i915_gem_gtt.c 99.9 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34
#include <asm/set_memory.h>
C
Chris Wilson 已提交
35
#include <asm/smp.h>
L
Laura Abbott 已提交
36

37
#include <drm/i915_drm.h>
38

39
#include "display/intel_frontbuffer.h"
40
#include "gt/intel_gt.h"
41
#include "gt/intel_gt_requests.h"
42

43
#include "i915_drv.h"
44
#include "i915_scatterlist.h"
45
#include "i915_trace.h"
46
#include "i915_vgpu.h"
47

48
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
49

50 51 52 53 54 55
#if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
#define DBG(...) trace_printk(__VA_ARGS__)
#else
#define DBG(...)
#endif

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
92 93 94
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

117 118
#define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)

119 120 121
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

122
static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
123
{
124
	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
125

126 127
	/*
	 * Note that as an uncached mmio write, this will flush the
128 129
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
130
	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
131 132
}

133
static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
134
{
135
	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
136
	struct drm_i915_private *i915 = ggtt->vm.i915;
137

138
	gen6_ggtt_invalidate(ggtt);
139 140 141 142 143 144

	if (INTEL_GEN(i915) >= 12)
		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
	else
		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
145 146
}

147
static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
148 149 150 151
{
	intel_gtt_chipset_flush();
}

152 153
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
154
			  u32 flags)
155
{
156
	u32 pte_flags;
157 158
	int err;

159
	if (flags & I915_VMA_ALLOC) {
160 161 162 163
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
164 165

		set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
166
	}
167

168
	/* Applicable to VLV, and gen8+ */
169
	pte_flags = 0;
170
	if (i915_gem_object_is_readonly(vma->obj))
171 172
		pte_flags |= PTE_READ_ONLY;

173
	GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma)));
174
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
175
	wmb();
176 177

	return 0;
178 179 180 181
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
182 183
	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma)))
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
184
}
185

186 187 188 189 190 191
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

192 193
	vma->page_sizes = vma->obj->mm.page_sizes;

194 195 196 197 198 199 200 201 202 203 204 205
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
206 207

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
208 209
}

210 211 212
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
213
{
214 215 216 217
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
218 219 220

	switch (level) {
	case I915_CACHE_NONE:
221
		pte |= PPAT_UNCACHED;
222 223
		break;
	case I915_CACHE_WT:
224
		pte |= PPAT_DISPLAY_ELLC;
225 226
		break;
	default:
227
		pte |= PPAT_CACHED;
228 229 230
		break;
	}

B
Ben Widawsky 已提交
231 232 233
	return pte;
}

234 235
static u64 gen8_pde_encode(const dma_addr_t addr,
			   const enum i915_cache_level level)
B
Ben Widawsky 已提交
236
{
237
	u64 pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
238 239
	pde |= addr;
	if (level != I915_CACHE_NONE)
240
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
241
	else
242
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
243 244 245
	return pde;
}

246 247 248
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
249
{
250
	gen6_pte_t pte = GEN6_PTE_VALID;
251
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
252 253

	switch (level) {
254 255 256 257 258 259 260 261
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
262
		MISSING_CASE(level);
263 264 265 266 267
	}

	return pte;
}

268 269 270
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
271
{
272
	gen6_pte_t pte = GEN6_PTE_VALID;
273 274 275 276 277
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
278 279 280 281 282
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
283
		pte |= GEN6_PTE_UNCACHED;
284 285
		break;
	default:
286
		MISSING_CASE(level);
287 288
	}

289 290 291
	return pte;
}

292 293 294
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
295
{
296
	gen6_pte_t pte = GEN6_PTE_VALID;
297 298
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

299 300
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
301 302 303 304 305 306 307

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

308 309 310
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
311
{
312
	gen6_pte_t pte = GEN6_PTE_VALID;
313
	pte |= HSW_PTE_ADDR_ENCODE(addr);
314 315

	if (level != I915_CACHE_NONE)
316
		pte |= HSW_WB_LLC_AGE3;
317 318 319 320

	return pte;
}

321 322 323
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
324
{
325
	gen6_pte_t pte = GEN6_PTE_VALID;
326 327
	pte |= HSW_PTE_ADDR_ENCODE(addr);

328 329 330 331
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
332
		pte |= HSW_WT_ELLC_LLC_AGE3;
333 334
		break;
	default:
335
		pte |= HSW_WB_ELLC_LLC_AGE3;
336 337
		break;
	}
338 339 340 341

	return pte;
}

342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
362
	unsigned int nr;
363 364 365

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

366
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
367 368 369 370 371 372 373 374 375 376
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

377
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
378
{
379 380
	struct pagevec stack;
	struct page *page;
381

382 383
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
384

385 386 387
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
388 389 390 391 392

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
393 394 395
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
396

397
	/*
398
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
399 400 401 402 403 404
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
405
	pagevec_init(&stack);
406 407
	do {
		struct page *page;
408

409 410 411 412
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

413 414
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
415

416 417
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
418

419
		/* Merge spare WC pages to the global stash */
420 421
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
422

423 424 425
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
426
	}
427

428 429 430 431 432 433 434
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
435 436
}

437 438
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
439
{
440 441
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
442

443
	lockdep_assert_held(&vm->free_pages.lock);
444
	GEM_BUG_ON(!pagevec_count(pvec));
445

446
	if (vm->pt_kmap_wc) {
447 448
		/*
		 * When we use WC, first fill up the global stash and then
449 450
		 * only if full immediately free the overflow.
		 */
451
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
452

453 454 455 456 457 458 459 460
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
461

462 463 464 465 466 467 468 469 470 471
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
472
		set_pages_array_wb(pvec->pages, pvec->nr);
473 474

		spin_lock(&vm->free_pages.lock);
475 476 477
	}

	__pagevec_release(pvec);
478 479 480 481
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
482 483 484 485 486 487 488 489
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
490
	spin_lock(&vm->free_pages.lock);
491
	while (!pagevec_space(&vm->free_pages.pvec))
492
		vm_free_pages_release(vm, false);
493 494
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
495 496 497
	spin_unlock(&vm->free_pages.lock);
}

498 499 500 501 502 503 504 505 506 507 508 509 510
static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);

	mutex_destroy(&vm->mutex);
}

511
void __i915_vm_close(struct i915_address_space *vm)
512
{
513
	struct i915_vma *vma, *vn;
514

515 516 517 518 519 520 521 522 523 524
	mutex_lock(&vm->mutex);
	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
		struct drm_i915_gem_object *obj = vma->obj;

		/* Keep the obj (and hence the vma) alive as _we_ destroy it */
		if (!kref_get_unless_zero(&obj->base.refcount))
			continue;

		atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
		WARN_ON(__i915_vma_unbind(vma));
525
		i915_vma_destroy(vma);
526 527 528

		i915_gem_object_put(obj);
	}
529
	GEM_BUG_ON(!list_empty(&vm->bound_list));
530
	mutex_unlock(&vm->mutex);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
}

static void __i915_vm_release(struct work_struct *work)
{
	struct i915_address_space *vm =
		container_of(work, struct i915_address_space, rcu.work);

	vm->cleanup(vm);
	i915_address_space_fini(vm);

	kfree(vm);
}

void i915_vm_release(struct kref *kref)
{
	struct i915_address_space *vm =
		container_of(kref, struct i915_address_space, ref);

	GEM_BUG_ON(i915_is_ggtt(vm));
	trace_i915_ppgtt_release(vm);

	queue_rcu_work(vm->i915->wq, &vm->rcu);
}

555
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
556
{
557
	kref_init(&vm->ref);
558
	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
559
	atomic_set(&vm->open, 1);
560

561 562 563 564 565 566
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
567
	lockdep_set_subclass(&vm->mutex, subclass);
568
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
569

570 571 572 573 574 575
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

576
	INIT_LIST_HEAD(&vm->bound_list);
577 578
}

579 580 581 582
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
583
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
584 585
	if (unlikely(!p->page))
		return -ENOMEM;
586

587 588 589
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
590
				      DMA_ATTR_SKIP_CPU_SYNC |
591
				      DMA_ATTR_NO_WARN);
592 593 594
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
595
	}
596 597

	return 0;
598 599
}

600
static int setup_page_dma(struct i915_address_space *vm,
601
			  struct i915_page_dma *p)
602
{
603
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
604 605
}

606
static void cleanup_page_dma(struct i915_address_space *vm,
607
			     struct i915_page_dma *p)
608
{
609 610
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
611 612
}

613
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
614

615 616
static void
fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
617
{
618
	kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
619 620
}

621 622 623 624 625
#define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
#define fill32_px(px, v) do {						\
	u64 v__ = lower_32_bits(v);					\
	fill_px((px), v__ << 32 | v__);					\
} while (0)
626

627
static int
628
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
629
{
630
	unsigned long size;
631

632 633 634 635 636 637 638
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
639 640 641
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
642
	 */
643
	size = I915_GTT_PAGE_SIZE_4K;
644
	if (i915_vm_is_4lvl(vm) &&
645
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
646 647
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
648
	}
649 650 651
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
652
		unsigned int order = get_order(size);
653 654
		struct page *page;
		dma_addr_t addr;
655

656
		page = alloc_pages(gfp, order);
657
		if (unlikely(!page))
658
			goto skip;
659

660 661 662
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
663
					  DMA_ATTR_SKIP_CPU_SYNC |
664
					  DMA_ATTR_NO_WARN);
665 666
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
667

668 669
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
670

671 672
		vm->scratch[0].base.page = page;
		vm->scratch[0].base.daddr = addr;
673
		vm->scratch_order = order;
674 675 676 677 678 679 680 681 682 683 684 685 686
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
687 688
}

689
static void cleanup_scratch_page(struct i915_address_space *vm)
690
{
691 692
	struct i915_page_dma *p = px_base(&vm->scratch[0]);
	unsigned int order = vm->scratch_order;
693

694
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
695
		       PCI_DMA_BIDIRECTIONAL);
696
	__free_pages(p->page, order);
697 698
}

699 700
static void free_scratch(struct i915_address_space *vm)
{
701 702 703
	int i;

	if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
704 705
		return;

706 707 708 709 710
	for (i = 1; i <= vm->top; i++) {
		if (!px_dma(&vm->scratch[i]))
			break;
		cleanup_page_dma(vm, px_base(&vm->scratch[i]));
	}
711 712 713 714

	cleanup_scratch_page(vm);
}

715
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
716
{
717
	struct i915_page_table *pt;
718

719
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
720
	if (unlikely(!pt))
721 722
		return ERR_PTR(-ENOMEM);

723
	if (unlikely(setup_page_dma(vm, &pt->base))) {
724 725 726
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
727

728
	atomic_set(&pt->used, 0);
729 730 731
	return pt;
}

732
static struct i915_page_directory *__alloc_pd(size_t sz)
733
{
734
	struct i915_page_directory *pd;
735

736
	pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
737 738 739 740 741 742 743 744 745 746 747
	if (unlikely(!pd))
		return NULL;

	spin_lock_init(&pd->lock);
	return pd;
}

static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
{
	struct i915_page_directory *pd;

748
	pd = __alloc_pd(sizeof(*pd));
749
	if (unlikely(!pd))
750 751
		return ERR_PTR(-ENOMEM);

752
	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
753 754 755
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
756

757 758 759
	return pd;
}

760
static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
761
{
762
	cleanup_page_dma(vm, pd);
763
	kfree(pd);
764 765
}

766 767
#define free_px(vm, px) free_pd(vm, px_base(px))

768 769
static inline void
write_dma_entry(struct i915_page_dma * const pdma,
770
		const unsigned short idx,
771 772 773 774
		const u64 encoded_entry)
{
	u64 * const vaddr = kmap_atomic(pdma->page);

775
	vaddr[idx] = encoded_entry;
776 777 778 779 780
	kunmap_atomic(vaddr);
}

static inline void
__set_pd_entry(struct i915_page_directory * const pd,
781
	       const unsigned short idx,
782 783
	       struct i915_page_dma * const to,
	       u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
784
{
785 786
	/* Each thread pre-pins the pd, and we may have a thread per pde. */
	GEM_BUG_ON(atomic_read(px_used(pd)) > 2 * ARRAY_SIZE(pd->entry));
787

788
	atomic_inc(px_used(pd));
789 790
	pd->entry[idx] = to;
	write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
791 792
}

793 794
#define set_pd_entry(pd, idx, to) \
	__set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
795

796
static inline void
797
clear_pd_entry(struct i915_page_directory * const pd,
798 799
	       const unsigned short idx,
	       const struct i915_page_scratch * const scratch)
800
{
801
	GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
802

803 804
	write_dma_entry(px_base(pd), idx, scratch->encode);
	pd->entry[idx] = NULL;
805
	atomic_dec(px_used(pd));
806 807
}

808 809
static bool
release_pd_entry(struct i915_page_directory * const pd,
810
		 const unsigned short idx,
811
		 struct i915_page_table * const pt,
812
		 const struct i915_page_scratch * const scratch)
813 814 815
{
	bool free = false;

816 817 818
	if (atomic_add_unless(&pt->used, -1, 1))
		return false;

819
	spin_lock(&pd->lock);
820
	if (atomic_dec_and_test(&pt->used)) {
821
		clear_pd_entry(pd, idx, scratch);
822 823 824 825 826 827
		free = true;
	}
	spin_unlock(&pd->lock);

	return free;
}
828

829
static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
830
{
831
	struct drm_i915_private *dev_priv = ppgtt->vm.i915;
832 833 834 835 836 837 838 839
	enum vgt_g2v_type msg;
	int i;

	if (create)
		atomic_inc(px_used(ppgtt->pd)); /* never remove */
	else
		atomic_dec(px_used(ppgtt->pd));

840 841 842
	mutex_lock(&dev_priv->vgpu.lock);

	if (i915_vm_is_4lvl(&ppgtt->vm)) {
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
		const u64 daddr = px_dma(ppgtt->pd);

		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);

			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

862
	/* g2v_notify atomically (via hv trap) consumes the message packet. */
863 864
	I915_WRITE(vgtif_reg(g2v_notify), msg);

865
	mutex_unlock(&dev_priv->vgpu.lock);
866 867
}

868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
/* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
#define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
#define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
#define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
#define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
#define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
#define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
#define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))

static inline unsigned int
gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
{
	const int shift = gen8_pd_shift(lvl);
	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);

	GEM_BUG_ON(start >= end);
	end += ~mask >> gen8_pd_shift(1);

	*idx = i915_pde_index(start, shift);
	if ((start ^ end) & mask)
		return GEN8_PDES - *idx;
	else
		return i915_pde_index(end, shift) - *idx;
}

static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
{
	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);

	GEM_BUG_ON(start >= end);
	return (start ^ end) & mask && (start & ~mask) == 0;
}

static inline unsigned int gen8_pt_count(u64 start, u64 end)
{
	GEM_BUG_ON(start >= end);
	if ((start ^ end) >> gen8_pd_shift(1))
		return GEN8_PDES - (start & (GEN8_PDES - 1));
	else
		return end - start;
}

910 911 912 913 914 915
static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
{
	unsigned int shift = __gen8_pte_shift(vm->top);
	return (vm->total + (1ull << shift) - 1) >> shift;
}

916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
static inline struct i915_page_directory *
gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
{
	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);

	if (vm->top == 2)
		return ppgtt->pd;
	else
		return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
}

static inline struct i915_page_directory *
gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
{
	return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
}

933 934 935
static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
				 struct i915_page_directory *pd,
				 int count, int lvl)
936
{
937 938
	if (lvl) {
		void **pde = pd->entry;
939

940 941 942
		do {
			if (!*pde)
				continue;
943

944 945
			__gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
		} while (pde++, --count);
946 947
	}

948
	free_px(vm, pd);
949 950 951 952 953 954
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);

955
	if (intel_vgpu_active(vm->i915))
956 957
		gen8_ppgtt_notify_vgt(ppgtt, false);

958
	__gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
959 960 961
	free_scratch(vm);
}

962 963 964
static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
			      struct i915_page_directory * const pd,
			      u64 start, const u64 end, int lvl)
965
{
966 967
	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
	unsigned int idx, len;
968

969 970
	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);

971
	len = gen8_pd_range(start, end, lvl--, &idx);
972
	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
973 974 975
	    __func__, vm, lvl + 1, start, end,
	    idx, len, atomic_read(px_used(pd)));
	GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
976

977 978 979 980 981 982 983 984 985 986 987 988
	do {
		struct i915_page_table *pt = pd->entry[idx];

		if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
		    gen8_pd_contains(start, end, lvl)) {
			DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
			    __func__, vm, lvl + 1, idx, start, end);
			clear_pd_entry(pd, idx, scratch);
			__gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
			start += (u64)I915_PDES << gen8_pd_shift(lvl);
			continue;
		}
989

990 991 992 993 994 995
		if (lvl) {
			start = __gen8_ppgtt_clear(vm, as_pd(pt),
						   start, end, lvl);
		} else {
			unsigned int count;
			u64 *vaddr;
996

997
			count = gen8_pt_count(start, end);
998
			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
999 1000 1001 1002
			    __func__, vm, lvl, start, end,
			    gen8_pd_index(start, 0), count,
			    atomic_read(&pt->used));
			GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
			vaddr = kmap_atomic_px(pt);
			memset64(vaddr + gen8_pd_index(start, 0),
				 vm->scratch[0].encode,
				 count);
			kunmap_atomic(vaddr);

			atomic_sub(count, &pt->used);
			start += count;
		}

		if (release_pd_entry(pd, idx, pt, scratch))
1015
			free_px(vm, pt);
1016 1017 1018
	} while (idx++, --len);

	return start;
1019
}
1020

1021 1022
static void gen8_ppgtt_clear(struct i915_address_space *vm,
			     u64 start, u64 length)
1023
{
1024 1025
	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1026
	GEM_BUG_ON(range_overflows(start, length, vm->total));
1027

1028 1029 1030 1031 1032 1033
	start >>= GEN8_PTE_SHIFT;
	length >>= GEN8_PTE_SHIFT;
	GEM_BUG_ON(length == 0);

	__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
			   start, start + length, vm->top);
1034
}
1035

1036 1037
static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
			      struct i915_page_directory * const pd,
1038
			      u64 * const start, const u64 end, int lvl)
1039
{
1040 1041 1042
	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
	struct i915_page_table *alloc = NULL;
	unsigned int idx, len;
1043
	int ret = 0;
1044

1045 1046
	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);

1047
	len = gen8_pd_range(*start, end, lvl--, &idx);
1048
	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
1049 1050 1051 1052
	    __func__, vm, lvl + 1, *start, end,
	    idx, len, atomic_read(px_used(pd)));
	GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));

1053
	spin_lock(&pd->lock);
1054 1055 1056
	GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
	do {
		struct i915_page_table *pt = pd->entry[idx];
1057

1058
		if (!pt) {
1059
			spin_unlock(&pd->lock);
1060

1061 1062
			DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
			    __func__, vm, lvl + 1, idx);
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072
			pt = fetch_and_zero(&alloc);
			if (lvl) {
				if (!pt) {
					pt = &alloc_pd(vm)->pt;
					if (IS_ERR(pt)) {
						ret = PTR_ERR(pt);
						goto out;
					}
				}
1073

1074
				fill_px(pt, vm->scratch[lvl].encode);
1075
			} else {
1076 1077 1078 1079 1080 1081 1082
				if (!pt) {
					pt = alloc_pt(vm);
					if (IS_ERR(pt)) {
						ret = PTR_ERR(pt);
						goto out;
					}
				}
1083

1084 1085 1086 1087
				if (intel_vgpu_active(vm->i915) ||
				    gen8_pt_count(*start, end) < I915_PDES)
					fill_px(pt, vm->scratch[lvl].encode);
			}
1088

1089 1090 1091 1092 1093 1094
			spin_lock(&pd->lock);
			if (likely(!pd->entry[idx]))
				set_pd_entry(pd, idx, pt);
			else
				alloc = pt, pt = pd->entry[idx];
		}
1095

1096 1097 1098
		if (lvl) {
			atomic_inc(&pt->used);
			spin_unlock(&pd->lock);
1099

1100 1101 1102 1103 1104 1105
			ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
						 start, end, lvl);
			if (unlikely(ret)) {
				if (release_pd_entry(pd, idx, pt, scratch))
					free_px(vm, pt);
				goto out;
1106
			}
1107

1108 1109 1110 1111 1112
			spin_lock(&pd->lock);
			atomic_dec(&pt->used);
			GEM_BUG_ON(!atomic_read(&pt->used));
		} else {
			unsigned int count = gen8_pt_count(*start, end);
1113

1114
			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
1115 1116 1117
			    __func__, vm, lvl, *start, end,
			    gen8_pd_index(*start, 0), count,
			    atomic_read(&pt->used));
1118

1119
			atomic_add(count, &pt->used);
1120 1121
			/* All other pdes may be simultaneously removed */
			GEM_BUG_ON(atomic_read(&pt->used) > 2 * I915_PDES);
1122 1123 1124 1125
			*start += count;
		}
	} while (idx++, --len);
	spin_unlock(&pd->lock);
1126 1127 1128
out:
	if (alloc)
		free_px(vm, alloc);
1129
	return ret;
1130 1131
}

1132 1133
static int gen8_ppgtt_alloc(struct i915_address_space *vm,
			    u64 start, u64 length)
1134
{
1135
	u64 from;
1136
	int err;
1137

1138 1139
	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1140
	GEM_BUG_ON(range_overflows(start, length, vm->total));
1141

1142 1143 1144
	start >>= GEN8_PTE_SHIFT;
	length >>= GEN8_PTE_SHIFT;
	GEM_BUG_ON(length == 0);
1145
	from = start;
1146

1147 1148
	err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
				 &start, start + length, vm->top);
1149
	if (unlikely(err && from != start))
1150 1151
		__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
				   from, start, vm->top);
1152

1153
	return err;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
}

static inline struct sgt_dma {
	struct scatterlist *sg;
	dma_addr_t dma, max;
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}

1165
static __always_inline u64
1166 1167 1168 1169 1170 1171
gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
		      struct i915_page_directory *pdp,
		      struct sgt_dma *iter,
		      u64 idx,
		      enum i915_cache_level cache_level,
		      u32 flags)
1172 1173 1174 1175 1176
{
	struct i915_page_directory *pd;
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
	gen8_pte_t *vaddr;

1177 1178
	pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
	vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1179
	do {
1180
		vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
1181 1182 1183 1184 1185

		iter->dma += I915_GTT_PAGE_SIZE;
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
1186
				idx = 0;
1187 1188 1189 1190 1191 1192 1193
				break;
			}

			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
		}

1194 1195
		if (gen8_pd_index(++idx, 0) == 0) {
			if (gen8_pd_index(idx, 1) == 0) {
1196
				/* Limited by sg length for 3lvl */
1197
				if (gen8_pd_index(idx, 2) == 0)
1198 1199
					break;

1200
				pd = pdp->entry[gen8_pd_index(idx, 2)];
1201 1202 1203
			}

			kunmap_atomic(vaddr);
1204
			vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1205 1206 1207 1208
		}
	} while (1);
	kunmap_atomic(vaddr);

1209
	return idx;
1210 1211
}

1212 1213
static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
				   struct sgt_dma *iter,
1214 1215
				   enum i915_cache_level cache_level,
				   u32 flags)
1216
{
1217
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1218 1219 1220
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

1221 1222
	GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));

1223
	do {
1224 1225 1226
		struct i915_page_directory * const pdp =
			gen8_pdp_for_page_address(vma->vm, start);
		struct i915_page_directory * const pd =
1227
			i915_pd_entry(pdp, __gen8_pte_index(start, 2));
1228
		gen8_pte_t encode = pte_encode;
1229 1230
		unsigned int maybe_64K = -1;
		unsigned int page_size;
1231
		gen8_pte_t *vaddr;
1232
		u16 index;
1233 1234 1235

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1236 1237 1238
		    rem >= I915_GTT_PAGE_SIZE_2M &&
		    !__gen8_pte_index(start, 0)) {
			index = __gen8_pte_index(start, 1);
1239
			encode |= GEN8_PDE_PS_2M;
1240
			page_size = I915_GTT_PAGE_SIZE_2M;
1241 1242 1243

			vaddr = kmap_atomic_px(pd);
		} else {
1244 1245
			struct i915_page_table *pt =
				i915_pt_entry(pd, __gen8_pte_index(start, 1));
1246

1247
			index = __gen8_pte_index(start, 0);
1248 1249
			page_size = I915_GTT_PAGE_SIZE;

1250 1251 1252 1253
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1254 1255
			     rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
				maybe_64K = __gen8_pte_index(start, 1);
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1276
				if (maybe_64K != -1 && index < I915_PDES &&
1277 1278
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1279 1280
				       rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
					maybe_64K = -1;
1281

1282 1283 1284
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
1285
		} while (rem >= page_size && index < I915_PDES);
1286 1287

		kunmap_atomic(vaddr);
1288 1289 1290 1291 1292 1293 1294

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
1295 1296
		if (maybe_64K != -1 &&
		    (index == I915_PDES ||
1297 1298 1299 1300 1301
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
1302
			vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
1303
			kunmap_atomic(vaddr);
1304
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1318
				encode = vma->vm->scratch[0].encode;
1319
				vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
M
Matthew Auld 已提交
1320 1321 1322 1323 1324 1325

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1326
		}
1327 1328

		vma->page_sizes.gtt |= page_size;
1329 1330 1331
	} while (iter->sg);
}

1332 1333 1334 1335
static void gen8_ppgtt_insert(struct i915_address_space *vm,
			      struct i915_vma *vma,
			      enum i915_cache_level cache_level,
			      u32 flags)
1336
{
1337
	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
1338
	struct sgt_dma iter = sgt_dma(vma);
1339

1340
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1341 1342
		gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
	} else  {
1343
		u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
1344

1345 1346 1347 1348 1349 1350 1351
		do {
			struct i915_page_directory * const pdp =
				gen8_pdp_for_page_index(vm, idx);

			idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
						    cache_level, flags);
		} while (idx);
1352 1353

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1354
	}
1355 1356
}

1357 1358
static int gen8_init_scratch(struct i915_address_space *vm)
{
1359
	int ret;
1360
	int i;
1361

1362 1363 1364 1365 1366 1367
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
1368
	    vm->i915->kernel_context->vm) {
1369 1370 1371
		struct i915_address_space *clone =
			rcu_dereference_protected(vm->i915->kernel_context->vm,
						  true); /* static */
1372 1373 1374

		GEM_BUG_ON(!clone->has_read_only);

1375
		vm->scratch_order = clone->scratch_order;
1376 1377
		memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
		px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
1378 1379 1380
		return 0;
	}

1381
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1382 1383
	if (ret)
		return ret;
1384

1385 1386 1387
	vm->scratch[0].encode =
		gen8_pte_encode(px_dma(&vm->scratch[0]),
				I915_CACHE_LLC, vm->has_read_only);
1388

1389 1390 1391
	for (i = 1; i <= vm->top; i++) {
		if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
			goto free_scratch;
1392

1393 1394 1395 1396
		fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
		vm->scratch[i].encode =
			gen8_pde_encode(px_dma(&vm->scratch[i]),
					I915_CACHE_LLC);
1397 1398
	}

1399
	return 0;
1400

1401 1402 1403
free_scratch:
	free_scratch(vm);
	return -ENOMEM;
1404 1405
}

1406
static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1407
{
1408
	struct i915_address_space *vm = &ppgtt->vm;
1409 1410 1411 1412
	struct i915_page_directory *pd = ppgtt->pd;
	unsigned int idx;

	GEM_BUG_ON(vm->top != 2);
1413
	GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
1414 1415 1416

	for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
		struct i915_page_directory *pde;
1417

1418 1419 1420
		pde = alloc_pd(vm);
		if (IS_ERR(pde))
			return PTR_ERR(pde);
1421

1422 1423 1424
		fill_px(pde, vm->scratch[1].encode);
		set_pd_entry(pd, idx, pde);
		atomic_inc(px_used(pde)); /* keep pinned */
1425
	}
1426
	wmb();
1427

1428
	return 0;
1429 1430
}

1431
static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
1432
{
1433 1434 1435
	struct drm_i915_private *i915 = gt->i915;

	ppgtt->vm.gt = gt;
1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1448 1449 1450
static struct i915_page_directory *
gen8_alloc_top_pd(struct i915_address_space *vm)
{
1451
	const unsigned int count = gen8_pd_top_count(vm);
1452 1453
	struct i915_page_directory *pd;

1454
	GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
1455

1456 1457 1458 1459 1460 1461 1462 1463
	pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
	if (unlikely(!pd))
		return ERR_PTR(-ENOMEM);

	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
1464

1465
	fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
1466
	atomic_inc(px_used(pd)); /* mark as pinned */
1467 1468 1469
	return pd;
}

1470
/*
1471 1472 1473 1474
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1475
 *
1476
 */
1477
static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1478
{
1479
	struct i915_ppgtt *ppgtt;
1480 1481 1482 1483 1484 1485
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1486
	ppgtt_init(ppgtt, &i915->gt);
1487
	ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
1488

1489 1490 1491 1492 1493
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
1494 1495
	 *
	 * Gen12 has inherited the same read-only fault issue from gen11.
1496
	 */
1497
	ppgtt->vm.has_read_only = !IS_GEN_RANGE(i915, 11, 12);
1498

1499 1500 1501
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1502
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1503
		ppgtt->vm.pt_kmap_wc = true;
1504

1505 1506 1507
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1508

1509 1510 1511
	ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
	if (IS_ERR(ppgtt->pd)) {
		err = PTR_ERR(ppgtt->pd);
1512
		goto err_free_scratch;
1513
	}
1514

1515
	if (!i915_vm_is_4lvl(&ppgtt->vm)) {
1516 1517 1518
		err = gen8_preallocate_top_level_pdp(ppgtt);
		if (err)
			goto err_free_pd;
1519
	}
1520

1521
	ppgtt->vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1522
	ppgtt->vm.insert_entries = gen8_ppgtt_insert;
1523
	ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
1524 1525
	ppgtt->vm.clear_range = gen8_ppgtt_clear;

1526
	if (intel_vgpu_active(i915))
1527 1528
		gen8_ppgtt_notify_vgt(ppgtt, true);

1529
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1530

1531
	return ppgtt;
1532

1533
err_free_pd:
1534
	__gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
1535
			     gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
1536
err_free_scratch:
1537
	free_scratch(&ppgtt->vm);
1538 1539 1540
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1541 1542
}

1543
/* Write pde (index) from the page directory @pd to the page table @pt */
1544
static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
C
Chris Wilson 已提交
1545 1546
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1547
{
1548
	/* Caller needs to make sure the write completes if necessary */
1549 1550
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1551
}
B
Ben Widawsky 已提交
1552

1553
static void gen7_ppgtt_enable(struct intel_gt *gt)
B
Ben Widawsky 已提交
1554
{
1555 1556
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
1557
	struct intel_engine_cs *engine;
1558
	enum intel_engine_id id;
1559
	u32 ecochk;
B
Ben Widawsky 已提交
1560

1561
	intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1562

1563 1564
	ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
	if (IS_HASWELL(i915)) {
1565 1566 1567 1568 1569
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
1570
	intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1571

1572
	for_each_engine(engine, gt, id) {
B
Ben Widawsky 已提交
1573
		/* GFX_MODE is per-ring on gen7+ */
1574 1575 1576
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1577
	}
1578
}
B
Ben Widawsky 已提交
1579

1580
static void gen6_ppgtt_enable(struct intel_gt *gt)
1581
{
1582
	struct intel_uncore *uncore = gt->uncore;
1583

1584 1585 1586 1587
	intel_uncore_rmw(uncore,
			 GAC_ECO_BITS,
			 0,
			 ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1588

1589 1590 1591 1592
	intel_uncore_rmw(uncore,
			 GAB_CTL,
			 0,
			 GAB_CTL_CONT_AFTER_PAGEFAULT);
1593

1594 1595 1596 1597
	intel_uncore_rmw(uncore,
			 GAM_ECOCHK,
			 0,
			 ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1598

1599 1600 1601 1602
	if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
		intel_uncore_write(uncore,
				   GFX_MODE,
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1603 1604
}

1605
/* PPGTT support for Sandybdrige/Gen6 and later */
1606
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1607
				   u64 start, u64 length)
1608
{
1609 1610
	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1611
	const gen6_pte_t scratch_pte = vm->scratch[0].encode;
1612 1613
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1614
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1615

1616
	while (num_entries) {
1617 1618
		struct i915_page_table * const pt =
			i915_pt_entry(ppgtt->base.pd, pde++);
1619
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1620
		gen6_pte_t *vaddr;
1621

1622
		GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
1623 1624 1625

		num_entries -= count;

1626 1627
		GEM_BUG_ON(count > atomic_read(&pt->used));
		if (!atomic_sub_return(count, &pt->used))
1628
			ppgtt->scan_for_unused_pt = true;
1629

1630 1631
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1632 1633 1634 1635
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1636

1637
		vaddr = kmap_atomic_px(pt);
1638
		memset32(vaddr + pte, scratch_pte, count);
1639
		kunmap_atomic(vaddr);
1640

1641
		pte = 0;
1642
	}
1643 1644
}

1645
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1646
				      struct i915_vma *vma,
1647 1648
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1649
{
1650
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1651
	struct i915_page_directory * const pd = ppgtt->pd;
1652
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1653 1654
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1655
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1656
	struct sgt_dma iter = sgt_dma(vma);
1657 1658
	gen6_pte_t *vaddr;

1659
	GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
1660

1661
	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1662 1663
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1664

1665
		iter.dma += I915_GTT_PAGE_SIZE;
1666 1667 1668 1669
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1670

1671 1672 1673
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1674

1675
		if (++act_pte == GEN6_PTES) {
1676
			kunmap_atomic(vaddr);
1677
			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1678
			act_pte = 0;
D
Daniel Vetter 已提交
1679
		}
1680
	} while (1);
1681
	kunmap_atomic(vaddr);
1682 1683

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1684 1685
}

1686
static int gen6_alloc_va_range(struct i915_address_space *vm,
1687
			       u64 start, u64 length)
1688
{
1689
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1690
	struct i915_page_directory * const pd = ppgtt->base.pd;
1691
	struct i915_page_table *pt, *alloc = NULL;
1692
	intel_wakeref_t wakeref;
1693 1694 1695
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1696
	int ret = 0;
1697

1698
	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1699

1700 1701
	spin_lock(&pd->lock);
	gen6_for_each_pde(pt, pd, start, length, pde) {
1702 1703
		const unsigned int count = gen6_pte_count(start, length);

1704
		if (px_base(pt) == px_base(&vm->scratch[1])) {
1705
			spin_unlock(&pd->lock);
1706

1707 1708 1709 1710 1711
			pt = fetch_and_zero(&alloc);
			if (!pt)
				pt = alloc_pt(vm);
			if (IS_ERR(pt)) {
				ret = PTR_ERR(pt);
1712
				goto unwind_out;
1713
			}
1714

1715
			fill32_px(pt, vm->scratch[0].encode);
1716

1717
			spin_lock(&pd->lock);
1718
			if (pd->entry[pde] == &vm->scratch[1]) {
1719
				pd->entry[pde] = pt;
1720 1721 1722 1723 1724 1725
				if (i915_vma_is_bound(ppgtt->vma,
						      I915_VMA_GLOBAL_BIND)) {
					gen6_write_pde(ppgtt, pde, pt);
					flush = true;
				}
			} else {
1726 1727
				alloc = pt;
				pt = pd->entry[pde];
1728
			}
1729
		}
1730

1731
		atomic_add(count, &pt->used);
1732
	}
1733
	spin_unlock(&pd->lock);
1734

1735
	if (flush)
1736
		gen6_ggtt_invalidate(vm->gt->ggtt);
1737

1738
	goto out;
1739 1740

unwind_out:
1741
	gen6_ppgtt_clear_range(vm, from, start - from);
1742 1743
out:
	if (alloc)
1744
		free_px(vm, alloc);
1745 1746
	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
	return ret;
1747 1748
}

1749
static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1750
{
1751
	struct i915_address_space * const vm = &ppgtt->base.vm;
1752
	struct i915_page_directory * const pd = ppgtt->base.pd;
1753
	int ret;
1754

1755
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1756 1757
	if (ret)
		return ret;
1758

1759 1760 1761
	vm->scratch[0].encode =
		vm->pte_encode(px_dma(&vm->scratch[0]),
			       I915_CACHE_NONE, PTE_READ_ONLY);
1762

1763
	if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
1764
		cleanup_scratch_page(vm);
1765
		return -ENOMEM;
1766
	}
1767

1768 1769
	fill32_px(&vm->scratch[1], vm->scratch[0].encode);
	memset_p(pd->entry, &vm->scratch[1], I915_PDES);
1770 1771 1772 1773

	return 0;
}

1774
static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1775
{
1776
	struct i915_page_directory * const pd = ppgtt->base.pd;
1777 1778
	struct i915_page_dma * const scratch =
		px_base(&ppgtt->base.vm.scratch[1]);
1779
	struct i915_page_table *pt;
1780
	u32 pde;
1781

1782
	gen6_for_all_pdes(pt, pd, pde)
1783
		if (px_base(pt) != scratch)
1784
			free_px(&ppgtt->base.vm, pt);
1785 1786 1787 1788
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
1789
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1790

1791
	i915_vma_destroy(ppgtt->vma);
1792 1793

	gen6_ppgtt_free_pd(ppgtt);
1794
	free_scratch(vm);
1795 1796

	mutex_destroy(&ppgtt->pin_mutex);
1797
	kfree(ppgtt->base.pd);
1798 1799
}

1800
static int pd_vma_set_pages(struct i915_vma *vma)
1801
{
1802 1803 1804
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1805

1806 1807 1808
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1809

1810 1811 1812 1813 1814 1815 1816 1817
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1818
	struct gen6_ppgtt *ppgtt = vma->private;
1819
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1820 1821
	struct i915_page_table *pt;
	unsigned int pde;
1822

1823
	px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1824
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1825

1826
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1827
		gen6_write_pde(ppgtt, pde, pt);
1828

1829
	gen6_ggtt_invalidate(ggtt);
1830

1831
	return 0;
1832
}
1833

1834
static void pd_vma_unbind(struct i915_vma *vma)
1835
{
1836
	struct gen6_ppgtt *ppgtt = vma->private;
1837
	struct i915_page_directory * const pd = ppgtt->base.pd;
1838 1839
	struct i915_page_dma * const scratch =
		px_base(&ppgtt->base.vm.scratch[1]);
1840 1841 1842 1843 1844 1845 1846
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
1847
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
1848
		if (px_base(pt) == scratch || atomic_read(&pt->used))
1849 1850
			continue;

1851
		free_px(&ppgtt->base.vm, pt);
1852
		pd->entry[pde] = scratch;
1853 1854 1855
	}

	ppgtt->scan_for_unused_pt = false;
1856 1857 1858 1859 1860 1861 1862 1863 1864
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

1865
static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
1866
{
1867
	struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
1868 1869 1870 1871 1872
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

1873
	vma = i915_vma_alloc();
1874 1875 1876
	if (!vma)
		return ERR_PTR(-ENOMEM);

1877
	i915_active_init(&vma->active, NULL, NULL);
1878

1879 1880
	mutex_init(&vma->pages_mutex);
	vma->vm = i915_vm_get(&ggtt->vm);
1881 1882 1883 1884 1885
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
1886
	atomic_set(&vma->flags, I915_VMA_GGTT);
1887 1888 1889
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
1890
	INIT_LIST_HEAD(&vma->closed_link);
1891

1892 1893
	return vma;
}
1894

1895
int gen6_ppgtt_pin(struct i915_ppgtt *base)
1896
{
1897
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1898
	int err = 0;
1899

1900
	GEM_BUG_ON(!atomic_read(&ppgtt->base.vm.open));
1901

1902 1903 1904 1905 1906 1907
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
1908
	if (atomic_add_unless(&ppgtt->pin_count, 1, 0))
1909 1910
		return 0;

1911 1912 1913
	if (mutex_lock_interruptible(&ppgtt->pin_mutex))
		return -EINTR;

1914 1915 1916 1917 1918
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
1919 1920 1921 1922 1923 1924 1925 1926
	if (!atomic_read(&ppgtt->pin_count)) {
		err = i915_vma_pin(ppgtt->vma,
				   0, GEN6_PD_ALIGN,
				   PIN_GLOBAL | PIN_HIGH);
	}
	if (!err)
		atomic_inc(&ppgtt->pin_count);
	mutex_unlock(&ppgtt->pin_mutex);
1927 1928

	return err;
1929 1930
}

1931
void gen6_ppgtt_unpin(struct i915_ppgtt *base)
1932
{
1933
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1934

1935 1936 1937
	GEM_BUG_ON(!atomic_read(&ppgtt->pin_count));
	if (atomic_dec_and_test(&ppgtt->pin_count))
		i915_vma_unpin(ppgtt->vma);
1938 1939
}

1940
void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
1941
{
1942
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1943

1944
	if (!atomic_read(&ppgtt->pin_count))
1945 1946 1947
		return;

	i915_vma_unpin(ppgtt->vma);
1948
	atomic_set(&ppgtt->pin_count, 0);
1949 1950
}

1951
static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1952
{
1953
	struct i915_ggtt * const ggtt = &i915->ggtt;
1954
	struct gen6_ppgtt *ppgtt;
1955 1956 1957 1958 1959 1960
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1961 1962
	mutex_init(&ppgtt->pin_mutex);

1963
	ppgtt_init(&ppgtt->base, &i915->gt);
1964
	ppgtt->base.vm.top = 1;
1965

1966
	ppgtt->base.vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1967
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1968 1969 1970
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1971

1972 1973
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

1974
	ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
1975 1976
	if (!ppgtt->base.pd) {
		err = -ENOMEM;
1977
		goto err_free;
1978 1979
	}

1980
	err = gen6_ppgtt_init_scratch(ppgtt);
1981
	if (err)
1982
		goto err_pd;
1983

1984 1985 1986
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
1987
		goto err_scratch;
1988
	}
1989

1990
	return &ppgtt->base;
1991

1992
err_scratch:
1993
	free_scratch(&ppgtt->base.vm);
1994 1995
err_pd:
	kfree(ppgtt->base.pd);
1996 1997 1998
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1999
}
2000

2001
static void gtt_write_workarounds(struct intel_gt *gt)
2002
{
2003 2004 2005
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;

2006 2007 2008 2009
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2010
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	if (IS_BROADWELL(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
	else if (IS_CHERRYVIEW(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
	else if (IS_GEN9_LP(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2023
	else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
2024 2025 2026
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
2039 2040
	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(i915) <= 10)
2041 2042 2043 2044
		intel_uncore_rmw(uncore,
				 GEN8_GAMW_ECO_DEV_RW_IA,
				 0,
				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065

	if (IS_GEN_RANGE(i915, 8, 11)) {
		bool can_use_gtt_cache = true;

		/*
		 * According to the BSpec if we use 2M/1G pages then we also
		 * need to disable the GTT cache. At least on BDW we can see
		 * visual corruption when using 2M pages, and not disabling the
		 * GTT cache.
		 */
		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
			can_use_gtt_cache = false;

		/* WaGttCachingOffByDefault */
		intel_uncore_write(uncore,
				   HSW_GTT_CACHE_EN,
				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
		WARN_ON_ONCE(can_use_gtt_cache &&
			     intel_uncore_read(uncore,
					       HSW_GTT_CACHE_EN) == 0);
	}
2066 2067
}

2068
int i915_ppgtt_init_hw(struct intel_gt *gt)
2069
{
2070 2071 2072
	struct drm_i915_private *i915 = gt->i915;

	gtt_write_workarounds(gt);
2073

2074 2075 2076 2077
	if (IS_GEN(i915, 6))
		gen6_ppgtt_enable(gt);
	else if (IS_GEN(i915, 7))
		gen7_ppgtt_enable(gt);
2078

2079 2080
	return 0;
}
2081

2082 2083
static struct i915_ppgtt *
__ppgtt_create(struct drm_i915_private *i915)
2084 2085 2086 2087 2088 2089 2090
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2091
struct i915_ppgtt *
2092
i915_ppgtt_create(struct drm_i915_private *i915)
2093
{
2094
	struct i915_ppgtt *ppgtt;
2095

2096
	ppgtt = __ppgtt_create(i915);
2097 2098
	if (IS_ERR(ppgtt))
		return ppgtt;
2099

2100
	trace_i915_ppgtt_create(&ppgtt->vm);
2101

2102 2103 2104
	return ppgtt;
}

2105 2106 2107
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2108
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2109 2110 2111 2112
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2113
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2114 2115
}

2116
static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
2117
{
2118
	struct drm_i915_private *i915 = ggtt->vm.i915;
2119 2120 2121 2122

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2123
	if (INTEL_GEN(i915) < 6)
2124 2125
		return;

2126
	intel_gt_check_and_clear_faults(ggtt->vm.gt);
2127

2128
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2129

2130
	ggtt->invalidate(ggtt);
2131 2132
}

2133 2134 2135 2136 2137
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
{
	ggtt_suspend_mappings(&i915->ggtt);
}

2138 2139
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2140
{
2141
	do {
2142 2143 2144 2145
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2146 2147
			return 0;

2148 2149
		/*
		 * If the DMA remap fails, one cause can be that we have
2150 2151 2152 2153 2154 2155 2156
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2157
				 obj->base.size >> PAGE_SHIFT, NULL,
2158
				 I915_SHRINK_BOUND |
2159
				 I915_SHRINK_UNBOUND));
2160

2161
	return -ENOSPC;
2162 2163
}

2164
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2165 2166 2167 2168
{
	writeq(pte, addr);
}

2169 2170
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2171
				  u64 offset,
2172 2173 2174
				  enum i915_cache_level level,
				  u32 unused)
{
2175
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2176
	gen8_pte_t __iomem *pte =
2177
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2178

2179
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2180

2181
	ggtt->invalidate(ggtt);
2182 2183
}

B
Ben Widawsky 已提交
2184
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2185
				     struct i915_vma *vma,
2186
				     enum i915_cache_level level,
2187
				     u32 flags)
B
Ben Widawsky 已提交
2188
{
2189
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2190 2191
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2192
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2193
	dma_addr_t addr;
2194

2195 2196 2197 2198
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2199

2200
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2201
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2202
	for_each_sgt_daddr(addr, sgt_iter, vma->pages)
2203
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2204

2205 2206 2207
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2208
	 */
2209
	ggtt->invalidate(ggtt);
B
Ben Widawsky 已提交
2210 2211
}

2212 2213
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2214
				  u64 offset,
2215 2216 2217
				  enum i915_cache_level level,
				  u32 flags)
{
2218
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2219
	gen6_pte_t __iomem *pte =
2220
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2221

2222
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2223

2224
	ggtt->invalidate(ggtt);
2225 2226
}

2227 2228 2229 2230 2231 2232
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2233
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2234
				     struct i915_vma *vma,
2235 2236
				     enum i915_cache_level level,
				     u32 flags)
2237
{
2238
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2239
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2240
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2241
	struct sgt_iter iter;
2242
	dma_addr_t addr;
2243
	for_each_sgt_daddr(addr, iter, vma->pages)
2244
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2245

2246 2247 2248
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2249
	 */
2250
	ggtt->invalidate(ggtt);
2251 2252
}

2253
static void nop_clear_range(struct i915_address_space *vm,
2254
			    u64 start, u64 length)
2255 2256 2257
{
}

B
Ben Widawsky 已提交
2258
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2259
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2260
{
2261
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2262 2263
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2264
	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
2265
	gen8_pte_t __iomem *gtt_base =
2266 2267
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2323
	struct i915_vma *vma;
2324
	enum i915_cache_level level;
2325
	u32 flags;
2326 2327 2328 2329 2330 2331
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2332
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2333 2334 2335 2336 2337 2338
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2339
					     struct i915_vma *vma,
2340
					     enum i915_cache_level level,
2341
					     u32 flags)
2342
{
2343
	struct insert_entries arg = { vm, vma, level, flags };
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2373
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2374
				  u64 start, u64 length)
2375
{
2376
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2377 2378
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2379
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2380 2381
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2382 2383 2384 2385 2386 2387 2388
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2389
	scratch_pte = vm->scratch[0].encode;
2390 2391 2392 2393
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2394 2395
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2396
				  u64 offset,
2397 2398 2399 2400 2401 2402 2403 2404 2405
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2406
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2407
				     struct i915_vma *vma,
2408 2409
				     enum i915_cache_level cache_level,
				     u32 unused)
2410 2411 2412 2413
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2414 2415
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2416 2417
}

2418
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2419
				  u64 start, u64 length)
2420
{
2421
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2422 2423
}

2424 2425 2426
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2427
{
2428
	struct drm_i915_private *i915 = vma->vm->i915;
2429
	struct drm_i915_gem_object *obj = vma->obj;
2430
	intel_wakeref_t wakeref;
2431
	u32 pte_flags;
2432

2433
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2434
	pte_flags = 0;
2435
	if (i915_gem_object_is_readonly(obj))
2436 2437
		pte_flags |= PTE_READ_ONLY;

2438
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2439
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2440

2441 2442
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2443 2444 2445 2446 2447
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2448
	atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
2449 2450 2451 2452

	return 0;
}

2453 2454 2455
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2456
	intel_wakeref_t wakeref;
2457

2458
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2459
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2460 2461
}

2462 2463 2464
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2465
{
2466
	struct drm_i915_private *i915 = vma->vm->i915;
2467
	u32 pte_flags;
2468
	int ret;
2469

2470
	/* Currently applicable only to VLV */
2471
	pte_flags = 0;
2472
	if (i915_gem_object_is_readonly(vma->obj))
2473
		pte_flags |= PTE_READ_ONLY;
2474

2475
	if (flags & I915_VMA_LOCAL_BIND) {
2476
		struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
2477

2478
		if (flags & I915_VMA_ALLOC) {
2479 2480 2481
			ret = alias->vm.allocate_va_range(&alias->vm,
							  vma->node.start,
							  vma->size);
2482
			if (ret)
2483
				return ret;
2484 2485

			set_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma));
2486 2487
		}

2488 2489
		GEM_BUG_ON(!test_bit(I915_VMA_ALLOC_BIT,
				     __i915_vma_flags(vma)));
2490 2491
		alias->vm.insert_entries(&alias->vm, vma,
					 cache_level, pte_flags);
2492 2493
	}

2494
	if (flags & I915_VMA_GLOBAL_BIND) {
2495 2496
		intel_wakeref_t wakeref;

2497
		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2498 2499 2500
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2501
	}
2502

2503
	return 0;
2504 2505
}

2506
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2507
{
2508
	struct drm_i915_private *i915 = vma->vm->i915;
2509

2510
	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
2511
		struct i915_address_space *vm = vma->vm;
2512 2513
		intel_wakeref_t wakeref;

2514
		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2515
			vm->clear_range(vm, vma->node.start, vma->size);
2516
	}
2517

2518
	if (test_and_clear_bit(I915_VMA_ALLOC_BIT, __i915_vma_flags(vma))) {
2519 2520
		struct i915_address_space *vm =
			&i915_vm_to_ggtt(vma->vm)->alias->vm;
2521 2522 2523

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2524 2525
}

2526 2527
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2528
{
D
David Weinehall 已提交
2529 2530
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2531
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2532

2533
	if (unlikely(ggtt->do_idle_maps)) {
2534
		/* XXX This does not prevent more requests being submitted! */
2535 2536
		if (intel_gt_retire_requests_timeout(ggtt->vm.gt,
						     -MAX_SCHEDULE_TIMEOUT)) {
2537 2538 2539 2540 2541
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2542

2543
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2544
}
2545

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2556 2557
	vma->page_sizes = vma->obj->mm.page_sizes;

2558 2559 2560
	return 0;
}

2561 2562 2563 2564
static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
				   unsigned long color,
				   u64 *start,
				   u64 *end)
2565
{
M
Matthew Auld 已提交
2566
	if (i915_node_color_differs(node, color))
2567
		*start += I915_GTT_PAGE_SIZE;
2568

2569 2570 2571 2572 2573
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2574
	node = list_next_entry(node, node_list);
2575
	if (node->color != color)
2576
		*end -= I915_GTT_PAGE_SIZE;
2577
}
B
Ben Widawsky 已提交
2578

2579
static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
2580
{
2581
	struct i915_ppgtt *ppgtt;
2582 2583
	int err;

2584
	ppgtt = i915_ppgtt_create(ggtt->vm.i915);
2585 2586
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2587

2588
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2589 2590 2591 2592
		err = -ENODEV;
		goto err_ppgtt;
	}

2593 2594 2595 2596 2597 2598 2599 2600 2601
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2602

2603
	ggtt->alias = ppgtt;
2604
	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
2605

2606 2607
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2608

2609 2610
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2611

2612 2613 2614
	return 0;

err_ppgtt:
2615
	i915_vm_put(&ppgtt->vm);
2616 2617 2618
	return err;
}

2619
static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
2620
{
2621
	struct i915_ppgtt *ppgtt;
2622

2623
	ppgtt = fetch_and_zero(&ggtt->alias);
2624
	if (!ppgtt)
2625
		return;
2626

2627
	i915_vm_put(&ppgtt->vm);
2628

2629 2630
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2631 2632
}

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
{
	u64 size;
	int ret;

	if (!USES_GUC(ggtt->vm.i915))
		return 0;

	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
	size = ggtt->vm.total - GUC_GGTT_TOP;

	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
				   PIN_NOEVICT);
	if (ret)
		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");

	return ret;
}

static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
{
	if (drm_mm_node_allocated(&ggtt->uc_fw))
		drm_mm_remove_node(&ggtt->uc_fw);
}

2659 2660 2661
static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
{
	ggtt_release_guc_top(ggtt);
2662 2663
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);
2664 2665 2666
}

static int init_ggtt(struct i915_ggtt *ggtt)
2667
{
2668 2669 2670 2671 2672 2673 2674 2675 2676
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2677
	unsigned long hole_start, hole_end;
2678
	struct drm_mm_node *entry;
2679
	int ret;
2680

2681 2682 2683 2684 2685 2686 2687
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2688
			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
2689

2690
	ret = intel_vgt_balloon(ggtt);
2691 2692
	if (ret)
		return ret;
2693

2694 2695 2696 2697 2698 2699 2700 2701 2702
	if (ggtt->mappable_end) {
		/* Reserve a mappable slot for our lockless error capture */
		ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
						  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
						  0, ggtt->mappable_end,
						  DRM_MM_INSERT_LOW);
		if (ret)
			return ret;
	}
2703

2704 2705 2706 2707 2708 2709 2710
	/*
	 * The upper portion of the GuC address space has a sizeable hole
	 * (several MB) that is inaccessible by GuC. Reserve this range within
	 * GGTT as it can comfortably hold GuC/HuC firmware images.
	 */
	ret = ggtt_reserve_guc_top(ggtt);
	if (ret)
2711
		goto err;
2712

2713
	/* Clear any non-preallocated blocks */
2714
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2715 2716
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2717 2718
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2719 2720 2721
	}

	/* And finally clear the reserved guard page */
2722
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2723

2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
	return 0;

err:
	cleanup_init_ggtt(ggtt);
	return ret;
}

int i915_init_ggtt(struct drm_i915_private *i915)
{
	int ret;

	ret = init_ggtt(&i915->ggtt);
	if (ret)
		return ret;

	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
2740
		ret = init_aliasing_ppgtt(&i915->ggtt);
2741
		if (ret)
2742
			cleanup_init_ggtt(&i915->ggtt);
2743 2744
	}

2745
	return 0;
2746 2747
}

2748
static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
2749
{
2750 2751
	struct i915_vma *vma, *vn;

2752
	atomic_set(&ggtt->vm.open, 0);
2753

2754
	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
2755
	flush_workqueue(ggtt->vm.i915->wq);
2756

2757
	mutex_lock(&ggtt->vm.mutex);
2758

2759
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2760
		WARN_ON(__i915_vma_unbind(vma));
2761

2762 2763 2764
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2765
	ggtt_release_guc_top(ggtt);
2766
	intel_vgt_deballoon(ggtt);
2767

2768
	ggtt->vm.cleanup(&ggtt->vm);
2769

2770 2771
	mutex_unlock(&ggtt->vm.mutex);
	i915_address_space_fini(&ggtt->vm);
2772 2773

	arch_phys_wc_del(ggtt->mtrr);
2774 2775 2776

	if (ggtt->iomap.size)
		io_mapping_fini(&ggtt->iomap);
2777 2778 2779
}

/**
2780
 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
2781
 * @i915: i915 device
2782
 */
2783
void i915_ggtt_driver_release(struct drm_i915_private *i915)
2784 2785 2786
{
	struct pagevec *pvec;

2787
	fini_aliasing_ppgtt(&i915->ggtt);
2788 2789 2790 2791

	ggtt_cleanup_hw(&i915->ggtt);

	pvec = &i915->mm.wc_stash.pvec;
2792 2793 2794 2795
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}
2796
}
2797

2798
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2799 2800 2801 2802 2803 2804
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2805
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2806 2807 2808 2809 2810
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2811 2812

#ifdef CONFIG_X86_32
2813
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2814 2815 2816 2817
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2818 2819 2820
	return bdw_gmch_ctl << 20;
}

2821
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2832
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2833
{
2834
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2835
	struct pci_dev *pdev = dev_priv->drm.pdev;
2836
	phys_addr_t phys_addr;
2837
	int ret;
B
Ben Widawsky 已提交
2838 2839

	/* For Modern GENs the PTEs and register space are split in the BAR */
2840
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2841

I
Imre Deak 已提交
2842
	/*
2843 2844 2845
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2846 2847 2848
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2849
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2850
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2851
	else
2852
		ggtt->gsm = ioremap_wc(phys_addr, size);
2853
	if (!ggtt->gsm) {
2854
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2855 2856 2857
		return -ENOMEM;
	}

2858
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2859
	if (ret) {
B
Ben Widawsky 已提交
2860 2861
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2862
		iounmap(ggtt->gsm);
2863
		return ret;
B
Ben Widawsky 已提交
2864 2865
	}

2866 2867
	ggtt->vm.scratch[0].encode =
		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
2868 2869
				    I915_CACHE_NONE, 0);

2870
	return 0;
B
Ben Widawsky 已提交
2871 2872
}

2873
static void tgl_setup_private_ppat(struct intel_uncore *uncore)
2874 2875
{
	/* TGL doesn't support LLC or AGE settings */
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
	intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
}

static void cnl_setup_private_ppat(struct intel_uncore *uncore)
{
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(0),
			   GEN8_PPAT_WB | GEN8_PPAT_LLC);
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(1),
			   GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(2),
			   GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(3),
			   GEN8_PPAT_UC);
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(4),
			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(5),
			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(6),
			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	intel_uncore_write(uncore,
			   GEN10_PAT_INDEX(7),
			   GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
2912 2913
}

B
Ben Widawsky 已提交
2914 2915 2916
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
2917
static void bdw_setup_private_ppat(struct intel_uncore *uncore)
B
Ben Widawsky 已提交
2918
{
2919
	u64 pat;
B
Ben Widawsky 已提交
2920

2921 2922 2923 2924 2925 2926 2927 2928
	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |	/* for scanout with eLLC */
	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2929

2930 2931
	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
B
Ben Widawsky 已提交
2932 2933
}

2934
static void chv_setup_private_ppat(struct intel_uncore *uncore)
2935
{
2936
	u64 pat;
2937 2938 2939 2940 2941 2942 2943

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
2955 2956
	 */

2957 2958 2959 2960 2961 2962 2963 2964 2965
	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(1, 0) |
	      GEN8_PPAT(2, 0) |
	      GEN8_PPAT(3, 0) |
	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(7, CHV_PPAT_SNOOP);

2966 2967
	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2968 2969
}

2970 2971 2972 2973 2974
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
2975
	cleanup_scratch_page(vm);
2976 2977
}

2978
static void setup_private_pat(struct intel_uncore *uncore)
2979
{
2980
	struct drm_i915_private *i915 = uncore->i915;
2981

2982 2983 2984 2985 2986 2987 2988 2989
	GEM_BUG_ON(INTEL_GEN(i915) < 8);

	if (INTEL_GEN(i915) >= 12)
		tgl_setup_private_ppat(uncore);
	else if (INTEL_GEN(i915) >= 10)
		cnl_setup_private_ppat(uncore);
	else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
		chv_setup_private_ppat(uncore);
2990
	else
2991
		bdw_setup_private_ppat(uncore);
2992 2993
}

2994 2995 2996 2997 2998 2999
static struct resource pci_resource(struct pci_dev *pdev, int bar)
{
	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
					       pci_resource_len(pdev, bar));
}

3000
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3001
{
3002
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3003
	struct pci_dev *pdev = dev_priv->drm.pdev;
3004
	unsigned int size;
B
Ben Widawsky 已提交
3005
	u16 snb_gmch_ctl;
3006
	int err;
B
Ben Widawsky 已提交
3007 3008

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3009 3010 3011 3012
	if (!IS_DGFX(dev_priv)) {
		ggtt->gmadr = pci_resource(pdev, 2);
		ggtt->mappable_end = resource_size(&ggtt->gmadr);
	}
B
Ben Widawsky 已提交
3013

3014 3015 3016 3017 3018
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3019

3020
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3021
	if (IS_CHERRYVIEW(dev_priv))
3022
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3023
	else
3024
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3025

3026
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3027 3028 3029
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3030
	if (intel_scanout_needs_vtd_wa(dev_priv))
3031
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3032

3033
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3034

3035
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3036 3037
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3038 3039 3040 3041
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3042 3043
	}

3044 3045
	ggtt->invalidate = gen6_ggtt_invalidate;

3046 3047 3048 3049 3050
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3051 3052
	ggtt->vm.pte_encode = gen8_pte_encode;

3053
	setup_private_pat(ggtt->vm.gt->uncore);
3054

3055
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3056 3057
}

3058
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3059
{
3060
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3061
	struct pci_dev *pdev = dev_priv->drm.pdev;
3062
	unsigned int size;
3063
	u16 snb_gmch_ctl;
3064
	int err;
3065

3066 3067 3068 3069
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3070

3071 3072
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3073
	 */
3074
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3075
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3076
		return -ENXIO;
3077 3078
	}

3079 3080 3081 3082 3083
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3084
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3085

3086
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3087
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3088

3089 3090 3091
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3092 3093 3094
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3095

3096 3097
	ggtt->invalidate = gen6_ggtt_invalidate;

3098
	if (HAS_EDRAM(dev_priv))
3099
		ggtt->vm.pte_encode = iris_pte_encode;
3100
	else if (IS_HASWELL(dev_priv))
3101
		ggtt->vm.pte_encode = hsw_pte_encode;
3102
	else if (IS_VALLEYVIEW(dev_priv))
3103
		ggtt->vm.pte_encode = byt_pte_encode;
3104
	else if (INTEL_GEN(dev_priv) >= 7)
3105
		ggtt->vm.pte_encode = ivb_pte_encode;
3106
	else
3107
		ggtt->vm.pte_encode = snb_pte_encode;
3108

3109 3110 3111 3112 3113
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3114
	return ggtt_probe_common(ggtt, size);
3115 3116
}

3117
static void i915_gmch_remove(struct i915_address_space *vm)
3118
{
3119
	intel_gmch_remove();
3120
}
3121

3122
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3123
{
3124
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3125
	phys_addr_t gmadr_base;
3126 3127
	int ret;

3128
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3129 3130 3131 3132 3133
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3134
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3135

3136 3137 3138 3139
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3140
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3141 3142 3143 3144
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3145

3146 3147
	ggtt->invalidate = gmch_ggtt_invalidate;

3148 3149 3150 3151 3152
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3153
	if (unlikely(ggtt->do_idle_maps))
3154 3155
		dev_notice(dev_priv->drm.dev,
			   "Applying Ironlake quirks for intel_iommu\n");
3156

3157 3158 3159
	return 0;
}

3160
static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
3161
{
3162
	struct drm_i915_private *i915 = gt->i915;
3163 3164
	int ret;

3165
	ggtt->vm.gt = gt;
3166 3167
	ggtt->vm.i915 = i915;
	ggtt->vm.dma = &i915->drm.pdev->dev;
3168

3169
	if (INTEL_GEN(i915) <= 5)
3170
		ret = i915_gmch_probe(ggtt);
3171
	else if (INTEL_GEN(i915) < 8)
3172 3173 3174
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3175
	if (ret)
3176 3177
		return ret;

3178
	if ((ggtt->vm.total - 1) >> 32) {
3179
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3180
			  " of address space! Found %lldM!\n",
3181 3182 3183 3184
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3185 3186
	}

3187
	if (ggtt->mappable_end > ggtt->vm.total) {
3188
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3189
			  " aperture=%pa, total=%llx\n",
3190 3191
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3192 3193
	}

3194
	/* GMADR is the PCI mmio aperture into the global GTT. */
3195
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3196
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3197
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3198
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3199 3200 3201 3202 3203 3204

	return 0;
}

/**
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3205
 * @i915: i915 device
3206 3207 3208 3209 3210
 */
int i915_ggtt_probe_hw(struct drm_i915_private *i915)
{
	int ret;

3211
	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
3212 3213 3214
	if (ret)
		return ret;

3215
	if (intel_vtd_active())
3216
		dev_info(i915->drm.dev, "VT-d active for gfx access\n");
3217 3218

	return 0;
3219 3220
}

3221 3222 3223
static int ggtt_init_hw(struct i915_ggtt *ggtt)
{
	struct drm_i915_private *i915 = ggtt->vm.i915;
3224

3225
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3226

3227 3228
	ggtt->vm.is_ggtt = true;

3229
	/* Only VLV supports read-only GGTT mappings */
3230
	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3231

3232
	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3233
		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
3234

3235 3236 3237 3238 3239 3240 3241
	if (ggtt->mappable_end) {
		if (!io_mapping_init_wc(&ggtt->iomap,
					ggtt->gmadr.start,
					ggtt->mappable_end)) {
			ggtt->vm.cleanup(&ggtt->vm);
			return -EIO;
		}
3242

3243 3244 3245
		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
					      ggtt->mappable_end);
	}
3246

3247 3248
	i915_ggtt_init_fences(ggtt);

3249
	return 0;
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
 * @dev_priv: i915 device
 */
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
{
	int ret;

	stash_init(&dev_priv->mm.wc_stash);

	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
	 */
	ret = ggtt_init_hw(&dev_priv->ggtt);
	if (ret)
		return ret;

3271
	return 0;
3272
}
3273

3274
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3275
{
3276
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3277 3278 3279 3280 3281
		return -EIO;

	return 0;
}

3282
void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
3283
{
3284
	GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
3285

3286 3287 3288
	ggtt->invalidate = guc_ggtt_invalidate;

	ggtt->invalidate(ggtt);
3289 3290
}

3291
void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
3292
{
3293
	/* XXX Temporary pardon for error unload */
3294
	if (ggtt->invalidate == gen6_ggtt_invalidate)
3295 3296
		return;

3297
	/* We should only be called after i915_ggtt_enable_guc() */
3298
	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
3299

3300
	ggtt->invalidate = gen6_ggtt_invalidate;
3301

3302
	ggtt->invalidate(ggtt);
3303 3304
}

3305
static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
3306
{
3307
	struct i915_vma *vma, *vn;
3308
	bool flush = false;
3309
	int open;
3310

3311
	intel_gt_check_and_clear_faults(ggtt->vm.gt);
3312

3313 3314
	mutex_lock(&ggtt->vm.mutex);

3315
	/* First fill our portion of the GTT with scratch pages */
3316
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3317 3318 3319

	/* Skip rewriting PTE on VMA unbind. */
	open = atomic_xchg(&ggtt->vm.open, 0);
3320 3321

	/* clflush objects bound into the GGTT and rebind them. */
3322
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3323
		struct drm_i915_gem_object *obj = vma->obj;
3324

3325
		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
3326
			continue;
3327

3328 3329
		if (!__i915_vma_unbind(vma))
			continue;
3330

3331
		clear_bit(I915_VMA_GLOBAL_BIND_BIT, __i915_vma_flags(vma));
3332 3333
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
3334
				      PIN_GLOBAL, NULL));
3335 3336 3337
		if (obj) { /* only used during resume => exclusive access */
			flush |= fetch_and_zero(&obj->write_domain);
			obj->read_domains |= I915_GEM_DOMAIN_GTT;
3338
		}
3339
	}
3340

3341
	atomic_set(&ggtt->vm.open, open);
3342
	ggtt->invalidate(ggtt);
3343

3344
	mutex_unlock(&ggtt->vm.mutex);
3345 3346 3347

	if (flush)
		wbinvd_on_all_cpus();
3348 3349 3350 3351
}

void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
{
3352 3353 3354
	struct i915_ggtt *ggtt = &i915->ggtt;

	ggtt_restore_mappings(ggtt);
3355

3356
	if (INTEL_GEN(i915) >= 8)
3357
		setup_private_pat(ggtt->vm.gt->uncore);
3358 3359
}

3360
static struct scatterlist *
3361
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3362
	     unsigned int width, unsigned int height,
3363
	     unsigned int stride,
3364
	     struct sg_table *st, struct scatterlist *sg)
3365 3366 3367 3368 3369
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3370
		src_idx = stride * (height - 1) + column + offset;
3371 3372 3373 3374 3375 3376
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3377
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3378 3379
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3380
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3381
			sg = sg_next(sg);
3382
			src_idx -= stride;
3383 3384
		}
	}
3385 3386

	return sg;
3387 3388
}

3389 3390 3391
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3392
{
3393
	unsigned int size = intel_rotation_info_size(rot_info);
3394
	struct sg_table *st;
3395
	struct scatterlist *sg;
3396
	int ret = -ENOMEM;
3397
	int i;
3398 3399 3400 3401 3402 3403

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3404
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3405 3406 3407
	if (ret)
		goto err_sg_alloc;

3408 3409 3410
	st->nents = 0;
	sg = st->sgl;

3411
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3412
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3413 3414
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3415 3416
	}

3417 3418 3419 3420 3421 3422
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3423 3424
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3425

3426 3427
	return ERR_PTR(ret);
}
3428

3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3512
static noinline struct sg_table *
3513 3514 3515 3516
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3517
	struct scatterlist *sg, *iter;
3518
	unsigned int count = view->partial.size;
3519
	unsigned int offset;
3520 3521 3522 3523 3524 3525
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3526
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3527 3528 3529
	if (ret)
		goto err_sg_alloc;

3530
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3531 3532
	GEM_BUG_ON(!iter);

3533 3534
	sg = st->sgl;
	st->nents = 0;
3535 3536
	do {
		unsigned int len;
3537

3538 3539 3540 3541 3542 3543
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3544 3545

		st->nents++;
3546 3547 3548
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3549 3550
			i915_sg_trim(st); /* Drop any unused tail entries. */

3551 3552
			return st;
		}
3553

3554 3555 3556 3557
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3558 3559 3560 3561 3562 3563 3564

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3565
static int
3566
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3567
{
3568
	int ret;
3569

3570 3571 3572 3573 3574 3575 3576
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3577
	switch (vma->ggtt_view.type) {
3578 3579 3580
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3581 3582
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3583 3584
		return 0;

3585
	case I915_GGTT_VIEW_ROTATED:
3586
		vma->pages =
3587 3588 3589
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3590 3591 3592 3593 3594
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3595
	case I915_GGTT_VIEW_PARTIAL:
3596
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3597 3598
		break;
	}
3599

3600
	ret = 0;
3601
	if (IS_ERR(vma->pages)) {
3602 3603
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3604 3605
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3606
	}
3607
	return ret;
3608 3609
}

3610 3611
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3646
	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3647
	GEM_BUG_ON(drm_mm_node_allocated(node));
3648 3649 3650 3651 3652 3653 3654 3655 3656

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3657 3658 3659
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3660 3661 3662 3663 3664 3665 3666
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3692 3693
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3694 3695 3696 3697 3698 3699 3700 3701 3702
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3703
 *         must be #I915_GTT_PAGE_SIZE aligned
3704 3705 3706
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3707 3708 3709 3710 3711 3712
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3713 3714
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3731
	enum drm_mm_insert_mode mode;
3732
	u64 offset;
3733 3734
	int err;

3735 3736
	lockdep_assert_held(&vm->mutex);

3737 3738 3739 3740 3741 3742 3743
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3744
	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3745
	GEM_BUG_ON(drm_mm_node_allocated(node));
3746 3747 3748 3749 3750 3751 3752

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3753 3754
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
3755
		mode = DRM_MM_INSERT_HIGHEST;
3756 3757
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3769 3770 3771
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3772 3773 3774
	if (err != -ENOSPC)
		return err;

3775 3776 3777 3778 3779 3780 3781 3782 3783
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

3784 3785 3786
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3787 3788
	/*
	 * No free space, pick a slot at random.
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

3816 3817 3818
	if (flags & PIN_NOSEARCH)
		return -ENOSPC;

3819
	/* Randomly selected placement is pinned, do a search */
3820 3821 3822 3823 3824
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

3825 3826 3827
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
3828
}
3829 3830 3831

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
3832
#include "selftests/i915_gem_gtt.c"
3833
#endif