) {
			unsigned long flags;

			spin_lock_irqsave(&ring->execlist_lock, flags);
			idle &= list_empty(&ring->execlist_queue);
			spin_unlock_irqrestore(&ring->execlist_lock, flags);

			intel_execlists_retire_requests(ring);
		}
2826 2827 2828 2829 2830 2831 2832 2833
	}

	if (idle)
		mod_delayed_work(dev_priv->wq,
				   &dev_priv->mm.idle_work,
				   msecs_to_jiffies(100));

	return idle;
2834 2835
}

2836
static void
2837 2838
i915_gem_retire_work_handler(struct work_struct *work)
{
2839 2840 2841
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.retire_work.work);
	struct drm_device *dev = dev_priv->dev;
2842
	bool idle;
2843

2844
	/* Come back later if the device is busy... */
2845 2846 2847 2848
	idle = false;
	if (mutex_trylock(&dev->struct_mutex)) {
		idle = i915_gem_retire_requests(dev);
		mutex_unlock(&dev->struct_mutex);
2849
	}
2850
	if (!idle)
2851 2852
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
				   round_jiffies_up_relative(HZ));
2853
}
2854

2855 2856 2857 2858 2859
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), mm.idle_work.work);
2860
	struct drm_device *dev = dev_priv->dev;
2861 2862
	struct intel_engine_cs *ring;
	int i;
2863

2864 2865 2866
	for_each_ring(ring, dev_priv, i)
		if (!list_empty(&ring->request_list))
			return;
2867 2868 2869 2870 2871 2872 2873 2874 2875

	intel_mark_idle(dev);

	if (mutex_trylock(&dev->struct_mutex)) {
		struct intel_engine_cs *ring;
		int i;

		for_each_ring(ring, dev_priv, i)
			i915_gem_batch_pool_fini(&ring->batch_pool);
2876

2877 2878
		mutex_unlock(&dev->struct_mutex);
	}
2879 2880
}

2881 2882 2883 2884 2885 2886 2887 2888
/**
 * Ensures that an object will eventually get non-busy by flushing any required
 * write domains, emitting any outstanding lazy request and retiring and
 * completed requests.
 */
static int
i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
{
2889
	struct intel_engine_cs *ring;
2890 2891 2892
	int ret;

	if (obj->active) {
2893 2894
		ring = i915_gem_request_get_ring(obj->last_read_req);

2895
		ret = i915_gem_check_olr(obj->last_read_req);
2896 2897 2898
		if (ret)
			return ret;

2899
		i915_gem_retire_requests_ring(ring);
2900 2901 2902 2903 2904
	}

	return 0;
}

2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
 * @DRM_IOCTL_ARGS: standard ioctl arguments
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
2930
	struct drm_i915_private *dev_priv = dev->dev_private;
2931 2932
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2933
	struct drm_i915_gem_request *req;
2934
	unsigned reset_counter;
2935 2936
	int ret = 0;

2937 2938 2939
	if (args->flags != 0)
		return -EINVAL;

2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
	if (&obj->base == NULL) {
		mutex_unlock(&dev->struct_mutex);
		return -ENOENT;
	}

2950 2951
	/* Need to make sure the object gets inactive eventually. */
	ret = i915_gem_object_flush_active(obj);
2952 2953 2954
	if (ret)
		goto out;

2955 2956
	if (!obj->active || !obj->last_read_req)
		goto out;
2957

2958
	req = obj->last_read_req;
2959 2960

	/* Do this after OLR check to make sure we make forward progress polling
2961
	 * on this IOCTL with a timeout == 0 (like busy ioctl)
2962
	 */
2963
	if (args->timeout_ns == 0) {
2964 2965 2966 2967 2968
		ret = -ETIME;
		goto out;
	}

	drm_gem_object_unreference(&obj->base);
2969
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2970
	i915_gem_request_reference(req);
2971 2972
	mutex_unlock(&dev->struct_mutex);

2973 2974
	ret = __i915_wait_request(req, reset_counter, true,
				  args->timeout_ns > 0 ? &args->timeout_ns : NULL,
2975
				  file->driver_priv);
2976
	i915_gem_request_unreference__unlocked(req);
2977
	return ret;
2978 2979 2980 2981 2982 2983 2984

out:
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
/**
 * i915_gem_object_sync - sync an object to a ring.
 *
 * @obj: object which may be in use on another ring.
 * @to: ring we wish to use the object on. May be NULL.
 *
 * This code is meant to abstract object synchronization with the GPU.
 * Calling with NULL implies synchronizing the object with the CPU
 * rather than a particular GPU ring.
 *
 * Returns 0 if successful, else propagates up the lower layer error.
 */
2997 2998
int
i915_gem_object_sync(struct drm_i915_gem_object *obj,
2999
		     struct intel_engine_cs *to)
3000
{
3001
	struct intel_engine_cs *from;
3002 3003 3004
	u32 seqno;
	int ret, idx;

3005 3006
	from = i915_gem_request_get_ring(obj->last_read_req);

3007 3008 3009
	if (from == NULL || to == from)
		return 0;

3010
	if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
3011
		return i915_gem_object_wait_rendering(obj, false);
3012 3013 3014

	idx = intel_ring_sync_index(from, to);

3015
	seqno = i915_gem_request_get_seqno(obj->last_read_req);
R
Rodrigo Vivi 已提交
3016 3017
	/* Optimization: Avoid semaphore sync when we are sure we already
	 * waited for an object with higher seqno */
3018
	if (seqno <= from->semaphore.sync_seqno[idx])
3019 3020
		return 0;

3021
	ret = i915_gem_check_olr(obj->last_read_req);
3022 3023
	if (ret)
		return ret;
3024

3025
	trace_i915_gem_ring_sync_to(from, to, obj->last_read_req);
3026
	ret = to->semaphore.sync_to(to, from, seqno);
3027
	if (!ret)
3028
		/* We use last_read_req because sync_to()
3029 3030 3031
		 * might have just caused seqno wrap under
		 * the radar.
		 */
3032 3033
		from->semaphore.sync_seqno[idx] =
				i915_gem_request_get_seqno(obj->last_read_req);
3034

3035
	return ret;
3036 3037
}

3038 3039 3040 3041 3042 3043 3044
static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
{
	u32 old_write_domain, old_read_domains;

	/* Force a pagefault for domain tracking on next user access */
	i915_gem_release_mmap(obj);

3045 3046 3047
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		return;

3048 3049 3050
	/* Wait for any direct GTT access to complete */
	mb();

3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	old_read_domains = obj->base.read_domains;
	old_write_domain = obj->base.write_domain;

	obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
	obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);
}

3062
int i915_vma_unbind(struct i915_vma *vma)
3063
{
3064
	struct drm_i915_gem_object *obj = vma->obj;
3065
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3066
	int ret;
3067

3068
	if (list_empty(&vma->vma_link))
3069 3070
		return 0;

3071 3072 3073 3074
	if (!drm_mm_node_allocated(&vma->node)) {
		i915_gem_vma_destroy(vma);
		return 0;
	}
3075

B
Ben Widawsky 已提交
3076
	if (vma->pin_count)
3077
		return -EBUSY;
3078

3079 3080
	BUG_ON(obj->pages == NULL);

3081
	ret = i915_gem_object_finish_gpu(obj);
3082
	if (ret)
3083 3084 3085 3086 3087 3088
		return ret;
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */

3089 3090
	if (i915_is_ggtt(vma->vm) &&
	    vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3091
		i915_gem_object_finish_gtt(obj);
3092

3093 3094 3095 3096 3097
		/* release the fence reg _after_ flushing */
		ret = i915_gem_object_put_fence(obj);
		if (ret)
			return ret;
	}
3098

3099
	trace_i915_vma_unbind(vma);
C
Chris Wilson 已提交
3100

3101
	vma->vm->unbind_vma(vma);
3102
	vma->bound = 0;
3103

3104
	list_del_init(&vma->mm_list);
3105 3106 3107 3108 3109 3110 3111 3112 3113
	if (i915_is_ggtt(vma->vm)) {
		if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
			obj->map_and_fenceable = false;
		} else if (vma->ggtt_view.pages) {
			sg_free_table(vma->ggtt_view.pages);
			kfree(vma->ggtt_view.pages);
			vma->ggtt_view.pages = NULL;
		}
	}
3114

B
Ben Widawsky 已提交
3115 3116 3117 3118
	drm_mm_remove_node(&vma->node);
	i915_gem_vma_destroy(vma);

	/* Since the unbound list is global, only move to that list if
3119
	 * no more VMAs exist. */
3120
	if (list_empty(&obj->vma_list)) {
3121 3122 3123 3124
		/* Throw away the active reference before
		 * moving to the unbound list. */
		i915_gem_object_retire(obj);

3125
		i915_gem_gtt_finish_object(obj);
B
Ben Widawsky 已提交
3126
		list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3127
	}
3128

3129 3130 3131 3132 3133 3134
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3135
	return 0;
3136 3137
}

3138
int i915_gpu_idle(struct drm_device *dev)
3139
{
3140
	struct drm_i915_private *dev_priv = dev->dev_private;
3141
	struct intel_engine_cs *ring;
3142
	int ret, i;
3143 3144

	/* Flush everything onto the inactive list. */
3145
	for_each_ring(ring, dev_priv, i) {
3146 3147 3148 3149 3150
		if (!i915.enable_execlists) {
			ret = i915_switch_context(ring, ring->default_context);
			if (ret)
				return ret;
		}
3151

3152
		ret = intel_ring_idle(ring);
3153 3154 3155
		if (ret)
			return ret;
	}
3156

3157
	return 0;
3158 3159
}

3160 3161
static void i965_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3162
{
3163
	struct drm_i915_private *dev_priv = dev->dev_private;
3164 3165
	int fence_reg;
	int fence_pitch_shift;
3166

3167 3168 3169 3170 3171 3172 3173 3174
	if (INTEL_INFO(dev)->gen >= 6) {
		fence_reg = FENCE_REG_SANDYBRIDGE_0;
		fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
	} else {
		fence_reg = FENCE_REG_965_0;
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	fence_reg += reg * 8;

	/* To w/a incoherency with non-atomic 64-bit register updates,
	 * we split the 64-bit update into two 32-bit writes. In order
	 * for a partial fence not to be evaluated between writes, we
	 * precede the update with write to turn off the fence register,
	 * and only enable the fence as the last step.
	 *
	 * For extra levels of paranoia, we make sure each step lands
	 * before applying the next step.
	 */
	I915_WRITE(fence_reg, 0);
	POSTING_READ(fence_reg);

3189
	if (obj) {
3190
		u32 size = i915_gem_obj_ggtt_size(obj);
3191
		uint64_t val;
3192

3193 3194 3195 3196 3197 3198 3199
		/* Adjust fence size to match tiled area */
		if (obj->tiling_mode != I915_TILING_NONE) {
			uint32_t row_size = obj->stride *
				(obj->tiling_mode == I915_TILING_Y ? 32 : 8);
			size = (size / row_size) * row_size;
		}

3200
		val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3201
				 0xfffff000) << 32;
3202
		val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3203
		val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3204 3205 3206
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I965_FENCE_TILING_Y_SHIFT;
		val |= I965_FENCE_REG_VALID;
3207

3208 3209 3210 3211 3212 3213 3214 3215 3216
		I915_WRITE(fence_reg + 4, val >> 32);
		POSTING_READ(fence_reg + 4);

		I915_WRITE(fence_reg + 0, val);
		POSTING_READ(fence_reg);
	} else {
		I915_WRITE(fence_reg + 4, 0);
		POSTING_READ(fence_reg + 4);
	}
3217 3218
}

3219 3220
static void i915_write_fence_reg(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
3221
{
3222
	struct drm_i915_private *dev_priv = dev->dev_private;
3223
	u32 val;
3224

3225
	if (obj) {
3226
		u32 size = i915_gem_obj_ggtt_size(obj);
3227 3228
		int pitch_val;
		int tile_width;
3229

3230
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3231
		     (size & -size) != size ||
3232 3233 3234
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
		     i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3235

3236 3237 3238 3239 3240 3241 3242 3243 3244
		if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
			tile_width = 128;
		else
			tile_width = 512;

		/* Note: pitch better be a power of two tile widths */
		pitch_val = obj->stride / tile_width;
		pitch_val = ffs(pitch_val) - 1;

3245
		val = i915_gem_obj_ggtt_offset(obj);
3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I915_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;

	if (reg < 8)
		reg = FENCE_REG_830_0 + reg * 4;
	else
		reg = FENCE_REG_945_8 + (reg - 8) * 4;

	I915_WRITE(reg, val);
	POSTING_READ(reg);
3261 3262
}

3263 3264
static void i830_write_fence_reg(struct drm_device *dev, int reg,
				struct drm_i915_gem_object *obj)
3265
{
3266
	struct drm_i915_private *dev_priv = dev->dev_private;
3267 3268
	uint32_t val;

3269
	if (obj) {
3270
		u32 size = i915_gem_obj_ggtt_size(obj);
3271
		uint32_t pitch_val;
3272

3273
		WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3274
		     (size & -size) != size ||
3275 3276 3277
		     (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
		     "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
		     i915_gem_obj_ggtt_offset(obj), size);
3278

3279 3280
		pitch_val = obj->stride / 128;
		pitch_val = ffs(pitch_val) - 1;
3281

3282
		val = i915_gem_obj_ggtt_offset(obj);
3283 3284 3285 3286 3287 3288 3289
		if (obj->tiling_mode == I915_TILING_Y)
			val |= 1 << I830_FENCE_TILING_Y_SHIFT;
		val |= I830_FENCE_SIZE_BITS(size);
		val |= pitch_val << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	} else
		val = 0;
3290

3291 3292 3293 3294
	I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
	POSTING_READ(FENCE_REG_830_0 + reg * 4);
}

3295 3296 3297 3298 3299
inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
{
	return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
}

3300 3301 3302
static void i915_gem_write_fence(struct drm_device *dev, int reg,
				 struct drm_i915_gem_object *obj)
{
3303 3304 3305 3306 3307 3308 3309 3310
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* Ensure that all CPU reads are completed before installing a fence
	 * and all writes before removing the fence.
	 */
	if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
		mb();

3311 3312 3313 3314
	WARN(obj && (!obj->stride || !obj->tiling_mode),
	     "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
	     obj->stride, obj->tiling_mode);

3315 3316 3317 3318 3319 3320
	if (IS_GEN2(dev))
		i830_write_fence_reg(dev, reg, obj);
	else if (IS_GEN3(dev))
		i915_write_fence_reg(dev, reg, obj);
	else if (INTEL_INFO(dev)->gen >= 4)
		i965_write_fence_reg(dev, reg, obj);
3321 3322 3323 3324 3325 3326

	/* And similarly be paranoid that no direct access to this region
	 * is reordered to before the fence is installed.
	 */
	if (i915_gem_object_needs_mb(obj))
		mb();
3327 3328
}

3329 3330 3331 3332 3333 3334 3335 3336 3337 3338
static inline int fence_number(struct drm_i915_private *dev_priv,
			       struct drm_i915_fence_reg *fence)
{
	return fence - dev_priv->fence_regs;
}

static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
					 struct drm_i915_fence_reg *fence,
					 bool enable)
{
3339
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3340 3341 3342
	int reg = fence_number(dev_priv, fence);

	i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3343 3344

	if (enable) {
3345
		obj->fence_reg = reg;
3346 3347 3348 3349 3350 3351 3352
		fence->obj = obj;
		list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
	} else {
		obj->fence_reg = I915_FENCE_REG_NONE;
		fence->obj = NULL;
		list_del_init(&fence->lru_list);
	}
3353
	obj->fence_dirty = false;
3354 3355
}

3356
static int
3357
i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3358
{
3359
	if (obj->last_fenced_req) {
3360
		int ret = i915_wait_request(obj->last_fenced_req);
3361 3362
		if (ret)
			return ret;
3363

3364
		i915_gem_request_assign(&obj->last_fenced_req, NULL);
3365 3366 3367 3368 3369 3370 3371 3372
	}

	return 0;
}

int
i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
{
3373
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3374
	struct drm_i915_fence_reg *fence;
3375 3376
	int ret;

3377
	ret = i915_gem_object_wait_fence(obj);
3378 3379 3380
	if (ret)
		return ret;

3381 3382
	if (obj->fence_reg == I915_FENCE_REG_NONE)
		return 0;
3383

3384 3385
	fence = &dev_priv->fence_regs[obj->fence_reg];

3386 3387 3388
	if (WARN_ON(fence->pin_count))
		return -EBUSY;

3389
	i915_gem_object_fence_lost(obj);
3390
	i915_gem_object_update_fence(obj, fence, false);
3391 3392 3393 3394 3395

	return 0;
}

static struct drm_i915_fence_reg *
C
Chris Wilson 已提交
3396
i915_find_fence_reg(struct drm_device *dev)
3397 3398
{
	struct drm_i915_private *dev_priv = dev->dev_private;
C
Chris Wilson 已提交
3399
	struct drm_i915_fence_reg *reg, *avail;
3400
	int i;
3401 3402

	/* First try to find a free reg */
3403
	avail = NULL;
3404 3405 3406
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
3407
			return reg;
3408

3409
		if (!reg->pin_count)
3410
			avail = reg;
3411 3412
	}

3413
	if (avail == NULL)
3414
		goto deadlock;
3415 3416

	/* None available, try to steal one or wait for a user to finish */
3417
	list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3418
		if (reg->pin_count)
3419 3420
			continue;

C
Chris Wilson 已提交
3421
		return reg;
3422 3423
	}

3424 3425 3426 3427 3428 3429
deadlock:
	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
3430 3431
}

3432
/**
3433
 * i915_gem_object_get_fence - set up fencing for an object
3434 3435 3436 3437 3438 3439 3440 3441 3442
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
3443 3444
 *
 * For an untiled surface, this removes any existing fence.
3445
 */
3446
int
3447
i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3448
{
3449
	struct drm_device *dev = obj->base.dev;
J
Jesse Barnes 已提交
3450
	struct drm_i915_private *dev_priv = dev->dev_private;
3451
	bool enable = obj->tiling_mode != I915_TILING_NONE;
3452
	struct drm_i915_fence_reg *reg;
3453
	int ret;
3454

3455 3456 3457
	/* Have we updated the tiling parameters upon the object and so
	 * will need to serialise the write to the associated fence register?
	 */
3458
	if (obj->fence_dirty) {
3459
		ret = i915_gem_object_wait_fence(obj);
3460 3461 3462
		if (ret)
			return ret;
	}
3463

3464
	/* Just update our place in the LRU if our fence is getting reused. */
3465 3466
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		reg = &dev_priv->fence_regs[obj->fence_reg];
3467
		if (!obj->fence_dirty) {
3468 3469 3470 3471 3472
			list_move_tail(&reg->lru_list,
				       &dev_priv->mm.fence_list);
			return 0;
		}
	} else if (enable) {
3473 3474 3475
		if (WARN_ON(!obj->map_and_fenceable))
			return -EINVAL;

3476
		reg = i915_find_fence_reg(dev);
3477 3478
		if (IS_ERR(reg))
			return PTR_ERR(reg);
3479

3480 3481 3482
		if (reg->obj) {
			struct drm_i915_gem_object *old = reg->obj;

3483
			ret = i915_gem_object_wait_fence(old);
3484 3485 3486
			if (ret)
				return ret;

3487
			i915_gem_object_fence_lost(old);
3488
		}
3489
	} else
3490 3491
		return 0;

3492 3493
	i915_gem_object_update_fence(obj, reg, enable);

3494
	return 0;
3495 3496
}

3497
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3498 3499
				     unsigned long cache_level)
{
3500
	struct drm_mm_node *gtt_space = &vma->node;
3501 3502
	struct drm_mm_node *other;

3503 3504 3505 3506 3507 3508
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3509
	 */
3510
	if (vma->vm->mm.color_adjust == NULL)
3511 3512
		return true;

3513
	if (!drm_mm_node_allocated(gtt_space))
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3530
/**
3531 3532
 * Finds free space in the GTT aperture and binds the object or a view of it
 * there.
3533
 */
3534
static struct i915_vma *
3535 3536
i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
			   struct i915_address_space *vm,
3537
			   const struct i915_ggtt_view *ggtt_view,
3538
			   unsigned alignment,
3539
			   uint64_t flags)
3540
{
3541
	struct drm_device *dev = obj->base.dev;
3542
	struct drm_i915_private *dev_priv = dev->dev_private;
3543
	u32 size, fence_size, fence_alignment, unfenced_alignment;
3544 3545 3546
	unsigned long start =
		flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
	unsigned long end =
3547
		flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
B
Ben Widawsky 已提交
3548
	struct i915_vma *vma;
3549
	int ret;
3550

3551 3552 3553 3554 3555
	if (i915_is_ggtt(vm)) {
		u32 view_size;

		if (WARN_ON(!ggtt_view))
			return ERR_PTR(-EINVAL);
3556

3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
		view_size = i915_ggtt_view_size(obj, ggtt_view);

		fence_size = i915_gem_get_gtt_size(dev,
						   view_size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     view_size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment = i915_gem_get_gtt_alignment(dev,
								view_size,
								obj->tiling_mode,
								false);
		size = flags & PIN_MAPPABLE ? fence_size : view_size;
	} else {
		fence_size = i915_gem_get_gtt_size(dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);
		unfenced_alignment =
			i915_gem_get_gtt_alignment(dev,
						   obj->base.size,
						   obj->tiling_mode,
						   false);
		size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
	}
3586

3587
	if (alignment == 0)
3588
		alignment = flags & PIN_MAPPABLE ? fence_alignment :
3589
						unfenced_alignment;
3590
	if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3591 3592 3593
		DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
			  ggtt_view ? ggtt_view->type : 0,
			  alignment);
3594
		return ERR_PTR(-EINVAL);
3595 3596
	}

3597 3598 3599
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3600
	 */
3601 3602 3603 3604
	if (size > end) {
		DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%u > %s aperture=%lu\n",
			  ggtt_view ? ggtt_view->type : 0,
			  size,
3605
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3606
			  end);
3607
		return ERR_PTR(-E2BIG);
3608 3609
	}

3610
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3611
	if (ret)
3612
		return ERR_PTR(ret);
C
Chris Wilson 已提交
3613

3614 3615
	i915_gem_object_pin_pages(obj);

3616 3617 3618
	vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
			  i915_gem_obj_lookup_or_create_vma(obj, vm);

3619
	if (IS_ERR(vma))
3620
		goto err_unpin;
B
Ben Widawsky 已提交
3621

3622
search_free:
3623
	ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3624
						  size, alignment,
3625 3626
						  obj->cache_level,
						  start, end,
3627 3628
						  DRM_MM_SEARCH_DEFAULT,
						  DRM_MM_CREATE_DEFAULT);
3629
	if (ret) {
3630
		ret = i915_gem_evict_something(dev, vm, size, alignment,
3631 3632 3633
					       obj->cache_level,
					       start, end,
					       flags);
3634 3635
		if (ret == 0)
			goto search_free;
3636

3637
		goto err_free_vma;
3638
	}
3639
	if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
B
Ben Widawsky 已提交
3640
		ret = -EINVAL;
3641
		goto err_remove_node;
3642 3643
	}

3644
	ret = i915_gem_gtt_prepare_object(obj);
B
Ben Widawsky 已提交
3645
	if (ret)
3646
		goto err_remove_node;
3647

3648
	trace_i915_vma_bind(vma, flags);
3649
	ret = i915_vma_bind(vma, obj->cache_level, flags);
3650 3651 3652
	if (ret)
		goto err_finish_gtt;

3653
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
B
Ben Widawsky 已提交
3654
	list_add_tail(&vma->mm_list, &vm->inactive_list);
3655

3656
	return vma;
B
Ben Widawsky 已提交
3657

3658 3659
err_finish_gtt:
	i915_gem_gtt_finish_object(obj);
3660
err_remove_node:
3661
	drm_mm_remove_node(&vma->node);
3662
err_free_vma:
B
Ben Widawsky 已提交
3663
	i915_gem_vma_destroy(vma);
3664
	vma = ERR_PTR(ret);
3665
err_unpin:
B
Ben Widawsky 已提交
3666
	i915_gem_object_unpin_pages(obj);
3667
	return vma;
3668 3669
}

3670
bool
3671 3672
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3673 3674 3675 3676 3677
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3678
	if (obj->pages == NULL)
3679
		return false;
3680

3681 3682 3683 3684
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3685
	if (obj->stolen || obj->phys_handle)
3686
		return false;
3687

3688 3689 3690 3691 3692 3693 3694 3695
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3696 3697
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3698
		return false;
3699
	}
3700

C
Chris Wilson 已提交
3701
	trace_i915_gem_object_clflush(obj);
3702
	drm_clflush_sg(obj->pages);
3703
	obj->cache_dirty = false;
3704 3705

	return true;
3706 3707 3708 3709
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3710
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3711
{
C
Chris Wilson 已提交
3712 3713
	uint32_t old_write_domain;

3714
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3715 3716
		return;

3717
	/* No actual flushing is required for the GTT write domain.  Writes
3718 3719
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
3720 3721 3722 3723
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3724
	 */
3725 3726
	wmb();

3727 3728
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3729

3730 3731
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3732
	trace_i915_gem_object_change_domain(obj,
3733
					    obj->base.read_domains,
C
Chris Wilson 已提交
3734
					    old_write_domain);
3735 3736 3737 3738
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3739
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3740
{
C
Chris Wilson 已提交
3741
	uint32_t old_write_domain;
3742

3743
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3744 3745
		return;

3746
	if (i915_gem_clflush_object(obj, obj->pin_display))
3747 3748
		i915_gem_chipset_flush(obj->base.dev);

3749 3750
	old_write_domain = obj->base.write_domain;
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3751

3752 3753
	intel_fb_obj_flush(obj, false);

C
Chris Wilson 已提交
3754
	trace_i915_gem_object_change_domain(obj,
3755
					    obj->base.read_domains,
C
Chris Wilson 已提交
3756
					    old_write_domain);
3757 3758
}

3759 3760 3761 3762 3763 3764
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3765
int
3766
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3767
{
C
Chris Wilson 已提交
3768
	uint32_t old_write_domain, old_read_domains;
3769
	struct i915_vma *vma;
3770
	int ret;
3771

3772 3773 3774
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3775
	ret = i915_gem_object_wait_rendering(obj, !write);
3776 3777 3778
	if (ret)
		return ret;

3779
	i915_gem_object_retire(obj);
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3793
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3794

3795 3796 3797 3798 3799 3800 3801
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3802 3803
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3804

3805 3806 3807
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3808 3809
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3810
	if (write) {
3811 3812 3813
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3814 3815
	}

3816
	if (write)
3817
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_GTT);
3818

C
Chris Wilson 已提交
3819 3820 3821 3822
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3823
	/* And bump the LRU for this access */
3824 3825
	vma = i915_gem_obj_to_ggtt(obj);
	if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
3826
		list_move_tail(&vma->mm_list,
3827
			       &to_i915(obj->base.dev)->gtt.base.inactive_list);
3828

3829 3830 3831
	return 0;
}

3832 3833 3834
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3835
	struct drm_device *dev = obj->base.dev;
3836
	struct i915_vma *vma, *next;
3837 3838 3839 3840 3841
	int ret;

	if (obj->cache_level == cache_level)
		return 0;

B
Ben Widawsky 已提交
3842
	if (i915_gem_obj_is_pinned(obj)) {
3843 3844 3845 3846
		DRM_DEBUG("can not change the cache level of pinned objects\n");
		return -EBUSY;
	}

3847
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3848
		if (!i915_gem_valid_gtt_space(vma, cache_level)) {
3849
			ret = i915_vma_unbind(vma);
3850 3851 3852
			if (ret)
				return ret;
		}
3853 3854
	}

3855
	if (i915_gem_obj_bound_any(obj)) {
3856 3857 3858 3859 3860 3861 3862 3863 3864 3865
		ret = i915_gem_object_finish_gpu(obj);
		if (ret)
			return ret;

		i915_gem_object_finish_gtt(obj);

		/* Before SandyBridge, you could not use tiling or fence
		 * registers with snooped memory, so relinquish any fences
		 * currently pointing to our region in the aperture.
		 */
3866
		if (INTEL_INFO(dev)->gen < 6) {
3867 3868 3869 3870 3871
			ret = i915_gem_object_put_fence(obj);
			if (ret)
				return ret;
		}

3872
		list_for_each_entry(vma, &obj->vma_list, vma_link)
3873 3874
			if (drm_mm_node_allocated(&vma->node)) {
				ret = i915_vma_bind(vma, cache_level,
3875
						    PIN_UPDATE);
3876 3877 3878
				if (ret)
					return ret;
			}
3879 3880
	}

3881 3882 3883 3884
	list_for_each_entry(vma, &obj->vma_list, vma_link)
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3885 3886 3887 3888 3889
	if (obj->cache_dirty &&
	    obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
	    cpu_write_needs_clflush(obj)) {
		if (i915_gem_clflush_object(obj, true))
			i915_gem_chipset_flush(obj->base.dev);
3890 3891 3892 3893 3894
	}

	return 0;
}

B
Ben Widawsky 已提交
3895 3896
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3897
{
B
Ben Widawsky 已提交
3898
	struct drm_i915_gem_caching *args = data;
3899 3900 3901
	struct drm_i915_gem_object *obj;

	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3902 3903
	if (&obj->base == NULL)
		return -ENOENT;
3904

3905 3906 3907 3908 3909 3910
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3911 3912 3913 3914
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3915 3916 3917 3918
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3919

3920 3921
	drm_gem_object_unreference_unlocked(&obj->base);
	return 0;
3922 3923
}

B
Ben Widawsky 已提交
3924 3925
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3926
{
B
Ben Widawsky 已提交
3927
	struct drm_i915_gem_caching *args = data;
3928 3929 3930 3931
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3932 3933
	switch (args->caching) {
	case I915_CACHING_NONE:
3934 3935
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3936
	case I915_CACHING_CACHED:
3937 3938
		level = I915_CACHE_LLC;
		break;
3939 3940 3941
	case I915_CACHING_DISPLAY:
		level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
		break;
3942 3943 3944 3945
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3946 3947 3948 3949
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
	if (&obj->base == NULL) {
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);

	drm_gem_object_unreference(&obj->base);
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3964
/*
3965 3966 3967
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3968 3969
 */
int
3970 3971
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3972 3973
				     struct intel_engine_cs *pipelined,
				     const struct i915_ggtt_view *view)
3974
{
3975
	u32 old_read_domains, old_write_domain;
3976 3977
	int ret;

3978
	if (pipelined != i915_gem_request_get_ring(obj->last_read_req)) {
3979 3980
		ret = i915_gem_object_sync(obj, pipelined);
		if (ret)
3981 3982 3983
			return ret;
	}

3984 3985 3986
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3987
	obj->pin_display++;
3988

3989 3990 3991 3992 3993 3994 3995 3996 3997
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3998 3999
	ret = i915_gem_object_set_cache_level(obj,
					      HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4000
	if (ret)
4001
		goto err_unpin_display;
4002

4003 4004 4005 4006
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
	 * always use map_and_fenceable for all scanout buffers.
	 */
4007 4008 4009
	ret = i915_gem_object_ggtt_pin(obj, view, alignment,
				       view->type == I915_GGTT_VIEW_NORMAL ?
				       PIN_MAPPABLE : 0);
4010
	if (ret)
4011
		goto err_unpin_display;
4012

4013
	i915_gem_object_flush_cpu_write_domain(obj);
4014

4015
	old_write_domain = obj->base.write_domain;
4016
	old_read_domains = obj->base.read_domains;
4017 4018 4019 4020

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4021
	obj->base.write_domain = 0;
4022
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4023 4024 4025

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
4026
					    old_write_domain);
4027 4028

	return 0;
4029 4030

err_unpin_display:
4031
	obj->pin_display--;
4032 4033 4034 4035
	return ret;
}

void
4036 4037
i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
					 const struct i915_ggtt_view *view)
4038
{
4039 4040 4041
	if (WARN_ON(obj->pin_display == 0))
		return;

4042 4043
	i915_gem_object_ggtt_unpin_view(obj, view);

4044
	obj->pin_display--;
4045 4046
}

4047
int
4048
i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
4049
{
4050 4051
	int ret;

4052
	if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
4053 4054
		return 0;

4055
	ret = i915_gem_object_wait_rendering(obj, false);
4056 4057 4058
	if (ret)
		return ret;

4059 4060
	/* Ensure that we invalidate the GPU's caches and TLBs. */
	obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
4061
	return 0;
4062 4063
}

4064 4065 4066 4067 4068 4069
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
4070
int
4071
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4072
{
C
Chris Wilson 已提交
4073
	uint32_t old_write_domain, old_read_domains;
4074 4075
	int ret;

4076 4077 4078
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

4079
	ret = i915_gem_object_wait_rendering(obj, !write);
4080 4081 4082
	if (ret)
		return ret;

4083
	i915_gem_object_retire(obj);
4084
	i915_gem_object_flush_gtt_write_domain(obj);
4085

4086 4087
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
4088

4089
	/* Flush the CPU cache if it's still invalid. */
4090
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4091
		i915_gem_clflush_object(obj, false);
4092

4093
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4094 4095 4096 4097 4098
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
4099
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4100 4101 4102 4103 4104

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
4105 4106
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4107
	}
4108

4109
	if (write)
4110
		intel_fb_obj_invalidate(obj, NULL, ORIGIN_CPU);
4111

C
Chris Wilson 已提交
4112 4113 4114 4115
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

4116 4117 4118
	return 0;
}

4119 4120 4121
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
4122 4123 4124 4125
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
4126 4127 4128
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
4129
static int
4130
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4131
{
4132 4133
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
4134
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
4135
	struct drm_i915_gem_request *request, *target = NULL;
4136
	unsigned reset_counter;
4137
	int ret;
4138

4139 4140 4141 4142 4143 4144 4145
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
	if (ret)
		return ret;

	ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
	if (ret)
		return ret;
4146

4147
	spin_lock(&file_priv->mm.lock);
4148
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4149 4150
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
4151

4152
		target = request;
4153
	}
4154
	reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4155 4156
	if (target)
		i915_gem_request_reference(target);
4157
	spin_unlock(&file_priv->mm.lock);
4158

4159
	if (target == NULL)
4160
		return 0;
4161

4162
	ret = __i915_wait_request(target, reset_counter, true, NULL, NULL);
4163 4164
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4165

4166
	i915_gem_request_unreference__unlocked(target);
4167

4168 4169 4170
	return ret;
}

4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189
static bool
i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
{
	struct drm_i915_gem_object *obj = vma->obj;

	if (alignment &&
	    vma->node.start & (alignment - 1))
		return true;

	if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

	return false;
}

4190 4191 4192 4193 4194 4195
static int
i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
		       struct i915_address_space *vm,
		       const struct i915_ggtt_view *ggtt_view,
		       uint32_t alignment,
		       uint64_t flags)
4196
{
4197
	struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4198
	struct i915_vma *vma;
4199
	unsigned bound;
4200 4201
	int ret;

4202 4203 4204
	if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
		return -ENODEV;

4205
	if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4206
		return -EINVAL;
4207

4208 4209 4210
	if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
		return -EINVAL;

4211 4212 4213 4214 4215 4216 4217 4218 4219
	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
		return -EINVAL;

	vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
			  i915_gem_obj_to_vma(obj, vm);

	if (IS_ERR(vma))
		return PTR_ERR(vma);

4220
	if (vma) {
B
Ben Widawsky 已提交
4221 4222 4223
		if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
			return -EBUSY;

4224
		if (i915_vma_misplaced(vma, alignment, flags)) {
4225
			unsigned long offset;
4226
			offset = ggtt_view ? i915_gem_obj_ggtt_offset_view(obj, ggtt_view) :
4227
					     i915_gem_obj_offset(obj, vm);
B
Ben Widawsky 已提交
4228
			WARN(vma->pin_count,
4229
			     "bo is already pinned in %s with incorrect alignment:"
4230
			     " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4231
			     " obj->map_and_fenceable=%d\n",
4232 4233
			     ggtt_view ? "ggtt" : "ppgtt",
			     offset,
4234
			     alignment,
4235
			     !!(flags & PIN_MAPPABLE),
4236
			     obj->map_and_fenceable);
4237
			ret = i915_vma_unbind(vma);
4238 4239
			if (ret)
				return ret;
4240 4241

			vma = NULL;
4242 4243 4244
		}
	}

4245
	bound = vma ? vma->bound : 0;
4246
	if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4247 4248
		vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
						 flags);
4249 4250
		if (IS_ERR(vma))
			return PTR_ERR(vma);
4251 4252
	} else {
		ret = i915_vma_bind(vma, obj->cache_level, flags);
4253 4254 4255
		if (ret)
			return ret;
	}
4256

4257 4258
	if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
	    (bound ^ vma->bound) & GLOBAL_BIND) {
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
		bool mappable, fenceable;
		u32 fence_size, fence_alignment;

		fence_size = i915_gem_get_gtt_size(obj->base.dev,
						   obj->base.size,
						   obj->tiling_mode);
		fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
							     obj->base.size,
							     obj->tiling_mode,
							     true);

		fenceable = (vma->node.size == fence_size &&
			     (vma->node.start & (fence_alignment - 1)) == 0);

4273
		mappable = (vma->node.start + fence_size <=
4274 4275 4276 4277
			    dev_priv->gtt.mappable_end);

		obj->map_and_fenceable = mappable && fenceable;

4278 4279
		WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
	}
4280

4281
	vma->pin_count++;
4282 4283 4284
	return 0;
}

4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305
int
i915_gem_object_pin(struct drm_i915_gem_object *obj,
		    struct i915_address_space *vm,
		    uint32_t alignment,
		    uint64_t flags)
{
	return i915_gem_object_do_pin(obj, vm,
				      i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
				      alignment, flags);
}

int
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
			 uint32_t alignment,
			 uint64_t flags)
{
	if (WARN_ONCE(!view, "no view specified"))
		return -EINVAL;

	return i915_gem_object_do_pin(obj, i915_obj_to_ggtt(obj), view,
4306
				      alignment, flags | PIN_GLOBAL);
4307 4308
}

4309
void
4310 4311
i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
				const struct i915_ggtt_view *view)
4312
{
4313
	struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4314

B
Ben Widawsky 已提交
4315
	BUG_ON(!vma);
4316
	WARN_ON(vma->pin_count == 0);
4317
	WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
B
Ben Widawsky 已提交
4318

4319
	--vma->pin_count;
4320 4321
}

4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
bool
i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);

		WARN_ON(!ggtt_vma ||
			dev_priv->fence_regs[obj->fence_reg].pin_count >
			ggtt_vma->pin_count);
		dev_priv->fence_regs[obj->fence_reg].pin_count++;
		return true;
	} else
		return false;
}

void
i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
{
	if (obj->fence_reg != I915_FENCE_REG_NONE) {
		struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
		WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
		dev_priv->fence_regs[obj->fence_reg].pin_count--;
	}
}

4348 4349
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4350
		    struct drm_file *file)
4351 4352
{
	struct drm_i915_gem_busy *args = data;
4353
	struct drm_i915_gem_object *obj;
4354 4355
	int ret;

4356
	ret = i915_mutex_lock_interruptible(dev);
4357
	if (ret)
4358
		return ret;
4359

4360
	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4361
	if (&obj->base == NULL) {
4362 4363
		ret = -ENOENT;
		goto unlock;
4364
	}
4365

4366 4367 4368 4369
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4370
	 */
4371
	ret = i915_gem_object_flush_active(obj);
4372

4373
	args->busy = obj->active;
4374 4375
	if (obj->last_read_req) {
		struct intel_engine_cs *ring;
4376
		BUILD_BUG_ON(I915_NUM_RINGS > 16);
4377 4378
		ring = i915_gem_request_get_ring(obj->last_read_req);
		args->busy |= intel_ring_flag(ring) << 16;
4379
	}
4380

4381
	drm_gem_object_unreference(&obj->base);
4382
unlock:
4383
	mutex_unlock(&dev->struct_mutex);
4384
	return ret;
4385 4386 4387 4388 4389 4390
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4391
	return i915_gem_ring_throttle(dev, file_priv);
4392 4393
}

4394 4395 4396 4397
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4398
	struct drm_i915_private *dev_priv = dev->dev_private;
4399
	struct drm_i915_gem_madvise *args = data;
4400
	struct drm_i915_gem_object *obj;
4401
	int ret;
4402 4403 4404 4405 4406 4407 4408 4409 4410

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4411 4412 4413 4414
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4415
	obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4416
	if (&obj->base == NULL) {
4417 4418
		ret = -ENOENT;
		goto unlock;
4419 4420
	}

B
Ben Widawsky 已提交
4421
	if (i915_gem_obj_is_pinned(obj)) {
4422 4423
		ret = -EINVAL;
		goto out;
4424 4425
	}

4426 4427 4428 4429 4430 4431 4432 4433 4434
	if (obj->pages &&
	    obj->tiling_mode != I915_TILING_NONE &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4435 4436
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4437

C
Chris Wilson 已提交
4438
	/* if the object is no longer attached, discard its backing storage */
4439
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4440 4441
		i915_gem_object_truncate(obj);

4442
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4443

4444
out:
4445
	drm_gem_object_unreference(&obj->base);
4446
unlock:
4447
	mutex_unlock(&dev->struct_mutex);
4448
	return ret;
4449 4450
}

4451 4452
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4453
{
4454
	INIT_LIST_HEAD(&obj->global_list);
4455
	INIT_LIST_HEAD(&obj->ring_list);
4456
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4457
	INIT_LIST_HEAD(&obj->vma_list);
4458
	INIT_LIST_HEAD(&obj->batch_pool_link);
4459

4460 4461
	obj->ops = ops;

4462 4463 4464 4465 4466 4467
	obj->fence_reg = I915_FENCE_REG_NONE;
	obj->madv = I915_MADV_WILLNEED;

	i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
}

4468 4469 4470 4471 4472
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4473 4474
struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
						  size_t size)
4475
{
4476
	struct drm_i915_gem_object *obj;
4477
	struct address_space *mapping;
D
Daniel Vetter 已提交
4478
	gfp_t mask;
4479

4480
	obj = i915_gem_object_alloc(dev);
4481 4482
	if (obj == NULL)
		return NULL;
4483

4484
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4485
		i915_gem_object_free(obj);
4486 4487
		return NULL;
	}
4488

4489 4490 4491 4492 4493 4494 4495
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

A
Al Viro 已提交
4496
	mapping = file_inode(obj->base.filp)->i_mapping;
4497
	mapping_set_gfp_mask(mapping, mask);
4498

4499
	i915_gem_object_init(obj, &i915_gem_object_ops);
4500

4501 4502
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4503

4504 4505
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4521 4522
	trace_i915_gem_object_create(obj);

4523
	return obj;
4524 4525
}

4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4550
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4551
{
4552
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4553
	struct drm_device *dev = obj->base.dev;
4554
	struct drm_i915_private *dev_priv = dev->dev_private;
4555
	struct i915_vma *vma, *next;
4556

4557 4558
	intel_runtime_pm_get(dev_priv);

4559 4560
	trace_i915_gem_object_destroy(obj);

4561
	list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
B
Ben Widawsky 已提交
4562 4563 4564 4565
		int ret;

		vma->pin_count = 0;
		ret = i915_vma_unbind(vma);
4566 4567
		if (WARN_ON(ret == -ERESTARTSYS)) {
			bool was_interruptible;
4568

4569 4570
			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;
4571

4572
			WARN_ON(i915_vma_unbind(vma));
4573

4574 4575
			dev_priv->mm.interruptible = was_interruptible;
		}
4576 4577
	}

B
Ben Widawsky 已提交
4578 4579 4580 4581 4582
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4583 4584
	WARN_ON(obj->frontbuffer_bits);

4585 4586 4587 4588 4589
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
	    obj->tiling_mode != I915_TILING_NONE)
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4590 4591
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4592
	if (discard_backing_storage(obj))
4593
		obj->madv = I915_MADV_DONTNEED;
4594
	i915_gem_object_put_pages(obj);
4595
	i915_gem_object_free_mmap_offset(obj);
4596

4597 4598
	BUG_ON(obj->pages);

4599 4600
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4601

4602 4603 4604
	if (obj->ops->release)
		obj->ops->release(obj);

4605 4606
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4607

4608
	kfree(obj->bit_17);
4609
	i915_gem_object_free(obj);
4610 4611

	intel_runtime_pm_put(dev_priv);
4612 4613
}

4614 4615
struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
				     struct i915_address_space *vm)
4616 4617
{
	struct i915_vma *vma;
4618 4619 4620 4621 4622
	list_for_each_entry(vma, &obj->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
4623
			return vma;
4624 4625 4626 4627 4628 4629 4630 4631 4632
	}
	return NULL;
}

struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
					   const struct i915_ggtt_view *view)
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
	struct i915_vma *vma;
4633

4634 4635 4636 4637
	if (WARN_ONCE(!view, "no view specified"))
		return ERR_PTR(-EINVAL);

	list_for_each_entry(vma, &obj->vma_list, vma_link)
4638 4639
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
4640
			return vma;
4641 4642 4643
	return NULL;
}

B
Ben Widawsky 已提交
4644 4645
void i915_gem_vma_destroy(struct i915_vma *vma)
{
4646
	struct i915_address_space *vm = NULL;
B
Ben Widawsky 已提交
4647
	WARN_ON(vma->node.allocated);
4648 4649 4650 4651 4652

	/* Keep the vma as a placeholder in the execbuffer reservation lists */
	if (!list_empty(&vma->exec_list))
		return;

4653 4654
	vm = vma->vm;

4655 4656
	if (!i915_is_ggtt(vm))
		i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4657

4658
	list_del(&vma->vma_link);
4659

4660
	kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
B
Ben Widawsky 已提交
4661 4662
}

4663 4664 4665 4666
static void
i915_gem_stop_ringbuffers(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4667
	struct intel_engine_cs *ring;
4668 4669 4670
	int i;

	for_each_ring(ring, dev_priv, i)
4671
		dev_priv->gt.stop_ring(ring);
4672 4673
}

4674
int
4675
i915_gem_suspend(struct drm_device *dev)
4676
{
4677
	struct drm_i915_private *dev_priv = dev->dev_private;
4678
	int ret = 0;
4679

4680
	mutex_lock(&dev->struct_mutex);
4681
	ret = i915_gpu_idle(dev);
4682
	if (ret)
4683
		goto err;
4684

4685
	i915_gem_retire_requests(dev);
4686

4687
	i915_gem_stop_ringbuffers(dev);
4688 4689
	mutex_unlock(&dev->struct_mutex);

4690
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4691
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4692
	flush_delayed_work(&dev_priv->mm.idle_work);
4693

4694 4695 4696 4697 4698
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
	WARN_ON(dev_priv->mm.busy);

4699
	return 0;
4700 4701 4702 4703

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4704 4705
}

4706
int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
B
Ben Widawsky 已提交
4707
{
4708
	struct drm_device *dev = ring->dev;
4709
	struct drm_i915_private *dev_priv = dev->dev_private;
4710 4711
	u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
	u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4712
	int i, ret;
B
Ben Widawsky 已提交
4713

4714
	if (!HAS_L3_DPF(dev) || !remap_info)
4715
		return 0;
B
Ben Widawsky 已提交
4716

4717 4718 4719
	ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
	if (ret)
		return ret;
B
Ben Widawsky 已提交
4720

4721 4722 4723 4724 4725
	/*
	 * Note: We do not worry about the concurrent register cacheline hang
	 * here because no other code should access these registers other than
	 * at initialization time.
	 */
B
Ben Widawsky 已提交
4726
	for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4727 4728 4729
		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
		intel_ring_emit(ring, reg_base + i);
		intel_ring_emit(ring, remap_info[i/4]);
B
Ben Widawsky 已提交
4730 4731
	}

4732
	intel_ring_advance(ring);
B
Ben Widawsky 已提交
4733

4734
	return ret;
B
Ben Widawsky 已提交
4735 4736
}

4737 4738
void i915_gem_init_swizzling(struct drm_device *dev)
{
4739
	struct drm_i915_private *dev_priv = dev->dev_private;
4740

4741
	if (INTEL_INFO(dev)->gen < 5 ||
4742 4743 4744 4745 4746 4747
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4748 4749 4750
	if (IS_GEN5(dev))
		return;

4751 4752
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
	if (IS_GEN6(dev))
4753
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4754
	else if (IS_GEN7(dev))
4755
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
B
Ben Widawsky 已提交
4756 4757
	else if (IS_GEN8(dev))
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4758 4759
	else
		BUG();
4760
}
D
Daniel Vetter 已提交
4761

4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777
static bool
intel_enable_blt(struct drm_device *dev)
{
	if (!HAS_BLT(dev))
		return false;

	/* The blitter was dysfunctional on early prototypes */
	if (IS_GEN6(dev) && dev->pdev->revision < 8) {
		DRM_INFO("BLT not supported on this pre-production hardware;"
			 " graphics performance will be degraded.\n");
		return false;
	}

	return true;
}

4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
static void init_unused_ring(struct drm_device *dev, u32 base)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

static void init_unused_rings(struct drm_device *dev)
{
	if (IS_I830(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
		init_unused_ring(dev, SRB2_BASE);
		init_unused_ring(dev, SRB3_BASE);
	} else if (IS_GEN2(dev)) {
		init_unused_ring(dev, SRB0_BASE);
		init_unused_ring(dev, SRB1_BASE);
	} else if (IS_GEN3(dev)) {
		init_unused_ring(dev, PRB1_BASE);
		init_unused_ring(dev, PRB2_BASE);
	}
}

4805
int i915_gem_init_rings(struct drm_device *dev)
4806
{
4807
	struct drm_i915_private *dev_priv = dev->dev_private;
4808
	int ret;
4809

4810
	ret = intel_init_render_ring_buffer(dev);
4811
	if (ret)
4812
		return ret;
4813 4814

	if (HAS_BSD(dev)) {
4815
		ret = intel_init_bsd_ring_buffer(dev);
4816 4817
		if (ret)
			goto cleanup_render_ring;
4818
	}
4819

4820
	if (intel_enable_blt(dev)) {
4821 4822 4823 4824 4825
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

B
Ben Widawsky 已提交
4826 4827 4828 4829 4830 4831
	if (HAS_VEBOX(dev)) {
		ret = intel_init_vebox_ring_buffer(dev);
		if (ret)
			goto cleanup_blt_ring;
	}

4832 4833 4834 4835 4836
	if (HAS_BSD2(dev)) {
		ret = intel_init_bsd2_ring_buffer(dev);
		if (ret)
			goto cleanup_vebox_ring;
	}
B
Ben Widawsky 已提交
4837

4838
	ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4839
	if (ret)
4840
		goto cleanup_bsd2_ring;
4841 4842 4843

	return 0;

4844 4845
cleanup_bsd2_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
B
Ben Widawsky 已提交
4846 4847
cleanup_vebox_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860
cleanup_blt_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
cleanup_bsd_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
cleanup_render_ring:
	intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);

	return ret;
}

int
i915_gem_init_hw(struct drm_device *dev)
{
4861
	struct drm_i915_private *dev_priv = dev->dev_private;
D
Daniel Vetter 已提交
4862
	struct intel_engine_cs *ring;
4863
	int ret, i;
4864 4865 4866 4867

	if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
		return -EIO;

4868 4869 4870
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

B
Ben Widawsky 已提交
4871
	if (dev_priv->ellc_size)
4872
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4873

4874 4875 4876
	if (IS_HASWELL(dev))
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4877

4878
	if (HAS_PCH_NOP(dev)) {
4879 4880 4881 4882 4883 4884 4885 4886 4887
		if (IS_IVYBRIDGE(dev)) {
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4888 4889
	}

4890 4891
	i915_gem_init_swizzling(dev);

4892 4893 4894 4895 4896 4897 4898 4899
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
	init_unused_rings(dev);

D
Daniel Vetter 已提交
4900 4901 4902
	for_each_ring(ring, dev_priv, i) {
		ret = ring->init_hw(ring);
		if (ret)
4903
			goto out;
D
Daniel Vetter 已提交
4904
	}
4905

4906 4907 4908
	for (i = 0; i < NUM_L3_SLICES(dev); i++)
		i915_gem_l3_remap(&dev_priv->ring[RCS], i);

4909
	ret = i915_ppgtt_init_hw(dev);
4910
	if (ret && ret != -EIO) {
4911
		DRM_ERROR("PPGTT enable failed %d\n", ret);
4912
		i915_gem_cleanup_ringbuffer(dev);
4913 4914
	}

4915
	ret = i915_gem_context_enable(dev_priv);
4916
	if (ret && ret != -EIO) {
4917
		DRM_ERROR("Context enable failed %d\n", ret);
4918
		i915_gem_cleanup_ringbuffer(dev);
4919

4920
		goto out;
4921
	}
D
Daniel Vetter 已提交
4922

4923 4924
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4925
	return ret;
4926 4927
}

4928 4929 4930 4931 4932
int i915_gem_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

4933 4934 4935
	i915.enable_execlists = intel_sanitize_enable_execlists(dev,
			i915.enable_execlists);

4936
	mutex_lock(&dev->struct_mutex);
4937 4938 4939

	if (IS_VALLEYVIEW(dev)) {
		/* VLVA0 (potential hack), BIOS isn't actually waking us */
4940 4941 4942
		I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
		if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
			      VLV_GTLC_ALLOWWAKEACK), 10))
4943 4944 4945
			DRM_DEBUG_DRIVER("allow wake ack timed out\n");
	}

4946
	if (!i915.enable_execlists) {
4947
		dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
4948 4949 4950
		dev_priv->gt.init_rings = i915_gem_init_rings;
		dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
		dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4951
	} else {
4952
		dev_priv->gt.execbuf_submit = intel_execlists_submission;
4953 4954 4955
		dev_priv->gt.init_rings = intel_logical_rings_init;
		dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
		dev_priv->gt.stop_ring = intel_logical_ring_stop;
4956 4957
	}

4958 4959 4960 4961 4962 4963 4964 4965
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4966
	ret = i915_gem_init_userptr(dev);
4967 4968
	if (ret)
		goto out_unlock;
4969

4970
	i915_gem_init_global_gtt(dev);
4971

4972
	ret = i915_gem_context_init(dev);
4973 4974
	if (ret)
		goto out_unlock;
4975

D
Daniel Vetter 已提交
4976 4977
	ret = dev_priv->gt.init_rings(dev);
	if (ret)
4978
		goto out_unlock;
4979

4980
	ret = i915_gem_init_hw(dev);
4981 4982 4983 4984 4985 4986 4987 4988
	if (ret == -EIO) {
		/* Allow ring initialisation to fail by marking the GPU as
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
		atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
		ret = 0;
4989
	}
4990 4991

out_unlock:
4992
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4993
	mutex_unlock(&dev->struct_mutex);
4994

4995
	return ret;
4996 4997
}

4998 4999 5000
void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
5001
	struct drm_i915_private *dev_priv = dev->dev_private;
5002
	struct intel_engine_cs *ring;
5003
	int i;
5004

5005
	for_each_ring(ring, dev_priv, i)
5006
		dev_priv->gt.cleanup_ring(ring);
5007 5008
}

5009
static void
5010
init_ring_lists(struct intel_engine_cs *ring)
5011 5012 5013 5014 5015
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
}

5016 5017
void i915_init_vm(struct drm_i915_private *dev_priv,
		  struct i915_address_space *vm)
B
Ben Widawsky 已提交
5018
{
5019 5020
	if (!i915_is_ggtt(vm))
		drm_mm_init(&vm->mm, vm->start, vm->total);
B
Ben Widawsky 已提交
5021 5022 5023 5024
	vm->dev = dev_priv->dev;
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->global_link);
5025
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
B
Ben Widawsky 已提交
5026 5027
}

5028 5029 5030
void
i915_gem_load(struct drm_device *dev)
{
5031
	struct drm_i915_private *dev_priv = dev->dev_private;
5032 5033
	int i;

5034
	dev_priv->objects =
5035 5036 5037 5038
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5039 5040 5041 5042 5043
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5044 5045 5046 5047 5048
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
5049

B
Ben Widawsky 已提交
5050 5051 5052
	INIT_LIST_HEAD(&dev_priv->vm_list);
	i915_init_vm(dev_priv, &dev_priv->gtt.base);

5053
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
5054 5055
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5056
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5057 5058
	for (i = 0; i < I915_NUM_RINGS; i++)
		init_ring_lists(&dev_priv->ring[i]);
5059
	for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5060
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5061 5062
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
5063 5064
	INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
			  i915_gem_idle_work_handler);
5065
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5066

5067 5068
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

5069 5070 5071
	if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5072 5073 5074 5075
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

5076 5077 5078 5079
	if (intel_vgpu_active(dev))
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

5080
	/* Initialize fence registers to zero */
5081 5082
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
	i915_gem_restore_fences(dev);
5083

5084
	i915_gem_detect_bit_6_swizzle(dev);
5085
	init_waitqueue_head(&dev_priv->pending_flip_queue);
5086

5087 5088
	dev_priv->mm.interruptible = true;

5089
	i915_gem_shrinker_init(dev_priv);
5090 5091

	mutex_init(&dev_priv->fb_tracking.lock);
5092
}
5093

5094
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5095
{
5096
	struct drm_i915_file_private *file_priv = file->driver_priv;
5097 5098 5099 5100 5101

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5102
	spin_lock(&file_priv->mm.lock);
5103 5104 5105 5106 5107 5108 5109 5110 5111
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5112
	spin_unlock(&file_priv->mm.lock);
5113

5114 5115 5116 5117 5118
	if (!list_empty(&file_priv->rps_boost)) {
		mutex_lock(&to_i915(dev)->rps.hw_lock);
		list_del(&file_priv->rps_boost);
		mutex_unlock(&to_i915(dev)->rps.hw_lock);
	}
5119 5120 5121 5122 5123
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
5124
	int ret;
5125 5126 5127 5128 5129 5130 5131 5132 5133

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
	file_priv->dev_priv = dev->dev_private;
5134
	file_priv->file = file;
5135
	INIT_LIST_HEAD(&file_priv->rps_boost);
5136 5137 5138 5139

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5140 5141 5142
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
5143

5144
	return ret;
5145 5146
}

5147 5148 5149 5150 5151 5152 5153 5154 5155
/**
 * i915_gem_track_fb - update frontbuffer tracking
 * old: current GEM buffer for the frontbuffer slots
 * new: new GEM buffer for the frontbuffer slots
 * frontbuffer_bits: bitmask of frontbuffer slots
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
	if (old) {
		WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
		WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
		old->frontbuffer_bits &= ~frontbuffer_bits;
	}

	if (new) {
		WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
		WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
		new->frontbuffer_bits |= frontbuffer_bits;
	}
}

5173
/* All the new VM stuff */
5174 5175 5176
unsigned long
i915_gem_obj_offset(struct drm_i915_gem_object *o,
		    struct i915_address_space *vm)
5177 5178 5179 5180
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5181
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5182 5183

	list_for_each_entry(vma, &o->vma_list, vma_link) {
5184 5185 5186 5187
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm)
5188 5189
			return vma->node.start;
	}
5190

5191 5192
	WARN(1, "%s vma for this object not found.\n",
	     i915_is_ggtt(vm) ? "global" : "ppgtt");
5193 5194 5195
	return -1;
}

5196 5197
unsigned long
i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5198
			      const struct i915_ggtt_view *view)
5199
{
5200
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
5201 5202 5203
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
5204 5205
		if (vma->vm == ggtt &&
		    i915_ggtt_view_equal(&vma->ggtt_view, view))
5206 5207
			return vma->node.start;

5208
	WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228
	return -1;
}

bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
			struct i915_address_space *vm)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
		if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
			return true;
	}

	return false;
}

bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5229
				  const struct i915_ggtt_view *view)
5230 5231 5232 5233 5234 5235
{
	struct i915_address_space *ggtt = i915_obj_to_ggtt(o);
	struct i915_vma *vma;

	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (vma->vm == ggtt &&
5236
		    i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5237
		    drm_mm_node_allocated(&vma->node))
5238 5239 5240 5241 5242 5243 5244
			return true;

	return false;
}

bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
{
5245
	struct i915_vma *vma;
5246

5247 5248
	list_for_each_entry(vma, &o->vma_list, vma_link)
		if (drm_mm_node_allocated(&vma->node))
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259
			return true;

	return false;
}

unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
				struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = o->base.dev->dev_private;
	struct i915_vma *vma;

5260
	WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5261 5262 5263

	BUG_ON(list_empty(&o->vma_list));

5264 5265 5266 5267
	list_for_each_entry(vma, &o->vma_list, vma_link) {
		if (i915_is_ggtt(vma->vm) &&
		    vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
			continue;
5268 5269
		if (vma->vm == vm)
			return vma->node.size;
5270
	}
5271 5272 5273
	return 0;
}

5274
bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5275 5276
{
	struct i915_vma *vma;
5277
	list_for_each_entry(vma, &obj->vma_list, vma_link)
5278 5279
		if (vma->pin_count > 0)
			return true;
5280

5281
	return false;
5282
}
5283