entry_64.S 48.6 KB
Newer Older
1
/* SPDX-License-Identifier: GPL-2.0 */
L
Linus Torvalds 已提交
2 3 4 5 6 7
/*
 *  linux/arch/x86_64/entry.S
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8
 *
L
Linus Torvalds 已提交
9 10
 * entry.S contains the system-call and fault low-level handling routines.
 *
11
 * Some of this is documented in Documentation/x86/entry_64.rst
12
 *
13
 * A note on terminology:
14 15
 * - iret frame:	Architecture defined interrupt frame from SS to RIP
 *			at the top of the kernel process stack.
16 17
 *
 * Some macro usage:
18
 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 20
 * - TRACE_IRQ_*:	Trace hardirq state for lock debugging.
 * - idtentry:		Define exception entry points.
L
Linus Torvalds 已提交
21 22 23 24 25
 */
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/cache.h>
#include <asm/errno.h>
26
#include <asm/asm-offsets.h>
L
Linus Torvalds 已提交
27 28 29 30
#include <asm/msr.h>
#include <asm/unistd.h>
#include <asm/thread_info.h>
#include <asm/hw_irq.h>
31
#include <asm/page_types.h>
32
#include <asm/irqflags.h>
33
#include <asm/paravirt.h>
34
#include <asm/percpu.h>
35
#include <asm/asm.h>
36
#include <asm/smap.h>
37
#include <asm/pgtable_types.h>
38
#include <asm/export.h>
39
#include <asm/frame.h>
T
Thomas Gleixner 已提交
40
#include <asm/trapnr.h>
41
#include <asm/nospec-branch.h>
42
#include <linux/err.h>
L
Linus Torvalds 已提交
43

44 45
#include "calling.h"

46 47
.code64
.section .entry.text, "ax"
48

49
#ifdef CONFIG_PARAVIRT
50
SYM_CODE_START(native_usergs_sysret64)
51
	UNWIND_HINT_EMPTY
52 53
	swapgs
	sysretq
54
SYM_CODE_END(native_usergs_sysret64)
55 56
#endif /* CONFIG_PARAVIRT */

57
.macro TRACE_IRQS_FLAGS flags:req
58
#ifdef CONFIG_TRACE_IRQFLAGS
59
	btl	$9, \flags		/* interrupts off? */
60
	jnc	1f
61 62 63 64 65
	TRACE_IRQS_ON
1:
#endif
.endm

66 67 68 69
.macro TRACE_IRQS_IRETQ
	TRACE_IRQS_FLAGS EFLAGS(%rsp)
.endm

70 71 72 73 74 75 76 77 78 79 80 81 82 83
/*
 * When dynamic function tracer is enabled it will add a breakpoint
 * to all locations that it is about to modify, sync CPUs, update
 * all the code, sync CPUs, then remove the breakpoints. In this time
 * if lockdep is enabled, it might jump back into the debug handler
 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
 *
 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
 * make sure the stack pointer does not get reset back to the top
 * of the debug stack, and instead just reuses the current stack.
 */
#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)

.macro TRACE_IRQS_OFF_DEBUG
84
	call	debug_stack_set_zero
85
	TRACE_IRQS_OFF
86
	call	debug_stack_reset
87 88 89
.endm

.macro TRACE_IRQS_ON_DEBUG
90
	call	debug_stack_set_zero
91
	TRACE_IRQS_ON
92
	call	debug_stack_reset
93 94
.endm

95
.macro TRACE_IRQS_IRETQ_DEBUG
96
	btl	$9, EFLAGS(%rsp)		/* interrupts off? */
97
	jnc	1f
98 99 100 101 102
	TRACE_IRQS_ON_DEBUG
1:
.endm

#else
103 104 105
# define TRACE_IRQS_OFF_DEBUG			TRACE_IRQS_OFF
# define TRACE_IRQS_ON_DEBUG			TRACE_IRQS_ON
# define TRACE_IRQS_IRETQ_DEBUG			TRACE_IRQS_IRETQ
106 107
#endif

L
Linus Torvalds 已提交
108
/*
109
 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
L
Linus Torvalds 已提交
110
 *
111 112 113 114 115 116 117 118 119 120
 * This is the only entry point used for 64-bit system calls.  The
 * hardware interface is reasonably well designed and the register to
 * argument mapping Linux uses fits well with the registers that are
 * available when SYSCALL is used.
 *
 * SYSCALL instructions can be found inlined in libc implementations as
 * well as some other programs and libraries.  There are also a handful
 * of SYSCALL instructions in the vDSO used, for example, as a
 * clock_gettimeofday fallback.
 *
121
 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
122 123 124 125 126 127
 * then loads new ss, cs, and rip from previously programmed MSRs.
 * rflags gets masked by a value from another MSR (so CLD and CLAC
 * are not needed). SYSCALL does not save anything on the stack
 * and does not change rsp.
 *
 * Registers on entry:
L
Linus Torvalds 已提交
128
 * rax  system call number
129 130
 * rcx  return address
 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
L
Linus Torvalds 已提交
131 132
 * rdi  arg0
 * rsi  arg1
133
 * rdx  arg2
134
 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
L
Linus Torvalds 已提交
135 136
 * r8   arg4
 * r9   arg5
137
 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
138
 *
L
Linus Torvalds 已提交
139 140
 * Only called from user space.
 *
141
 * When user can change pt_regs->foo always force IRET. That is because
142 143
 * it deals with uncanonical addresses better. SYSRET has trouble
 * with them due to bugs in both AMD and Intel CPUs.
144
 */
L
Linus Torvalds 已提交
145

146
SYM_CODE_START(entry_SYSCALL_64)
147
	UNWIND_HINT_EMPTY
148 149 150 151 152
	/*
	 * Interrupts are off on entry.
	 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
	 * it is too small to ever cause noticeable irq latency.
	 */
153

154
	swapgs
155
	/* tss.sp2 is scratch space. */
156
	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
157
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
158
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
159 160

	/* Construct struct pt_regs on stack */
161 162 163 164 165
	pushq	$__USER_DS				/* pt_regs->ss */
	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
	pushq	%r11					/* pt_regs->flags */
	pushq	$__USER_CS				/* pt_regs->cs */
	pushq	%rcx					/* pt_regs->ip */
166
SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
167
	pushq	%rax					/* pt_regs->orig_ax */
168 169

	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
170

171
	/* IRQs are off. */
172 173
	movq	%rax, %rdi
	movq	%rsp, %rsi
174 175
	call	do_syscall_64		/* returns with IRQs disabled */

176 177
	/*
	 * Try to use SYSRET instead of IRET if we're returning to
178 179
	 * a completely clean 64-bit userspace context.  If we're not,
	 * go to the slow exit path.
180
	 */
181 182
	movq	RCX(%rsp), %rcx
	movq	RIP(%rsp), %r11
183 184 185

	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
	jne	swapgs_restore_regs_and_return_to_usermode
186 187 188 189

	/*
	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
	 * in kernel space.  This essentially lets the user take over
190
	 * the kernel, since userspace controls RSP.
191
	 *
192
	 * If width of "canonical tail" ever becomes variable, this will need
193
	 * to be updated to remain correct on both old and new CPUs.
194
	 *
195 196
	 * Change top bits to match most significant bit (47th or 56th bit
	 * depending on paging mode) in the address.
197
	 */
198
#ifdef CONFIG_X86_5LEVEL
199 200
	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
201
#else
202 203
	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
204
#endif
205

206 207
	/* If this changed %rcx, it was not canonical */
	cmpq	%rcx, %r11
208
	jne	swapgs_restore_regs_and_return_to_usermode
209

210
	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
211
	jne	swapgs_restore_regs_and_return_to_usermode
212

213 214
	movq	R11(%rsp), %r11
	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
215
	jne	swapgs_restore_regs_and_return_to_usermode
216 217

	/*
218 219 220 221 222 223 224 225 226
	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
	 * restore RF properly. If the slowpath sets it for whatever reason, we
	 * need to restore it correctly.
	 *
	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
	 * trap from userspace immediately after SYSRET.  This would cause an
	 * infinite loop whenever #DB happens with register state that satisfies
	 * the opportunistic SYSRET conditions.  For example, single-stepping
	 * this user code:
227
	 *
228
	 *           movq	$stuck_here, %rcx
229 230 231 232 233 234
	 *           pushfq
	 *           popq %r11
	 *   stuck_here:
	 *
	 * would never get past 'stuck_here'.
	 */
235
	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
236
	jnz	swapgs_restore_regs_and_return_to_usermode
237 238 239

	/* nothing to check for RSP */

240
	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
241
	jne	swapgs_restore_regs_and_return_to_usermode
242 243

	/*
244 245
	 * We win! This label is here just for ease of understanding
	 * perf profiles. Nothing jumps here.
246 247
	 */
syscall_return_via_sysret:
248
	/* rcx and r11 are already restored (see code above) */
249
	POP_REGS pop_rdi=0 skip_r11rcx=1
250 251 252 253 254 255

	/*
	 * Now all regs are restored except RSP and RDI.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
256
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
257
	UNWIND_HINT_EMPTY
258 259 260 261 262 263 264 265

	pushq	RSP-RDI(%rdi)	/* RSP */
	pushq	(%rdi)		/* RDI */

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
266 267
	STACKLEAK_ERASE_NOCLOBBER

268
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
269

270
	popq	%rdi
271
	popq	%rsp
272
	USERGS_SYSRET64
273
SYM_CODE_END(entry_SYSCALL_64)
274

275 276 277 278
/*
 * %rdi: prev task
 * %rsi: next task
 */
279
.pushsection .text, "ax"
280
SYM_FUNC_START(__switch_to_asm)
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
	/*
	 * Save callee-saved registers
	 * This must match the order in inactive_task_frame
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%r12
	pushq	%r13
	pushq	%r14
	pushq	%r15

	/* switch stack */
	movq	%rsp, TASK_threadsp(%rdi)
	movq	TASK_threadsp(%rsi), %rsp

296
#ifdef CONFIG_STACKPROTECTOR
297
	movq	TASK_stack_canary(%rsi), %rbx
298
	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
299 300
#endif

301 302 303 304 305 306 307 308
#ifdef CONFIG_RETPOLINE
	/*
	 * When switching from a shallower to a deeper call stack
	 * the RSB may either underflow or use entries populated
	 * with userspace addresses. On CPUs where those concerns
	 * exist, overwrite the RSB with entries which capture
	 * speculative execution to prevent attack.
	 */
309
	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
310 311
#endif

312 313 314 315 316 317 318 319 320
	/* restore callee-saved registers */
	popq	%r15
	popq	%r14
	popq	%r13
	popq	%r12
	popq	%rbx
	popq	%rbp

	jmp	__switch_to
321
SYM_FUNC_END(__switch_to_asm)
322
.popsection
323

324 325 326
/*
 * A newly forked process directly context switches into this address.
 *
327
 * rax: prev task we switched from
328 329
 * rbx: kernel thread func (NULL for user thread)
 * r12: kernel thread arg
330
 */
331
.pushsection .text, "ax"
332
SYM_CODE_START(ret_from_fork)
333
	UNWIND_HINT_EMPTY
334
	movq	%rax, %rdi
335
	call	schedule_tail			/* rdi: 'prev' task parameter */
336

337 338
	testq	%rbx, %rbx			/* from kernel_thread? */
	jnz	1f				/* kernel threads are uncommon */
339

340
2:
341
	UNWIND_HINT_REGS
342
	movq	%rsp, %rdi
343
	call	syscall_return_slowpath	/* returns with IRQs disabled */
344
	jmp	swapgs_restore_regs_and_return_to_usermode
345 346 347

1:
	/* kernel thread */
348
	UNWIND_HINT_EMPTY
349
	movq	%r12, %rdi
350
	CALL_NOSPEC rbx
351 352 353 354 355 356 357
	/*
	 * A kernel thread is allowed to return here after successfully
	 * calling do_execve().  Exit to userspace to complete the execve()
	 * syscall.
	 */
	movq	$0, RAX(%rsp)
	jmp	2b
358
SYM_CODE_END(ret_from_fork)
359
.popsection
360

361
/*
362 363
 * Build the entry stubs with some assembler magic.
 * We pack 1 stub into every 8-byte block.
364
 */
365
	.align 8
366
SYM_CODE_START(irq_entries_start)
367 368
    vector=FIRST_EXTERNAL_VECTOR
    .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
369
	UNWIND_HINT_IRET_REGS
370
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
371 372
	jmp	common_interrupt
	.align	8
373
	vector=vector+1
374
    .endr
375
SYM_CODE_END(irq_entries_start)
376

377
	.align 8
378
SYM_CODE_START(spurious_entries_start)
379 380 381 382 383 384 385 386
    vector=FIRST_SYSTEM_VECTOR
    .rept (NR_VECTORS - FIRST_SYSTEM_VECTOR)
	UNWIND_HINT_IRET_REGS
	pushq	$(~vector+0x80)			/* Note: always in signed byte range */
	jmp	common_spurious
	.align	8
	vector=vector+1
    .endr
387
SYM_CODE_END(spurious_entries_start)
388

389 390
.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
#ifdef CONFIG_DEBUG_ENTRY
391 392 393
	pushq %rax
	SAVE_FLAGS(CLBR_RAX)
	testl $X86_EFLAGS_IF, %eax
394 395 396
	jz .Lokay_\@
	ud2
.Lokay_\@:
397
	popq %rax
398 399 400 401 402 403 404 405 406 407
#endif
.endm

/*
 * Enters the IRQ stack if we're not already using it.  NMI-safe.  Clobbers
 * flags and puts old RSP into old_rsp, and leaves all other GPRs alone.
 * Requires kernel GSBASE.
 *
 * The invariant is that, if irq_count != -1, then the IRQ stack is in use.
 */
408
.macro ENTER_IRQ_STACK regs=1 old_rsp save_ret=0
409
	DEBUG_ENTRY_ASSERT_IRQS_OFF
410 411 412 413 414 415 416 417 418

	.if \save_ret
	/*
	 * If save_ret is set, the original stack contains one additional
	 * entry -- the return address. Therefore, move the address one
	 * entry below %rsp to \old_rsp.
	 */
	leaq	8(%rsp), \old_rsp
	.else
419
	movq	%rsp, \old_rsp
420
	.endif
421 422 423 424 425

	.if \regs
	UNWIND_HINT_REGS base=\old_rsp
	.endif

426
	incl	PER_CPU_VAR(irq_count)
427
	jnz	.Lirq_stack_push_old_rsp_\@
428 429 430 431 432 433 434 435 436

	/*
	 * Right now, if we just incremented irq_count to zero, we've
	 * claimed the IRQ stack but we haven't switched to it yet.
	 *
	 * If anything is added that can interrupt us here without using IST,
	 * it must be *extremely* careful to limit its stack usage.  This
	 * could include kprobes and a hypothetical future IST-less #DB
	 * handler.
437 438 439 440 441 442 443
	 *
	 * The OOPS unwinder relies on the word at the top of the IRQ
	 * stack linking back to the previous RSP for the entire time we're
	 * on the IRQ stack.  For this to work reliably, we need to write
	 * it before we actually move ourselves to the IRQ stack.
	 */

444
	movq	\old_rsp, PER_CPU_VAR(irq_stack_backing_store + IRQ_STACK_SIZE - 8)
445
	movq	PER_CPU_VAR(hardirq_stack_ptr), %rsp
446 447 448 449 450 451 452

#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * If the first movq above becomes wrong due to IRQ stack layout
	 * changes, the only way we'll notice is if we try to unwind right
	 * here.  Assert that we set up the stack right to catch this type
	 * of bug quickly.
453
	 */
454 455 456 457 458
	cmpq	-8(%rsp), \old_rsp
	je	.Lirq_stack_okay\@
	ud2
	.Lirq_stack_okay\@:
#endif
459

460
.Lirq_stack_push_old_rsp_\@:
461
	pushq	\old_rsp
462 463 464 465

	.if \regs
	UNWIND_HINT_REGS indirect=1
	.endif
466 467 468 469 470 471 472 473 474

	.if \save_ret
	/*
	 * Push the return address to the stack. This return address can
	 * be found at the "real" original RSP, which was offset by 8 at
	 * the beginning of this macro.
	 */
	pushq	-8(\old_rsp)
	.endif
475 476 477 478 479
.endm

/*
 * Undoes ENTER_IRQ_STACK.
 */
480
.macro LEAVE_IRQ_STACK regs=1
481 482 483 484
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	/* We need to be off the IRQ stack before decrementing irq_count. */
	popq	%rsp

485 486 487 488
	.if \regs
	UNWIND_HINT_REGS
	.endif

489 490 491 492 493 494 495 496
	/*
	 * As in ENTER_IRQ_STACK, irq_count == 0, we are still claiming
	 * the irq stack but we're not on it.
	 */

	decl	PER_CPU_VAR(irq_count)
.endm

T
Thomas Gleixner 已提交
497 498 499 500 501
/**
 * idtentry_body - Macro to emit code calling the C function
 * @vector:		Vector number
 * @cfunc:		C function to be called
 * @has_error_code:	Hardware pushed error code on stack
502
 * @sane:		Sane variant which handles irq tracing, context tracking in C
T
Thomas Gleixner 已提交
503
 */
504
.macro idtentry_body vector cfunc has_error_code:req sane=0
T
Thomas Gleixner 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517

	call	error_entry
	UNWIND_HINT_REGS

	.if \vector == X86_TRAP_PF
		/*
		 * Store CR2 early so subsequent faults cannot clobber it. Use R12 as
		 * intermediate storage as RDX can be clobbered in enter_from_user_mode().
		 * GET_CR2_INTO can clobber RAX.
		 */
		GET_CR2_INTO(%r12);
	.endif

518
	.if \sane == 0
T
Thomas Gleixner 已提交
519 520 521 522 523 524 525 526
	TRACE_IRQS_OFF

#ifdef CONFIG_CONTEXT_TRACKING
	testb	$3, CS(%rsp)
	jz	.Lfrom_kernel_no_ctxt_tracking_\@
	CALL_enter_from_user_mode
.Lfrom_kernel_no_ctxt_tracking_\@:
#endif
527
	.endif
T
Thomas Gleixner 已提交
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543

	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/

	.if \has_error_code == 1
		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
	.else
		xorl	%esi, %esi		/* Clear the error code */
	.endif

	.if \vector == X86_TRAP_PF
		movq	%r12, %rdx		/* Move CR2 into 3rd argument */
	.endif

	call	\cfunc

544
	.if \sane == 0
T
Thomas Gleixner 已提交
545
	jmp	error_exit
546 547 548
	.else
	jmp	error_return
	.endif
T
Thomas Gleixner 已提交
549 550 551 552 553 554 555 556
.endm

/**
 * idtentry - Macro to generate entry stubs for simple IDT entries
 * @vector:		Vector number
 * @asmsym:		ASM symbol for the entry point
 * @cfunc:		C function to be called
 * @has_error_code:	Hardware pushed error code on stack
557
 * @sane:		Sane variant which handles irq tracing, context tracking in C
T
Thomas Gleixner 已提交
558 559 560 561
 *
 * The macro emits code to set up the kernel context for straight forward
 * and simple IDT entries. No IST stack, no paranoid entry checks.
 */
562
.macro idtentry vector asmsym cfunc has_error_code:req sane=0
T
Thomas Gleixner 已提交
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
SYM_CODE_START(\asmsym)
	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
	ASM_CLAC

	.if \has_error_code == 0
		pushq	$-1			/* ORIG_RAX: no syscall to restart */
	.endif

	.if \vector == X86_TRAP_BP
		/*
		 * If coming from kernel space, create a 6-word gap to allow the
		 * int3 handler to emulate a call instruction.
		 */
		testb	$3, CS-ORIG_RAX(%rsp)
		jnz	.Lfrom_usermode_no_gap_\@
		.rept	6
		pushq	5*8(%rsp)
		.endr
		UNWIND_HINT_IRET_REGS offset=8
.Lfrom_usermode_no_gap_\@:
	.endif

585
	idtentry_body \vector \cfunc \has_error_code \sane
T
Thomas Gleixner 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

_ASM_NOKPROBE(\asmsym)
SYM_CODE_END(\asmsym)
.endm

/*
 * MCE and DB exceptions
 */
#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss_rw) + (TSS_ist + (x) * 8)

/**
 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
 * @vector:		Vector number
 * @asmsym:		ASM symbol for the entry point
 * @cfunc:		C function to be called
 *
 * The macro emits code to set up the kernel context for #MC and #DB
 *
 * If the entry comes from user space it uses the normal entry path
 * including the return to user space work and preemption checks on
 * exit.
 *
 * If hits in kernel mode then it needs to go through the paranoid
 * entry as the exception can hit any random state. No preemption
 * check on exit to keep the paranoid path simple.
 *
 * If the trap is #DB then the interrupt stack entry in the IST is
 * moved to the second stack, so a potential recursion will have a
 * fresh IST.
 */
.macro idtentry_mce_db vector asmsym cfunc
SYM_CODE_START(\asmsym)
	UNWIND_HINT_IRET_REGS
	ASM_CLAC

	pushq	$-1			/* ORIG_RAX: no syscall to restart */

	/*
	 * If the entry is from userspace, switch stacks and treat it as
	 * a normal entry.
	 */
	testb	$3, CS-ORIG_RAX(%rsp)
	jnz	.Lfrom_usermode_switch_stack_\@

	/*
	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
	 */
	call	paranoid_entry

	UNWIND_HINT_REGS

	.if \vector == X86_TRAP_DB
		TRACE_IRQS_OFF_DEBUG
	.else
		TRACE_IRQS_OFF
	.endif

	movq	%rsp, %rdi		/* pt_regs pointer */

	.if \vector == X86_TRAP_DB
		subq	$DB_STACK_OFFSET, CPU_TSS_IST(IST_INDEX_DB)
	.endif

	call	\cfunc

	.if \vector == X86_TRAP_DB
		addq	$DB_STACK_OFFSET, CPU_TSS_IST(IST_INDEX_DB)
	.endif

	jmp	paranoid_exit

	/* Switch to the regular task stack and use the noist entry point */
.Lfrom_usermode_switch_stack_\@:
660
	idtentry_body vector noist_\cfunc, has_error_code=0 sane=1
T
Thomas Gleixner 已提交
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

_ASM_NOKPROBE(\asmsym)
SYM_CODE_END(\asmsym)
.endm

/*
 * Double fault entry. Straight paranoid. No checks from which context
 * this comes because for the espfix induced #DF this would do the wrong
 * thing.
 */
.macro idtentry_df vector asmsym cfunc
SYM_CODE_START(\asmsym)
	UNWIND_HINT_IRET_REGS offset=8
	ASM_CLAC

	/*
	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
	 */
	call	paranoid_entry
	UNWIND_HINT_REGS

	/* Read CR2 early */
	GET_CR2_INTO(%r12);

	TRACE_IRQS_OFF

	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
	movq	%r12, %rdx		/* Move CR2 into 3rd argument */
	call	\cfunc

	jmp	paranoid_exit

_ASM_NOKPROBE(\asmsym)
SYM_CODE_END(\asmsym)
.endm

700 701 702 703 704 705
/*
 * Include the defines which emit the idt entries which are shared
 * shared between 32 and 64 bit.
 */
#include <asm/idtentry.h>

706
/*
707
 * Interrupt entry helper function.
708
 *
709 710 711 712 713 714 715 716 717 718 719 720
 * Entry runs with interrupts off. Stack layout at entry:
 * +----------------------------------------------------+
 * | regs->ss						|
 * | regs->rsp						|
 * | regs->eflags					|
 * | regs->cs						|
 * | regs->ip						|
 * +----------------------------------------------------+
 * | regs->orig_ax = ~(interrupt number)		|
 * +----------------------------------------------------+
 * | return address					|
 * +----------------------------------------------------+
721
 */
722
SYM_CODE_START(interrupt_entry)
723
	UNWIND_HINT_IRET_REGS offset=16
724
	ASM_CLAC
725
	cld
726

727
	testb	$3, CS-ORIG_RAX+8(%rsp)
728 729
	jz	1f
	SWAPGS
730
	FENCE_SWAPGS_USER_ENTRY
731 732 733 734 735 736
	/*
	 * Switch to the thread stack. The IRET frame and orig_ax are
	 * on the stack, as well as the return address. RDI..R12 are
	 * not (yet) on the stack and space has not (yet) been
	 * allocated for them.
	 */
737
	pushq	%rdi
738

739 740 741 742
	/* Need to switch before accessing the thread stack. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi
	movq	%rsp, %rdi
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
743 744 745 746 747 748

	 /*
	  * We have RDI, return address, and orig_ax on the stack on
	  * top of the IRET frame. That means offset=24
	  */
	UNWIND_HINT_IRET_REGS base=%rdi offset=24
749 750 751 752 753 754

	pushq	7*8(%rdi)		/* regs->ss */
	pushq	6*8(%rdi)		/* regs->rsp */
	pushq	5*8(%rdi)		/* regs->eflags */
	pushq	4*8(%rdi)		/* regs->cs */
	pushq	3*8(%rdi)		/* regs->ip */
755
	UNWIND_HINT_IRET_REGS
756 757 758 759
	pushq	2*8(%rdi)		/* regs->orig_ax */
	pushq	8(%rdi)			/* return address */

	movq	(%rdi), %rdi
760
	jmp	2f
761
1:
762 763
	FENCE_SWAPGS_KERNEL_ENTRY
2:
764 765
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
766

767
	testb	$3, CS+8(%rsp)
768
	jz	1f
769 770

	/*
771 772
	 * IRQ from user mode.
	 *
773 774
	 * We need to tell lockdep that IRQs are off.  We can't do this until
	 * we fix gsbase, and we should do it before enter_from_user_mode
775
	 * (which can take locks).  Since TRACE_IRQS_OFF is idempotent,
776 777 778 779 780 781
	 * the simplest way to handle it is to just call it twice if
	 * we enter from user mode.  There's no reason to optimize this since
	 * TRACE_IRQS_OFF is a no-op if lockdep is off.
	 */
	TRACE_IRQS_OFF

782
	CALL_enter_from_user_mode
783

784
1:
785
	ENTER_IRQ_STACK old_rsp=%rdi save_ret=1
786 787 788
	/* We entered an interrupt context - irqs are off: */
	TRACE_IRQS_OFF

789
	ret
790
SYM_CODE_END(interrupt_entry)
791
_ASM_NOKPROBE(interrupt_entry)
792

793 794

/* Interrupt entry/exit. */
L
Linus Torvalds 已提交
795

796 797 798 799
/*
 * The interrupt stubs push (~vector+0x80) onto the stack and
 * then jump to common_spurious/interrupt.
 */
800
SYM_CODE_START_LOCAL(common_spurious)
801 802 803 804 805
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	smp_spurious_interrupt		/* rdi points to pt_regs */
	jmp	ret_from_intr
806
SYM_CODE_END(common_spurious)
807 808 809
_ASM_NOKPROBE(common_spurious)

/* common_interrupt is a hotpath. Align it */
810
	.p2align CONFIG_X86_L1_CACHE_SHIFT
811
SYM_CODE_START_LOCAL(common_interrupt)
812
	addq	$-0x80, (%rsp)			/* Adjust vector to [-256, -1] range */
813 814 815
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	do_IRQ	/* rdi points to pt_regs */
816
	/* 0(%rsp): old RSP */
817
ret_from_intr:
818
	DISABLE_INTERRUPTS(CLBR_ANY)
819
	TRACE_IRQS_OFF
820

821
	LEAVE_IRQ_STACK
822

823
	testb	$3, CS(%rsp)
824
	jz	retint_kernel
825

826
	/* Interrupt came from user space */
J
Jiri Slaby 已提交
827
.Lretint_user:
828 829
	mov	%rsp,%rdi
	call	prepare_exit_to_usermode
830

831
SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
832 833
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates user mode. */
834
	testb	$3, CS(%rsp)
835 836 837 838
	jnz	1f
	ud2
1:
#endif
839
	POP_REGS pop_rdi=0
840 841 842 843 844 845

	/*
	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
	 * Save old stack pointer and switch to trampoline stack.
	 */
	movq	%rsp, %rdi
846
	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
847
	UNWIND_HINT_EMPTY
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

	/* Copy the IRET frame to the trampoline stack. */
	pushq	6*8(%rdi)	/* SS */
	pushq	5*8(%rdi)	/* RSP */
	pushq	4*8(%rdi)	/* EFLAGS */
	pushq	3*8(%rdi)	/* CS */
	pushq	2*8(%rdi)	/* RIP */

	/* Push user RDI on the trampoline stack. */
	pushq	(%rdi)

	/*
	 * We are on the trampoline stack.  All regs except RDI are live.
	 * We can do future final exit work right here.
	 */
863
	STACKLEAK_ERASE_NOCLOBBER
864

865
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
866

867 868 869
	/* Restore RDI. */
	popq	%rdi
	SWAPGS
870 871
	INTERRUPT_RETURN

872

873
/* Returning to kernel space */
874
retint_kernel:
T
Thomas Gleixner 已提交
875
#ifdef CONFIG_PREEMPTION
876 877
	/* Interrupts are off */
	/* Check if we need preemption */
878
	btl	$9, EFLAGS(%rsp)		/* were interrupts off? */
879
	jnc	1f
880
	cmpl	$0, PER_CPU_VAR(__preempt_count)
881
	jnz	1f
882
	call	preempt_schedule_irq
883
1:
884
#endif
885 886 887 888
	/*
	 * The iretq could re-enable interrupts:
	 */
	TRACE_IRQS_IRETQ
889

890
SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
891 892
#ifdef CONFIG_DEBUG_ENTRY
	/* Assert that pt_regs indicates kernel mode. */
893
	testb	$3, CS(%rsp)
894 895 896 897
	jz	1f
	ud2
1:
#endif
898
	POP_REGS
899
	addq	$8, %rsp	/* skip regs->orig_ax */
900 901 902 903
	/*
	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
	 * when returning from IPI handler.
	 */
904 905
	INTERRUPT_RETURN

906
SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
907
	UNWIND_HINT_IRET_REGS
908 909 910 911
	/*
	 * Are we returning to a stack segment from the LDT?  Note: in
	 * 64-bit mode SS:RSP on the exception stack is always valid.
	 */
912
#ifdef CONFIG_X86_ESPFIX64
913 914
	testb	$4, (SS-RIP)(%rsp)
	jnz	native_irq_return_ldt
915
#endif
916

917
SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
A
Andy Lutomirski 已提交
918 919 920 921 922 923
	/*
	 * This may fault.  Non-paranoid faults on return to userspace are
	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
	 * Double-faults due to espfix64 are handled in do_double_fault.
	 * Other faults here are fatal.
	 */
L
Linus Torvalds 已提交
924
	iretq
I
Ingo Molnar 已提交
925

926
#ifdef CONFIG_X86_ESPFIX64
927
native_irq_return_ldt:
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	/*
	 * We are running with user GSBASE.  All GPRs contain their user
	 * values.  We have a percpu ESPFIX stack that is eight slots
	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
	 * of the ESPFIX stack.
	 *
	 * We clobber RAX and RDI in this code.  We stash RDI on the
	 * normal stack and RAX on the ESPFIX stack.
	 *
	 * The ESPFIX stack layout we set up looks like this:
	 *
	 * --- top of ESPFIX stack ---
	 * SS
	 * RSP
	 * RFLAGS
	 * CS
	 * RIP  <-- RSP points here when we're done
	 * RAX  <-- espfix_waddr points here
	 * --- bottom of ESPFIX stack ---
	 */

	pushq	%rdi				/* Stash user RDI */
950 951 952
	SWAPGS					/* to kernel GS */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */

953
	movq	PER_CPU_VAR(espfix_waddr), %rdi
954 955
	movq	%rax, (0*8)(%rdi)		/* user RAX */
	movq	(1*8)(%rsp), %rax		/* user RIP */
956
	movq	%rax, (1*8)(%rdi)
957
	movq	(2*8)(%rsp), %rax		/* user CS */
958
	movq	%rax, (2*8)(%rdi)
959
	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
960
	movq	%rax, (3*8)(%rdi)
961
	movq	(5*8)(%rsp), %rax		/* user SS */
962
	movq	%rax, (5*8)(%rdi)
963
	movq	(4*8)(%rsp), %rax		/* user RSP */
964
	movq	%rax, (4*8)(%rdi)
965 966 967 968 969 970 971 972 973 974 975 976
	/* Now RAX == RSP. */

	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */

	/*
	 * espfix_stack[31:16] == 0.  The page tables are set up such that
	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
	 * the same page.  Set up RSP so that RSP[31:16] contains the
	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
	 * still points to an RO alias of the ESPFIX stack.
	 */
977
	orq	PER_CPU_VAR(espfix_stack), %rax
978

979
	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
980 981 982
	SWAPGS					/* to user GS */
	popq	%rdi				/* Restore user RDI */

983
	movq	%rax, %rsp
984
	UNWIND_HINT_IRET_REGS offset=8
985 986 987 988 989 990 991 992 993 994 995 996

	/*
	 * At this point, we cannot write to the stack any more, but we can
	 * still read.
	 */
	popq	%rax				/* Restore user RAX */

	/*
	 * RSP now points to an ordinary IRET frame, except that the page
	 * is read-only and RSP[31:16] are preloaded with the userspace
	 * values.  We can now IRET back to userspace.
	 */
997
	jmp	native_irq_return_iret
998
#endif
999
SYM_CODE_END(common_interrupt)
1000
_ASM_NOKPROBE(common_interrupt)
1001

L
Linus Torvalds 已提交
1002 1003
/*
 * APIC interrupts.
1004
 */
1005
.macro apicinterrupt3 num sym do_sym
1006
SYM_CODE_START(\sym)
1007
	UNWIND_HINT_IRET_REGS
1008
	pushq	$~(\num)
1009 1010 1011
	call	interrupt_entry
	UNWIND_HINT_REGS indirect=1
	call	\do_sym	/* rdi points to pt_regs */
1012
	jmp	ret_from_intr
1013
SYM_CODE_END(\sym)
1014
_ASM_NOKPROBE(\sym)
1015
.endm
L
Linus Torvalds 已提交
1016

1017
/* Make sure APIC interrupt handlers end up in the irqentry section: */
1018 1019
#define PUSH_SECTION_IRQENTRY	.pushsection .irqentry.text, "ax"
#define POP_SECTION_IRQENTRY	.popsection
1020

1021
.macro apicinterrupt num sym do_sym
1022
PUSH_SECTION_IRQENTRY
1023
apicinterrupt3 \num \sym \do_sym
1024
POP_SECTION_IRQENTRY
1025 1026
.endm

1027
#ifdef CONFIG_SMP
1028 1029
apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR		irq_move_cleanup_interrupt	smp_irq_move_cleanup_interrupt
apicinterrupt3 REBOOT_VECTOR			reboot_interrupt		smp_reboot_interrupt
1030
#endif
L
Linus Torvalds 已提交
1031

N
Nick Piggin 已提交
1032
#ifdef CONFIG_X86_UV
1033
apicinterrupt3 UV_BAU_MESSAGE			uv_bau_message_intr1		uv_bau_message_interrupt
N
Nick Piggin 已提交
1034
#endif
1035 1036 1037

apicinterrupt LOCAL_TIMER_VECTOR		apic_timer_interrupt		smp_apic_timer_interrupt
apicinterrupt X86_PLATFORM_IPI_VECTOR		x86_platform_ipi		smp_x86_platform_ipi
1038

1039
#ifdef CONFIG_HAVE_KVM
1040 1041
apicinterrupt3 POSTED_INTR_VECTOR		kvm_posted_intr_ipi		smp_kvm_posted_intr_ipi
apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR	kvm_posted_intr_wakeup_ipi	smp_kvm_posted_intr_wakeup_ipi
1042
apicinterrupt3 POSTED_INTR_NESTED_VECTOR	kvm_posted_intr_nested_ipi	smp_kvm_posted_intr_nested_ipi
1043 1044
#endif

1045
#ifdef CONFIG_X86_MCE_THRESHOLD
1046
apicinterrupt THRESHOLD_APIC_VECTOR		threshold_interrupt		smp_threshold_interrupt
1047 1048
#endif

1049
#ifdef CONFIG_X86_MCE_AMD
1050
apicinterrupt DEFERRED_ERROR_VECTOR		deferred_error_interrupt	smp_deferred_error_interrupt
1051 1052
#endif

1053
#ifdef CONFIG_X86_THERMAL_VECTOR
1054
apicinterrupt THERMAL_APIC_VECTOR		thermal_interrupt		smp_thermal_interrupt
1055
#endif
1056

1057
#ifdef CONFIG_SMP
1058 1059 1060
apicinterrupt CALL_FUNCTION_SINGLE_VECTOR	call_function_single_interrupt	smp_call_function_single_interrupt
apicinterrupt CALL_FUNCTION_VECTOR		call_function_interrupt		smp_call_function_interrupt
apicinterrupt RESCHEDULE_VECTOR			reschedule_interrupt		smp_reschedule_interrupt
1061
#endif
L
Linus Torvalds 已提交
1062

1063 1064
apicinterrupt ERROR_APIC_VECTOR			error_interrupt			smp_error_interrupt
apicinterrupt SPURIOUS_APIC_VECTOR		spurious_interrupt		smp_spurious_interrupt
1065

1066
#ifdef CONFIG_IRQ_WORK
1067
apicinterrupt IRQ_WORK_VECTOR			irq_work_interrupt		smp_irq_work_interrupt
I
Ingo Molnar 已提交
1068 1069
#endif

L
Linus Torvalds 已提交
1070 1071
/*
 * Exception entry points.
1072
 */
1073

T
Thomas Gleixner 已提交
1074
idtentry	X86_TRAP_PF		page_fault		do_page_fault			has_error_code=1
1075

T
Thomas Gleixner 已提交
1076
idtentry_df	X86_TRAP_DF		double_fault		do_double_fault
1077 1078

#ifdef CONFIG_XEN_PV
T
Thomas Gleixner 已提交
1079
idtentry	512 /* dummy */		hypervisor_callback	xen_do_hypervisor_callback	has_error_code=0
1080
#endif
1081

1082 1083 1084 1085 1086 1087
/*
 * Reload gs selector with exception handling
 * edi:  new selector
 *
 * Is in entry.text as it shouldn't be instrumented.
 */
1088
SYM_FUNC_START(asm_load_gs_index)
1089
	FRAME_BEGIN
1090
	swapgs
1091
.Lgs_change:
1092
	movl	%edi, %gs
1093
2:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
1094
	swapgs
1095
	FRAME_END
1096
	ret
1097 1098
SYM_FUNC_END(asm_load_gs_index)
EXPORT_SYMBOL(asm_load_gs_index)
1099

1100
	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
1101
	.section .fixup, "ax"
L
Linus Torvalds 已提交
1102
	/* running with kernelgs */
1103
SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
1104
	swapgs					/* switch back to user gs */
1105 1106 1107 1108 1109 1110
.macro ZAP_GS
	/* This can't be a string because the preprocessor needs to see it. */
	movl $__USER_DS, %eax
	movl %eax, %gs
.endm
	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
1111 1112 1113
	xorl	%eax, %eax
	movl	%eax, %gs
	jmp	2b
1114
SYM_CODE_END(.Lbad_gs)
1115
	.previous
1116

1117
/* Call softirq on interrupt stack. Interrupts are off. */
1118
.pushsection .text, "ax"
1119
SYM_FUNC_START(do_softirq_own_stack)
1120 1121
	pushq	%rbp
	mov	%rsp, %rbp
1122
	ENTER_IRQ_STACK regs=0 old_rsp=%r11
1123
	call	__do_softirq
1124
	LEAVE_IRQ_STACK regs=0
1125
	leaveq
1126
	ret
1127
SYM_FUNC_END(do_softirq_own_stack)
1128
.popsection
1129

1130
#ifdef CONFIG_XEN_PV
1131
/*
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
 * A note on the "critical region" in our callback handler.
 * We want to avoid stacking callback handlers due to events occurring
 * during handling of the last event. To do this, we keep events disabled
 * until we've done all processing. HOWEVER, we must enable events before
 * popping the stack frame (can't be done atomically) and so it would still
 * be possible to get enough handler activations to overflow the stack.
 * Although unlikely, bugs of that kind are hard to track down, so we'd
 * like to avoid the possibility.
 * So, on entry to the handler we detect whether we interrupted an
 * existing activation in its critical region -- if so, we pop the current
 * activation and restart the handler using the previous one.
 */
J
Jiri Slaby 已提交
1144 1145
/* do_hypervisor_callback(struct *pt_regs) */
SYM_CODE_START_LOCAL(xen_do_hypervisor_callback)
1146

1147 1148 1149 1150
/*
 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
 * see the correct pointer to the pt_regs
 */
1151
	UNWIND_HINT_FUNC
1152
	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
1153
	UNWIND_HINT_REGS
1154 1155

	ENTER_IRQ_STACK old_rsp=%r10
1156
	call	xen_evtchn_do_upcall
1157 1158
	LEAVE_IRQ_STACK

T
Thomas Gleixner 已提交
1159
#ifndef CONFIG_PREEMPTION
1160
	call	xen_maybe_preempt_hcall
1161
#endif
1162
	jmp	error_exit
J
Jiri Slaby 已提交
1163
SYM_CODE_END(xen_do_hypervisor_callback)
1164 1165

/*
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
 * Hypervisor uses this for application faults while it executes.
 * We get here for two reasons:
 *  1. Fault while reloading DS, ES, FS or GS
 *  2. Fault while executing IRET
 * Category 1 we do not need to fix up as Xen has already reloaded all segment
 * registers that could be reloaded and zeroed the others.
 * Category 2 we fix up by killing the current process. We cannot use the
 * normal Linux return path in this case because if we use the IRET hypercall
 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
 * We distinguish between categories by comparing each saved segment register
 * with its current contents: any discrepancy means we in category 1.
 */
1178
SYM_CODE_START(xen_failsafe_callback)
1179
	UNWIND_HINT_EMPTY
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	movl	%ds, %ecx
	cmpw	%cx, 0x10(%rsp)
	jne	1f
	movl	%es, %ecx
	cmpw	%cx, 0x18(%rsp)
	jne	1f
	movl	%fs, %ecx
	cmpw	%cx, 0x20(%rsp)
	jne	1f
	movl	%gs, %ecx
	cmpw	%cx, 0x28(%rsp)
	jne	1f
1192
	/* All segments match their saved values => Category 2 (Bad IRET). */
1193 1194 1195 1196
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
	pushq	$0				/* RIP */
1197
	UNWIND_HINT_IRET_REGS offset=8
1198
	jmp	asm_exc_general_protection
1199
1:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
1200 1201 1202
	movq	(%rsp), %rcx
	movq	8(%rsp), %r11
	addq	$0x30, %rsp
1203
	UNWIND_HINT_IRET_REGS
1204
	pushq	$-1 /* orig_ax = -1 => not a system call */
1205
	PUSH_AND_CLEAR_REGS
1206
	ENCODE_FRAME_POINTER
1207
	jmp	error_exit
1208
SYM_CODE_END(xen_failsafe_callback)
1209
#endif /* CONFIG_XEN_PV */
1210

1211
#ifdef CONFIG_XEN_PVHVM
1212
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1213
	xen_hvm_callback_vector xen_evtchn_do_upcall
1214
#endif
1215

1216

1217
#if IS_ENABLED(CONFIG_HYPERV)
1218
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
1219
	hyperv_callback_vector hyperv_vector_handler
1220 1221 1222

apicinterrupt3 HYPERV_REENLIGHTENMENT_VECTOR \
	hyperv_reenlightenment_vector hyperv_reenlightenment_intr
1223 1224 1225

apicinterrupt3 HYPERV_STIMER0_VECTOR \
	hv_stimer0_callback_vector hv_stimer0_vector_handler
1226 1227
#endif /* CONFIG_HYPERV */

1228 1229 1230 1231 1232
#if IS_ENABLED(CONFIG_ACRN_GUEST)
apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
	acrn_hv_callback_vector acrn_hv_vector_handler
#endif

1233
/*
1234
 * Save all registers in pt_regs, and switch gs if needed.
1235 1236 1237
 * Use slow, but surefire "are we in kernel?" check.
 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
 */
J
Jiri Slaby 已提交
1238
SYM_CODE_START_LOCAL(paranoid_entry)
1239
	UNWIND_HINT_FUNC
1240
	cld
1241 1242
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1243 1244
	movl	$1, %ebx
	movl	$MSR_GS_BASE, %ecx
1245
	rdmsr
1246 1247
	testl	%edx, %edx
	js	1f				/* negative -> in kernel */
1248
	SWAPGS
1249
	xorl	%ebx, %ebx
1250 1251

1:
1252 1253
	/*
	 * Always stash CR3 in %r14.  This value will be restored,
1254 1255 1256
	 * verbatim, at exit.  Needed if paranoid_entry interrupted
	 * another entry that already switched to the user CR3 value
	 * but has not yet returned to userspace.
1257 1258 1259
	 *
	 * This is also why CS (stashed in the "iret frame" by the
	 * hardware at entry) can not be used: this may be a return
1260
	 * to kernel code, but with a user CR3 value.
1261
	 */
1262 1263
	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14

1264 1265 1266 1267 1268 1269 1270
	/*
	 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
	 * unconditional CR3 write, even in the PTI case.  So do an lfence
	 * to prevent GS speculation, regardless of whether PTI is enabled.
	 */
	FENCE_SWAPGS_KERNEL_ENTRY

1271
	ret
J
Jiri Slaby 已提交
1272
SYM_CODE_END(paranoid_entry)
1273

1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * "Paranoid" exit path from exception stack.  This is invoked
 * only on return from non-NMI IST interrupts that came
 * from kernel space.
 *
 * We may be returning to very strange contexts (e.g. very early
 * in syscall entry), so checking for preemption here would
 * be complicated.  Fortunately, we there's no good reason
 * to try to handle preemption here.
1283 1284
 *
 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
1285
 */
J
Jiri Slaby 已提交
1286
SYM_CODE_START_LOCAL(paranoid_exit)
1287
	UNWIND_HINT_REGS
1288
	DISABLE_INTERRUPTS(CLBR_ANY)
1289
	TRACE_IRQS_OFF_DEBUG
1290
	testl	%ebx, %ebx			/* swapgs needed? */
1291
	jnz	.Lparanoid_exit_no_swapgs
1292
	TRACE_IRQS_IRETQ
1293
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1294
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1295
	SWAPGS_UNSAFE_STACK
1296
	jmp	restore_regs_and_return_to_kernel
1297
.Lparanoid_exit_no_swapgs:
1298
	TRACE_IRQS_IRETQ_DEBUG
1299
	/* Always restore stashed CR3 value (see paranoid_entry) */
1300
	RESTORE_CR3	scratch_reg=%rbx save_reg=%r14
1301
	jmp restore_regs_and_return_to_kernel
J
Jiri Slaby 已提交
1302
SYM_CODE_END(paranoid_exit)
1303 1304

/*
1305
 * Save all registers in pt_regs, and switch GS if needed.
1306
 */
J
Jiri Slaby 已提交
1307
SYM_CODE_START_LOCAL(error_entry)
1308
	UNWIND_HINT_FUNC
1309
	cld
1310 1311
	PUSH_AND_CLEAR_REGS save_ret=1
	ENCODE_FRAME_POINTER 8
1312
	testb	$3, CS+8(%rsp)
1313
	jz	.Lerror_kernelspace
1314

1315 1316 1317 1318
	/*
	 * We entered from user mode or we're pretending to have entered
	 * from user mode due to an IRET fault.
	 */
1319
	SWAPGS
1320
	FENCE_SWAPGS_USER_ENTRY
1321 1322
	/* We have user CR3.  Change to kernel CR3. */
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1323

1324
.Lerror_entry_from_usermode_after_swapgs:
1325 1326 1327 1328 1329 1330 1331
	/* Put us onto the real thread stack. */
	popq	%r12				/* save return addr in %12 */
	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
	call	sync_regs
	movq	%rax, %rsp			/* switch stack */
	ENCODE_FRAME_POINTER
	pushq	%r12
1332
	ret
1333

1334 1335
.Lerror_entry_done_lfence:
	FENCE_SWAPGS_KERNEL_ENTRY
1336
.Lerror_entry_done:
1337 1338
	ret

1339 1340 1341 1342 1343 1344
	/*
	 * There are two places in the kernel that can potentially fault with
	 * usergs. Handle them here.  B stepping K8s sometimes report a
	 * truncated RIP for IRET exceptions returning to compat mode. Check
	 * for these here too.
	 */
1345
.Lerror_kernelspace:
1346 1347
	leaq	native_irq_return_iret(%rip), %rcx
	cmpq	%rcx, RIP+8(%rsp)
1348
	je	.Lerror_bad_iret
1349 1350
	movl	%ecx, %eax			/* zero extend */
	cmpq	%rax, RIP+8(%rsp)
1351
	je	.Lbstep_iret
1352
	cmpq	$.Lgs_change, RIP+8(%rsp)
1353
	jne	.Lerror_entry_done_lfence
1354 1355

	/*
1356
	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1357
	 * gsbase and proceed.  We'll fix up the exception and land in
1358
	 * .Lgs_change's error handler with kernel gsbase.
1359
	 */
1360
	SWAPGS
1361
	FENCE_SWAPGS_USER_ENTRY
1362
	jmp .Lerror_entry_done
1363

1364
.Lbstep_iret:
1365
	/* Fix truncated RIP */
1366
	movq	%rcx, RIP+8(%rsp)
A
Andy Lutomirski 已提交
1367 1368
	/* fall through */

1369
.Lerror_bad_iret:
1370
	/*
1371 1372
	 * We came from an IRET to user mode, so we have user
	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1373
	 */
A
Andy Lutomirski 已提交
1374
	SWAPGS
1375
	FENCE_SWAPGS_USER_ENTRY
1376
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1377 1378 1379

	/*
	 * Pretend that the exception came from user mode: set up pt_regs
1380
	 * as if we faulted immediately after IRET.
1381
	 */
1382 1383 1384
	mov	%rsp, %rdi
	call	fixup_bad_iret
	mov	%rax, %rsp
1385
	jmp	.Lerror_entry_from_usermode_after_swapgs
J
Jiri Slaby 已提交
1386
SYM_CODE_END(error_entry)
1387

J
Jiri Slaby 已提交
1388
SYM_CODE_START_LOCAL(error_exit)
1389
	UNWIND_HINT_REGS
1390
	DISABLE_INTERRUPTS(CLBR_ANY)
1391
	TRACE_IRQS_OFF
1392 1393
	testb	$3, CS(%rsp)
	jz	retint_kernel
J
Jiri Slaby 已提交
1394
	jmp	.Lretint_user
J
Jiri Slaby 已提交
1395
SYM_CODE_END(error_exit)
1396

1397 1398 1399 1400 1401 1402 1403 1404
SYM_CODE_START_LOCAL(error_return)
	UNWIND_HINT_REGS
	DEBUG_ENTRY_ASSERT_IRQS_OFF
	testb	$3, CS(%rsp)
	jz	restore_regs_and_return_to_kernel
	jmp	swapgs_restore_regs_and_return_to_usermode
SYM_CODE_END(error_return)

1405 1406 1407
/*
 * Runs on exception stack.  Xen PV does not go through this path at all,
 * so we can use real assembly here.
1408 1409 1410 1411
 *
 * Registers:
 *	%r14: Used to save/restore the CR3 of the interrupted context
 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1412
 */
1413
SYM_CODE_START(asm_exc_nmi)
1414
	UNWIND_HINT_IRET_REGS
1415

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
	/*
	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
	 * the iretq it performs will take us out of NMI context.
	 * This means that we can have nested NMIs where the next
	 * NMI is using the top of the stack of the previous NMI. We
	 * can't let it execute because the nested NMI will corrupt the
	 * stack of the previous NMI. NMI handlers are not re-entrant
	 * anyway.
	 *
	 * To handle this case we do the following:
	 *  Check the a special location on the stack that contains
	 *  a variable that is set when NMIs are executing.
	 *  The interrupted task's stack is also checked to see if it
	 *  is an NMI stack.
	 *  If the variable is not set and the stack is not the NMI
	 *  stack then:
	 *    o Set the special variable on the stack
1433 1434 1435
	 *    o Copy the interrupt frame into an "outermost" location on the
	 *      stack
	 *    o Copy the interrupt frame into an "iret" location on the stack
1436 1437
	 *    o Continue processing the NMI
	 *  If the variable is set or the previous stack is the NMI stack:
1438
	 *    o Modify the "iret" location to jump to the repeat_nmi
1439 1440 1441 1442 1443 1444 1445 1446
	 *    o return back to the first NMI
	 *
	 * Now on exit of the first NMI, we first clear the stack variable
	 * The NMI stack will tell any nested NMIs at that point that it is
	 * nested. Then we pop the stack normally with iret, and if there was
	 * a nested NMI that updated the copy interrupt stack frame, a
	 * jump will be made to the repeat_nmi code that will handle the second
	 * NMI.
1447 1448 1449 1450 1451
	 *
	 * However, espfix prevents us from directly returning to userspace
	 * with a single IRET instruction.  Similarly, IRET to user mode
	 * can fault.  We therefore handle NMIs from user space like
	 * other IST entries.
1452 1453
	 */

1454 1455
	ASM_CLAC

1456
	/* Use %rdx as our temp variable throughout */
1457
	pushq	%rdx
1458

1459 1460 1461 1462 1463 1464 1465 1466 1467
	testb	$3, CS-RIP+8(%rsp)
	jz	.Lnmi_from_kernel

	/*
	 * NMI from user mode.  We need to run on the thread stack, but we
	 * can't go through the normal entry paths: NMIs are masked, and
	 * we don't want to enable interrupts, because then we'll end
	 * up in an awkward situation in which IRQs are on but NMIs
	 * are off.
1468 1469 1470
	 *
	 * We also must not push anything to the stack before switching
	 * stacks lest we corrupt the "NMI executing" variable.
1471 1472
	 */

1473
	swapgs
1474
	cld
1475
	FENCE_SWAPGS_USER_ENTRY
1476
	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1477 1478
	movq	%rsp, %rdx
	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1479
	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1480 1481 1482 1483 1484
	pushq	5*8(%rdx)	/* pt_regs->ss */
	pushq	4*8(%rdx)	/* pt_regs->rsp */
	pushq	3*8(%rdx)	/* pt_regs->flags */
	pushq	2*8(%rdx)	/* pt_regs->cs */
	pushq	1*8(%rdx)	/* pt_regs->rip */
1485
	UNWIND_HINT_IRET_REGS
1486
	pushq   $-1		/* pt_regs->orig_ax */
1487
	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1488
	ENCODE_FRAME_POINTER
1489 1490 1491 1492 1493 1494 1495 1496 1497

	/*
	 * At this point we no longer need to worry about stack damage
	 * due to nesting -- we're on the normal thread stack and we're
	 * done with the NMI stack.
	 */

	movq	%rsp, %rdi
	movq	$-1, %rsi
1498
	call	exc_nmi
1499

1500
	/*
1501
	 * Return back to user mode.  We must *not* do the normal exit
1502
	 * work, because we don't want to enable interrupts.
1503
	 */
1504
	jmp	swapgs_restore_regs_and_return_to_usermode
1505

1506
.Lnmi_from_kernel:
1507
	/*
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
	 * Here's what our stack frame will look like:
	 * +---------------------------------------------------------+
	 * | original SS                                             |
	 * | original Return RSP                                     |
	 * | original RFLAGS                                         |
	 * | original CS                                             |
	 * | original RIP                                            |
	 * +---------------------------------------------------------+
	 * | temp storage for rdx                                    |
	 * +---------------------------------------------------------+
	 * | "NMI executing" variable                                |
	 * +---------------------------------------------------------+
	 * | iret SS          } Copied from "outermost" frame        |
	 * | iret Return RSP  } on each loop iteration; overwritten  |
	 * | iret RFLAGS      } by a nested NMI to force another     |
	 * | iret CS          } iteration if needed.                 |
	 * | iret RIP         }                                      |
	 * +---------------------------------------------------------+
	 * | outermost SS          } initialized in first_nmi;       |
	 * | outermost Return RSP  } will not be changed before      |
	 * | outermost RFLAGS      } NMI processing is done.         |
	 * | outermost CS          } Copied to "iret" frame on each  |
	 * | outermost RIP         } iteration.                      |
	 * +---------------------------------------------------------+
	 * | pt_regs                                                 |
	 * +---------------------------------------------------------+
	 *
	 * The "original" frame is used by hardware.  Before re-enabling
	 * NMIs, we need to be done with it, and we need to leave enough
	 * space for the asm code here.
	 *
	 * We return by executing IRET while RSP points to the "iret" frame.
	 * That will either return for real or it will loop back into NMI
	 * processing.
	 *
	 * The "outermost" frame is copied to the "iret" frame on each
	 * iteration of the loop, so each iteration starts with the "iret"
	 * frame pointing to the final return target.
	 */

1548
	/*
1549 1550
	 * Determine whether we're a nested NMI.
	 *
1551 1552 1553 1554
	 * If we interrupted kernel code between repeat_nmi and
	 * end_repeat_nmi, then we are a nested NMI.  We must not
	 * modify the "iret" frame because it's being written by
	 * the outer NMI.  That's okay; the outer NMI handler is
1555
	 * about to about to call exc_nmi() anyway, so we can just
1556
	 * resume the outer NMI.
1557
	 */
1558 1559 1560 1561 1562 1563 1564 1565

	movq	$repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	1f
	movq	$end_repeat_nmi, %rdx
	cmpq	8(%rsp), %rdx
	ja	nested_nmi_out
1:
1566

1567
	/*
1568
	 * Now check "NMI executing".  If it's set, then we're nested.
1569 1570
	 * This will not detect if we interrupted an outer NMI just
	 * before IRET.
1571
	 */
1572 1573
	cmpl	$1, -8(%rsp)
	je	nested_nmi
1574 1575

	/*
1576 1577
	 * Now test if the previous stack was an NMI stack.  This covers
	 * the case where we interrupt an outer NMI after it clears
1578 1579 1580 1581 1582 1583 1584 1585
	 * "NMI executing" but before IRET.  We need to be careful, though:
	 * there is one case in which RSP could point to the NMI stack
	 * despite there being no NMI active: naughty userspace controls
	 * RSP at the very beginning of the SYSCALL targets.  We can
	 * pull a fast one on naughty userspace, though: we program
	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
	 * if it controls the kernel's RSP.  We set DF before we clear
	 * "NMI executing".
1586
	 */
1587 1588 1589 1590 1591
	lea	6*8(%rsp), %rdx
	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
	cmpq	%rdx, 4*8(%rsp)
	/* If the stack pointer is above the NMI stack, this is a normal NMI */
	ja	first_nmi
1592

1593 1594 1595 1596
	subq	$EXCEPTION_STKSZ, %rdx
	cmpq	%rdx, 4*8(%rsp)
	/* If it is below the NMI stack, it is a normal NMI */
	jb	first_nmi
1597 1598 1599 1600 1601 1602 1603

	/* Ah, it is within the NMI stack. */

	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
	jz	first_nmi	/* RSP was user controlled. */

	/* This is a nested NMI. */
1604

1605 1606
nested_nmi:
	/*
1607 1608
	 * Modify the "iret" frame to point to repeat_nmi, forcing another
	 * iteration of NMI handling.
1609
	 */
1610
	subq	$8, %rsp
1611 1612 1613
	leaq	-10*8(%rsp), %rdx
	pushq	$__KERNEL_DS
	pushq	%rdx
1614
	pushfq
1615 1616
	pushq	$__KERNEL_CS
	pushq	$repeat_nmi
1617 1618

	/* Put stack back */
1619
	addq	$(6*8), %rsp
1620 1621

nested_nmi_out:
1622
	popq	%rdx
1623

1624
	/* We are returning to kernel mode, so this cannot result in a fault. */
1625
	iretq
1626 1627

first_nmi:
1628
	/* Restore rdx. */
1629
	movq	(%rsp), %rdx
1630

1631 1632
	/* Make room for "NMI executing". */
	pushq	$0
1633

1634
	/* Leave room for the "iret" frame */
1635
	subq	$(5*8), %rsp
1636

1637
	/* Copy the "original" frame to the "outermost" frame */
1638
	.rept 5
1639
	pushq	11*8(%rsp)
1640
	.endr
1641
	UNWIND_HINT_IRET_REGS
1642

1643 1644
	/* Everything up to here is safe from nested NMIs */

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
#ifdef CONFIG_DEBUG_ENTRY
	/*
	 * For ease of testing, unmask NMIs right away.  Disabled by
	 * default because IRET is very expensive.
	 */
	pushq	$0		/* SS */
	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
	addq	$8, (%rsp)	/* Fix up RSP */
	pushfq			/* RFLAGS */
	pushq	$__KERNEL_CS	/* CS */
	pushq	$1f		/* RIP */
1656
	iretq			/* continues at repeat_nmi below */
1657
	UNWIND_HINT_IRET_REGS
1658 1659 1660
1:
#endif

1661
repeat_nmi:
1662 1663 1664 1665 1666 1667 1668 1669
	/*
	 * If there was a nested NMI, the first NMI's iret will return
	 * here. But NMIs are still enabled and we can take another
	 * nested NMI. The nested NMI checks the interrupted RIP to see
	 * if it is between repeat_nmi and end_repeat_nmi, and if so
	 * it will just return, as we are about to repeat an NMI anyway.
	 * This makes it safe to copy to the stack frame that a nested
	 * NMI will update.
1670 1671 1672 1673
	 *
	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
	 * we're repeating an NMI, gsbase has the same value that it had on
	 * the first iteration.  paranoid_entry will load the kernel
1674
	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1675
	 * is zero.
1676
	 */
1677
	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1678

1679
	/*
1680 1681 1682
	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
	 * here must not modify the "iret" frame while we're writing to
	 * it or it will end up containing garbage.
1683
	 */
1684
	addq	$(10*8), %rsp
1685
	.rept 5
1686
	pushq	-6*8(%rsp)
1687
	.endr
1688
	subq	$(5*8), %rsp
1689
end_repeat_nmi:
1690 1691

	/*
1692 1693 1694
	 * Everything below this point can be preempted by a nested NMI.
	 * If this happens, then the inner NMI will change the "iret"
	 * frame to point back to repeat_nmi.
1695
	 */
1696
	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1697

1698
	/*
1699
	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1700 1701 1702 1703 1704
	 * as we should not be calling schedule in NMI context.
	 * Even with normal interrupts enabled. An NMI should not be
	 * setting NEED_RESCHED or anything that normal interrupts and
	 * exceptions might do.
	 */
1705
	call	paranoid_entry
1706
	UNWIND_HINT_REGS
1707

1708
	/* paranoidentry exc_nmi(), 0; without TRACE_IRQS_OFF */
1709 1710
	movq	%rsp, %rdi
	movq	$-1, %rsi
1711
	call	exc_nmi
1712

1713
	/* Always restore stashed CR3 value (see paranoid_entry) */
P
Peter Zijlstra 已提交
1714
	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1715

1716 1717
	testl	%ebx, %ebx			/* swapgs needed? */
	jnz	nmi_restore
1718 1719 1720
nmi_swapgs:
	SWAPGS_UNSAFE_STACK
nmi_restore:
1721
	POP_REGS
1722

1723 1724 1725 1726 1727
	/*
	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
	 * at the "iret" frame.
	 */
	addq	$6*8, %rsp
1728

1729 1730 1731
	/*
	 * Clear "NMI executing".  Set DF first so that we can easily
	 * distinguish the remaining code between here and IRET from
1732 1733 1734 1735 1736
	 * the SYSCALL entry and exit paths.
	 *
	 * We arguably should just inspect RIP instead, but I (Andy) wrote
	 * this code when I had the misapprehension that Xen PV supported
	 * NMIs, and Xen PV would break that approach.
1737 1738 1739
	 */
	std
	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1740 1741

	/*
1742 1743 1744 1745
	 * iretq reads the "iret" frame and exits the NMI stack in a
	 * single instruction.  We are returning to kernel mode, so this
	 * cannot result in a fault.  Similarly, we don't need to worry
	 * about espfix64 on the way back to kernel mode.
1746
	 */
1747
	iretq
1748
SYM_CODE_END(asm_exc_nmi)
1749

1750 1751 1752 1753 1754
#ifndef CONFIG_IA32_EMULATION
/*
 * This handles SYSCALL from 32-bit code.  There is no way to program
 * MSRs to fully disable 32-bit SYSCALL.
 */
1755
SYM_CODE_START(ignore_sysret)
1756
	UNWIND_HINT_EMPTY
1757
	mov	$-ENOSYS, %eax
1758
	sysretl
1759
SYM_CODE_END(ignore_sysret)
1760
#endif
1761

1762
.pushsection .text, "ax"
1763
SYM_CODE_START(rewind_stack_do_exit)
1764
	UNWIND_HINT_FUNC
1765 1766 1767 1768
	/* Prevent any naive code from trying to unwind to our caller. */
	xorl	%ebp, %ebp

	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1769
	leaq	-PTREGS_SIZE(%rax), %rsp
1770
	UNWIND_HINT_REGS
1771 1772

	call	do_exit
1773
SYM_CODE_END(rewind_stack_do_exit)
1774
.popsection