i915_gem_gtt.c 105.8 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
			       	int enable_ppgtt)
138
{
139
	bool has_full_ppgtt;
140
	bool has_full_48bit_ppgtt;
141

142 143 144
	if (!dev_priv->info.has_aliasing_ppgtt)
		return 0;

145 146
	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147

148
	if (intel_vgpu_active(dev_priv)) {
149
		/* GVT-g has no support for 32bit ppgtt */
150
		has_full_ppgtt = false;
151
		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152
	}
153

154 155 156 157
	/*
	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
	 * execlists, the sole mechanism available to submit work.
	 */
158
	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 160 161 162 163
		return 0;

	if (enable_ppgtt == 1)
		return 1;

164
	if (enable_ppgtt == 2 && has_full_ppgtt)
165 166
		return 2;

167 168 169
	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
		return 3;

170
	/* Disable ppgtt on SNB if VT-d is on. */
171
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173
		return 0;
174 175
	}

176
	/* Early VLV doesn't have this */
177
	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 179 180 181
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
		return 0;
	}

182
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 184 185 186 187 188 189
		if (has_full_48bit_ppgtt)
			return 3;

		if (has_full_ppgtt)
			return 2;
	}

190
	return 1;
191 192
}

193 194 195
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
196
{
197
	u32 pte_flags;
198 199 200 201 202 203 204 205
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
206 207

	/* Currently applicable only to VLV */
208
	pte_flags = 0;
209 210 211
	if (vma->obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

212
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 214

	return 0;
215 216 217 218
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
219
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220
}
221

222 223 224 225 226 227
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

228 229
	vma->page_sizes = vma->obj->mm.page_sizes;

230 231 232 233 234 235 236 237 238 239 240 241
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
242 243

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 245
}

246
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247 248
				  enum i915_cache_level level,
				  u32 flags)
B
Ben Widawsky 已提交
249
{
250 251 252 253
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
254 255 256

	switch (level) {
	case I915_CACHE_NONE:
257
		pte |= PPAT_UNCACHED;
258 259
		break;
	case I915_CACHE_WT:
260
		pte |= PPAT_DISPLAY_ELLC;
261 262
		break;
	default:
263
		pte |= PPAT_CACHED;
264 265 266
		break;
	}

B
Ben Widawsky 已提交
267 268 269
	return pte;
}

270 271
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
272
{
273
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
274 275
	pde |= addr;
	if (level != I915_CACHE_NONE)
276
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
277
	else
278
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
279 280 281
	return pde;
}

282 283 284
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

285 286
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
287
				 u32 unused)
288
{
289
	gen6_pte_t pte = GEN6_PTE_VALID;
290
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
291 292

	switch (level) {
293 294 295 296 297 298 299 300
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
301
		MISSING_CASE(level);
302 303 304 305 306
	}

	return pte;
}

307 308
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
309
				 u32 unused)
310
{
311
	gen6_pte_t pte = GEN6_PTE_VALID;
312 313 314 315 316
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
317 318 319 320 321
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
322
		pte |= GEN6_PTE_UNCACHED;
323 324
		break;
	default:
325
		MISSING_CASE(level);
326 327
	}

328 329 330
	return pte;
}

331 332
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
333
				 u32 flags)
334
{
335
	gen6_pte_t pte = GEN6_PTE_VALID;
336 337
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

338 339
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
340 341 342 343 344 345 346

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

347 348
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
349
				 u32 unused)
350
{
351
	gen6_pte_t pte = GEN6_PTE_VALID;
352
	pte |= HSW_PTE_ADDR_ENCODE(addr);
353 354

	if (level != I915_CACHE_NONE)
355
		pte |= HSW_WB_LLC_AGE3;
356 357 358 359

	return pte;
}

360 361
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
				  enum i915_cache_level level,
362
				  u32 unused)
363
{
364
	gen6_pte_t pte = GEN6_PTE_VALID;
365 366
	pte |= HSW_PTE_ADDR_ENCODE(addr);

367 368 369 370
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
371
		pte |= HSW_WT_ELLC_LLC_AGE3;
372 373
		break;
	default:
374
		pte |= HSW_WB_ELLC_LLC_AGE3;
375 376
		break;
	}
377 378 379 380

	return pte;
}

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

416
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
417
{
418 419
	struct pagevec stack;
	struct page *page;
420

421 422
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
423

424 425 426
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
427 428 429 430 431

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
432 433 434
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
435

436
	/*
437
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
438 439 440 441 442 443
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
444
	pagevec_init(&stack);
445 446
	do {
		struct page *page;
447

448 449 450 451
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

452 453
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
454

455 456
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
457

458 459
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
460

461 462 463
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
464
	}
465

466 467 468 469 470 471 472
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
473 474
}

475 476
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
477
{
478 479
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
480

481
	lockdep_assert_held(&vm->free_pages.lock);
482
	GEM_BUG_ON(!pagevec_count(pvec));
483

484
	if (vm->pt_kmap_wc) {
485 486
		/*
		 * When we use WC, first fill up the global stash and then
487 488
		 * only if full immediately free the overflow.
		 */
489
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
490

491 492 493 494 495 496 497 498
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
499

500 501 502 503 504 505 506 507 508 509
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
510
		set_pages_array_wb(pvec->pages, pvec->nr);
511 512

		spin_lock(&vm->free_pages.lock);
513 514 515
	}

	__pagevec_release(pvec);
516 517 518 519
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
520 521 522 523 524 525 526 527
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
528 529
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
530
		vm_free_pages_release(vm, false);
531 532 533 534 535 536
	spin_unlock(&vm->free_pages.lock);
}

static void i915_address_space_init(struct i915_address_space *vm,
				    struct drm_i915_private *dev_priv)
{
537 538 539 540 541 542 543 544
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
	i915_gem_shrinker_taints_mutex(&vm->mutex);

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
565 566

	mutex_destroy(&vm->mutex);
567
}
568

569 570 571 572
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
573
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
574 575
	if (unlikely(!p->page))
		return -ENOMEM;
576

577 578 579
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
580
				      DMA_ATTR_SKIP_CPU_SYNC |
581
				      DMA_ATTR_NO_WARN);
582 583 584
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
585
	}
586 587

	return 0;
588 589
}

590
static int setup_page_dma(struct i915_address_space *vm,
591
			  struct i915_page_dma *p)
592
{
593
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
594 595
}

596
static void cleanup_page_dma(struct i915_address_space *vm,
597
			     struct i915_page_dma *p)
598
{
599 600
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
601 602
}

603
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
604

605 606
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
607 608
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
609

610 611 612
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
613
{
614
	u64 * const vaddr = kmap_atomic(p->page);
615

616
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
617

618
	kunmap_atomic(vaddr);
619 620
}

621 622 623
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
624
{
625
	fill_page_dma(vm, p, (u64)v << 32 | v);
626 627
}

628
static int
629
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
630
{
631
	unsigned long size;
632

633 634 635 636 637 638 639 640 641 642 643 644
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert().
	 *
	 * TODO: we should really consider write-protecting the scratch-page and
	 * sharing between ppgtt
	 */
645
	size = I915_GTT_PAGE_SIZE_4K;
646 647
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
648 649
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
650
	}
651 652 653 654 655 656
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
657

658
		page = alloc_pages(gfp, order);
659
		if (unlikely(!page))
660
			goto skip;
661

662 663 664
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
665
					  DMA_ATTR_SKIP_CPU_SYNC |
666
					  DMA_ATTR_NO_WARN);
667 668
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
669

670 671
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
689 690
}

691
static void cleanup_scratch_page(struct i915_address_space *vm)
692
{
693 694
	struct i915_page_dma *p = &vm->scratch_page;

695 696 697
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
698 699
}

700
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
701
{
702
	struct i915_page_table *pt;
703

704
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
705
	if (unlikely(!pt))
706 707
		return ERR_PTR(-ENOMEM);

708 709 710 711
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
712

713
	pt->used_ptes = 0;
714 715 716
	return pt;
}

717
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
718
{
719
	cleanup_px(vm, pt);
720 721 722 723 724 725
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
726
	fill_px(vm, pt,
727
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
728 729
}

730
static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
731 732
			       struct i915_page_table *pt)
{
733
	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
734 735
}

736
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
737
{
738
	struct i915_page_directory *pd;
739

740
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
741
	if (unlikely(!pd))
742 743
		return ERR_PTR(-ENOMEM);

744 745 746 747
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
748

749
	pd->used_pdes = 0;
750 751 752
	return pd;
}

753
static void free_pd(struct i915_address_space *vm,
754
		    struct i915_page_directory *pd)
755
{
756 757
	cleanup_px(vm, pd);
	kfree(pd);
758 759 760 761 762
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
763 764
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
765
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
766 767
}

768
static int __pdp_init(struct i915_address_space *vm,
769 770
		      struct i915_page_directory_pointer *pdp)
{
771
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
772

773
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
774
					    I915_GFP_ALLOW_FAIL);
775
	if (unlikely(!pdp->page_directory))
776 777
		return -ENOMEM;

778
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
779

780 781 782 783 784 785 786 787 788
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

789 790 791 792 793
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

794 795
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
796 797 798 799
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

800
	GEM_BUG_ON(!use_4lvl(vm));
801 802 803 804 805

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

806
	ret = __pdp_init(vm, pdp);
807 808 809
	if (ret)
		goto fail_bitmap;

810
	ret = setup_px(vm, pdp);
811 812 813 814 815 816 817 818 819 820 821 822 823
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

824
static void free_pdp(struct i915_address_space *vm,
825 826 827
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
828 829 830 831 832 833

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
834 835
}

836 837 838 839 840 841 842
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

843
	fill_px(vm, pdp, scratch_pdpe);
844 845 846 847 848
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
849 850
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
851
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
852 853
}

854 855 856 857 858 859 860
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
861
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
862 863
}

864 865 866 867
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
868
				struct i915_page_table *pt,
869
				u64 start, u64 length)
870
{
871
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
872 873
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
874
	const gen8_pte_t scratch_pte =
875
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
876
	gen8_pte_t *vaddr;
877

878
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
879

880 881 882
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
883

884
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
885
	while (pte < pte_end)
886
		vaddr[pte++] = scratch_pte;
887
	kunmap_atomic(vaddr);
888 889

	return false;
890
}
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

906
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
907
				struct i915_page_directory *pd,
908
				u64 start, u64 length)
909 910
{
	struct i915_page_table *pt;
911
	u32 pde;
912 913

	gen8_for_each_pde(pt, pd, start, length, pde) {
914 915
		GEM_BUG_ON(pt == vm->scratch_pt);

916 917
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
918

919
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
920
		GEM_BUG_ON(!pd->used_pdes);
921
		pd->used_pdes--;
922 923

		free_pt(vm, pt);
924 925
	}

926 927
	return !pd->used_pdes;
}
928

929 930 931 932 933 934 935 936
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
937
	if (!use_4lvl(vm))
938 939 940 941 942
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
943
}
944

945 946 947 948
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
949
				 struct i915_page_directory_pointer *pdp,
950
				 u64 start, u64 length)
951 952
{
	struct i915_page_directory *pd;
953
	unsigned int pdpe;
954

955
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
956 957
		GEM_BUG_ON(pd == vm->scratch_pd);

958 959
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
960

961
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
962
		GEM_BUG_ON(!pdp->used_pdpes);
963
		pdp->used_pdpes--;
964

965 966
		free_pd(vm, pd);
	}
967

968
	return !pdp->used_pdpes;
969
}
970

971 972 973 974 975 976
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

977 978 979 980 981 982 983 984 985 986 987 988 989
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

990 991 992 993
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
994 995
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
996
{
997 998
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
999
	struct i915_page_directory_pointer *pdp;
1000
	unsigned int pml4e;
1001

1002
	GEM_BUG_ON(!use_4lvl(vm));
1003

1004
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1005 1006
		GEM_BUG_ON(pdp == vm->scratch_pdp);

1007 1008
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
1009

1010 1011 1012
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
1013 1014 1015
	}
}

1016
static inline struct sgt_dma {
1017 1018
	struct scatterlist *sg;
	dma_addr_t dma, max;
1019 1020 1021 1022 1023
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
1024

1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

1042 1043
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1044
			      struct i915_page_directory_pointer *pdp,
1045
			      struct sgt_dma *iter,
1046
			      struct gen8_insert_pte *idx,
1047 1048
			      enum i915_cache_level cache_level)
{
1049
	struct i915_page_directory *pd;
1050
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, 0);
1051 1052
	gen8_pte_t *vaddr;
	bool ret;
1053

1054
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1055 1056
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1057
	do {
1058 1059
		vaddr[idx->pte] = pte_encode | iter->dma;

1060 1061 1062 1063 1064 1065 1066
		iter->dma += PAGE_SIZE;
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1067

1068 1069
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1070
		}
1071

1072 1073 1074 1075 1076 1077
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1078
				/* Limited by sg length for 3lvl */
1079 1080
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1081
					ret = true;
1082
					break;
1083 1084
				}

1085
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1086
				pd = pdp->page_directory[idx->pdpe];
1087
			}
1088

1089
			kunmap_atomic(vaddr);
1090
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1091
		}
1092
	} while (1);
1093
	kunmap_atomic(vaddr);
1094

1095
	return ret;
1096 1097
}

1098
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1099
				   struct i915_vma *vma,
1100 1101
				   enum i915_cache_level cache_level,
				   u32 unused)
1102
{
1103
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1104
	struct sgt_dma iter = sgt_dma(vma);
1105
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1106

1107 1108
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
				      cache_level);
1109 1110

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1111
}
1112

1113 1114 1115 1116 1117
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
					   enum i915_cache_level cache_level)
{
1118
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, 0);
1119 1120 1121 1122 1123 1124 1125 1126
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1127
		bool maybe_64K = false;
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1149 1150 1151 1152 1153 1154 1155
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
			     rem >= (max - index) << PAGE_SHIFT))
				maybe_64K = true;

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1175 1176 1177 1178 1179 1180
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
				       rem >= (max - index) << PAGE_SHIFT)))
					maybe_64K = false;

1181 1182 1183 1184 1185 1186
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1203
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

				encode = pte_encode | vma->vm->scratch_page.daddr;
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1225
		}
1226 1227

		vma->page_sizes.gtt |= page_size;
1228 1229 1230
	} while (iter->sg);
}

1231
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1232
				   struct i915_vma *vma,
1233 1234 1235 1236
				   enum i915_cache_level cache_level,
				   u32 unused)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1237
	struct sgt_dma iter = sgt_dma(vma);
1238
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1239

1240 1241 1242 1243 1244 1245 1246 1247
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
						     &iter, &idx, cache_level))
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1248 1249

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1250
	}
1251 1252
}

1253
static void gen8_free_page_tables(struct i915_address_space *vm,
1254
				  struct i915_page_directory *pd)
1255 1256 1257
{
	int i;

1258
	if (!px_page(pd))
1259 1260
		return;

1261 1262 1263
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1264
	}
B
Ben Widawsky 已提交
1265 1266
}

1267 1268
static int gen8_init_scratch(struct i915_address_space *vm)
{
1269
	int ret;
1270

1271
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1272 1273
	if (ret)
		return ret;
1274

1275
	vm->scratch_pt = alloc_pt(vm);
1276
	if (IS_ERR(vm->scratch_pt)) {
1277 1278
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1279 1280
	}

1281
	vm->scratch_pd = alloc_pd(vm);
1282
	if (IS_ERR(vm->scratch_pd)) {
1283 1284
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1285 1286
	}

1287
	if (use_4lvl(vm)) {
1288
		vm->scratch_pdp = alloc_pdp(vm);
1289
		if (IS_ERR(vm->scratch_pdp)) {
1290 1291
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1292 1293 1294
		}
	}

1295 1296
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1297
	if (use_4lvl(vm))
1298
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1299 1300

	return 0;
1301 1302

free_pd:
1303
	free_pd(vm, vm->scratch_pd);
1304
free_pt:
1305
	free_pt(vm, vm->scratch_pt);
1306
free_scratch_page:
1307
	cleanup_scratch_page(vm);
1308 1309

	return ret;
1310 1311
}

1312 1313
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1314
	struct i915_address_space *vm = &ppgtt->vm;
1315
	struct drm_i915_private *dev_priv = vm->i915;
1316 1317 1318
	enum vgt_g2v_type msg;
	int i;

1319 1320
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1321

1322 1323
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1324 1325 1326 1327

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1328
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1329
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1330

1331 1332
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1344 1345
static void gen8_free_scratch(struct i915_address_space *vm)
{
1346
	if (use_4lvl(vm))
1347 1348 1349 1350
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1351 1352
}

1353
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1354
				    struct i915_page_directory_pointer *pdp)
1355
{
1356
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1357 1358
	int i;

1359
	for (i = 0; i < pdpes; i++) {
1360
		if (pdp->page_directory[i] == vm->scratch_pd)
1361 1362
			continue;

1363 1364
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1365
	}
1366

1367
	free_pdp(vm, pdp);
1368 1369 1370 1371 1372 1373
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1374
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1375
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1376 1377
			continue;

1378
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1379 1380
	}

1381
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1382 1383 1384 1385
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1386
	struct drm_i915_private *dev_priv = vm->i915;
1387
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1388

1389
	if (intel_vgpu_active(dev_priv))
1390 1391
		gen8_ppgtt_notify_vgt(ppgtt, false);

1392
	if (use_4lvl(vm))
1393
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1394
	else
1395
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1396

1397
	gen8_free_scratch(vm);
1398 1399
}

1400 1401 1402
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1403
{
1404
	struct i915_page_table *pt;
1405
	u64 from = start;
1406
	unsigned int pde;
1407

1408
	gen8_for_each_pde(pt, pd, start, length, pde) {
1409 1410
		int count = gen8_pte_count(start, length);

1411
		if (pt == vm->scratch_pt) {
1412 1413
			pd->used_pdes++;

1414
			pt = alloc_pt(vm);
1415 1416
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1417
				goto unwind;
1418
			}
1419

1420
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1421
				gen8_initialize_pt(vm, pt);
1422 1423

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1424
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1425
		}
1426

1427
		pt->used_ptes += count;
1428
	}
1429
	return 0;
1430

1431 1432
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1433
	return -ENOMEM;
1434 1435
}

1436 1437 1438
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1439
{
1440
	struct i915_page_directory *pd;
1441 1442
	u64 from = start;
	unsigned int pdpe;
1443 1444
	int ret;

1445
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1446
		if (pd == vm->scratch_pd) {
1447 1448
			pdp->used_pdpes++;

1449
			pd = alloc_pd(vm);
1450 1451
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1452
				goto unwind;
1453
			}
1454

1455
			gen8_initialize_pd(vm, pd);
1456
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1457
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1458 1459

			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1460 1461 1462
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1463 1464
		if (unlikely(ret))
			goto unwind_pd;
1465
	}
1466

B
Ben Widawsky 已提交
1467
	return 0;
1468

1469 1470 1471 1472 1473 1474 1475
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1476 1477 1478
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1479 1480
}

1481 1482
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1483
{
1484 1485 1486
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1487

1488 1489 1490 1491 1492 1493 1494 1495 1496
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1497

1498
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1499 1500 1501 1502
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1503

1504 1505 1506
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1507

1508
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1509 1510
		if (unlikely(ret))
			goto unwind_pdp;
1511 1512 1513 1514
	}

	return 0;

1515 1516 1517 1518 1519
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1520 1521 1522
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1523 1524
}

1525 1526
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1527
			  u64 start, u64 length,
1528 1529 1530
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1531
	struct i915_address_space *vm = &ppgtt->vm;
1532
	struct i915_page_directory *pd;
1533
	u32 pdpe;
1534

1535
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1536
		struct i915_page_table *pt;
1537 1538 1539
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1540

1541
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1542 1543 1544
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1545
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1546
			u32 pte;
1547 1548
			gen8_pte_t *pt_vaddr;

1549
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1550 1551
				continue;

1552
			pt_vaddr = kmap_atomic_px(pt);
1553
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1554 1555 1556
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1582
	struct i915_address_space *vm = &ppgtt->vm;
1583
	const gen8_pte_t scratch_pte =
1584
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1585
	u64 start = 0, length = ppgtt->vm.total;
1586

1587
	if (use_4lvl(vm)) {
1588
		u64 pml4e;
1589 1590 1591
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1592
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1593
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1594 1595 1596
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1597
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1598
		}
1599 1600
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1601 1602 1603
	}
}

1604
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1605
{
1606
	struct i915_address_space *vm = &ppgtt->vm;
1607 1608
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1609
	u64 start = 0, length = ppgtt->vm.total;
1610 1611
	u64 from = start;
	unsigned int pdpe;
1612

1613 1614 1615 1616
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1617

1618 1619 1620 1621
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1622

1623 1624
	pdp->used_pdpes++; /* never remove */
	return 0;
1625

1626 1627 1628 1629 1630 1631 1632 1633
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1634 1635
}

1636
/*
1637 1638 1639 1640
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1641
 *
1642
 */
1643
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1644
{
1645 1646 1647 1648 1649 1650 1651
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1652 1653
	kref_init(&ppgtt->ref);

1654 1655
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1656

1657
	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1658 1659 1660
		1ULL << 48 :
		1ULL << 32;

1661 1662
	i915_address_space_init(&ppgtt->vm, i915);

1663 1664 1665
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1666
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1667
		ppgtt->vm.pt_kmap_wc = true;
1668

1669 1670 1671
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1672

1673 1674 1675 1676
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1677

1678
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1679

1680 1681 1682
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1683
	} else {
1684 1685 1686
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1687

1688 1689 1690
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1691
				__pdp_fini(&ppgtt->pdp);
1692
				goto err_scratch;
1693
			}
1694
		}
1695

1696 1697 1698
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1699
	}
1700

1701
	if (intel_vgpu_active(i915))
1702 1703
		gen8_ppgtt_notify_vgt(ppgtt, true);

1704
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1705 1706
	ppgtt->debug_dump = gen8_dump_ppgtt;

1707
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1708 1709 1710 1711
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1712
	return ppgtt;
1713

1714
err_scratch:
1715
	gen8_free_scratch(&ppgtt->vm);
1716 1717 1718
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1719 1720
}

1721
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1722
{
1723
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1724
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
	struct i915_page_table *pt;
	u32 pte, pde;

	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);

			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1752
			int i;
1753

B
Ben Widawsky 已提交
1754
			for (i = 0; i < 4; i++)
1755 1756 1757
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1758 1759
				continue;

1760 1761 1762
			seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
				   pde, pte,
				   (pde * GEN6_PTES + pte) * PAGE_SIZE);
B
Ben Widawsky 已提交
1763
			for (i = 0; i < 4; i++) {
1764 1765
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1766
				else
1767
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1768 1769 1770
			}
			seq_puts(m, "\n");
		}
1771
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1772 1773 1774
	}
}

1775
/* Write pde (index) from the page directory @pd to the page table @pt */
1776
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1777 1778
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1779
{
1780
	/* Caller needs to make sure the write completes if necessary */
1781 1782
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1783
}
B
Ben Widawsky 已提交
1784

1785
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1786
{
1787
	struct intel_engine_cs *engine;
1788
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1789

1790
	for_each_engine(engine, dev_priv, id) {
1791 1792
		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
				 GEN8_GFX_PPGTT_48B : 0;
1793
		I915_WRITE(RING_MODE_GEN7(engine),
1794
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1795 1796
	}
}
B
Ben Widawsky 已提交
1797

1798
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1799
{
1800
	struct intel_engine_cs *engine;
1801
	u32 ecochk, ecobits;
1802
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1803

1804 1805
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1806

1807
	ecochk = I915_READ(GAM_ECOCHK);
1808
	if (IS_HASWELL(dev_priv)) {
1809 1810 1811 1812 1813 1814
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1815

1816
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1817
		/* GFX_MODE is per-ring on gen7+ */
1818
		I915_WRITE(RING_MODE_GEN7(engine),
1819
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1820
	}
1821
}
B
Ben Widawsky 已提交
1822

1823
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1824
{
1825
	u32 ecochk, gab_ctl, ecobits;
1826

1827 1828 1829
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1830

1831 1832 1833 1834 1835 1836 1837
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1838 1839
}

1840
/* PPGTT support for Sandybdrige/Gen6 and later */
1841
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1842
				   u64 start, u64 length)
1843
{
1844
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1845 1846 1847 1848
	unsigned int first_entry = start >> PAGE_SHIFT;
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
	unsigned int num_entries = length >> PAGE_SHIFT;
1849
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1850

1851
	while (num_entries) {
1852 1853 1854
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1855
		gen6_pte_t *vaddr;
1856

1857 1858 1859 1860 1861 1862 1863 1864
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1865

1866 1867
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1868 1869 1870 1871
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1872

1873 1874 1875 1876 1877
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1878

1879
		pte = 0;
1880
	}
1881 1882
}

1883
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1884
				      struct i915_vma *vma,
1885 1886
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1887
{
1888
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1889
	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1890 1891
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1892
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1893
	struct sgt_dma iter = sgt_dma(vma);
1894 1895
	gen6_pte_t *vaddr;

1896 1897
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1898
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1899 1900
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1901

1902 1903 1904 1905 1906
		iter.dma += PAGE_SIZE;
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1907

1908 1909 1910
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1911

1912
		if (++act_pte == GEN6_PTES) {
1913 1914
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1915
			act_pte = 0;
D
Daniel Vetter 已提交
1916
		}
1917
	} while (1);
1918
	kunmap_atomic(vaddr);
1919 1920

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1921 1922
}

1923
static int gen6_alloc_va_range(struct i915_address_space *vm,
1924
			       u64 start, u64 length)
1925
{
1926
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1927
	struct i915_page_table *pt;
1928 1929 1930
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1931

1932
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1933 1934
		const unsigned int count = gen6_pte_count(start, length);

1935 1936 1937 1938
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1939

1940
			gen6_initialize_pt(ppgtt, pt);
1941
			ppgtt->base.pd.page_table[pde] = pt;
1942 1943 1944 1945 1946 1947

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1948 1949

			GEM_BUG_ON(pt->used_ptes);
1950
		}
1951 1952

		pt->used_ptes += count;
1953 1954
	}

1955
	if (flush) {
1956 1957
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1958 1959 1960
	}

	return 0;
1961 1962

unwind_out:
1963
	gen6_ppgtt_clear_range(vm, from, start - from);
1964
	return -ENOMEM;
1965 1966
}

1967
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1968
{
1969 1970 1971
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1972
	int ret;
1973

1974
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1975 1976
	if (ret)
		return ret;
1977

1978 1979 1980 1981
	ppgtt->scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr,
			       I915_CACHE_NONE, PTE_READ_ONLY);

1982
	vm->scratch_pt = alloc_pt(vm);
1983
	if (IS_ERR(vm->scratch_pt)) {
1984
		cleanup_scratch_page(vm);
1985 1986 1987
		return PTR_ERR(vm->scratch_pt);
	}

1988
	gen6_initialize_pt(ppgtt, vm->scratch_pt);
1989 1990
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1991 1992 1993 1994

	return 0;
}

1995
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1996
{
1997 1998
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1999 2000
}

2001
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
2002
{
2003
	struct i915_page_table *pt;
2004
	u32 pde;
2005

2006
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
2007 2008 2009 2010 2011 2012 2013
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
2014

2015
	i915_vma_destroy(ppgtt->vma);
2016 2017 2018

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
2019 2020
}

2021
static int pd_vma_set_pages(struct i915_vma *vma)
2022
{
2023 2024 2025
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
2026

2027 2028 2029
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
2030

2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
	struct i915_page_table *pt;
	unsigned int pde;
2043

2044 2045
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2046

2047 2048
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2049

2050 2051
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2052

2053
	return 0;
2054
}
2055

2056
static void pd_vma_unbind(struct i915_vma *vma)
2057
{
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

2104 2105
	vma->active = RB_ROOT;

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
2116

2117
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2118 2119 2120
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

2121 2122 2123 2124 2125 2126 2127 2128 2129
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2130 2131 2132 2133 2134 2135 2136 2137
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	return i915_vma_pin(ppgtt->vma,
			    0, GEN6_PD_ALIGN,
			    PIN_GLOBAL | PIN_HIGH);
2138 2139
}

2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2151
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2152
{
2153
	struct i915_ggtt * const ggtt = &i915->ggtt;
2154
	struct gen6_hw_ppgtt *ppgtt;
2155 2156 2157 2158 2159 2160
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2161 2162
	kref_init(&ppgtt->base.ref);

2163 2164
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2165

2166
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2167

2168 2169
	i915_address_space_init(&ppgtt->base.vm, i915);

2170
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2171 2172 2173 2174
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2175

2176
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2177 2178 2179
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2180

2181 2182
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2183
	err = gen6_ppgtt_init_scratch(ppgtt);
2184 2185 2186
	if (err)
		goto err_free;

2187 2188 2189
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2190
		goto err_scratch;
2191
	}
2192

2193
	return &ppgtt->base;
2194

2195 2196
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2197 2198 2199
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2200
}
2201

2202
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2203 2204 2205 2206 2207
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2208
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2209
	if (IS_BROADWELL(dev_priv))
2210
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2211
	else if (IS_CHERRYVIEW(dev_priv))
2212
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2213
	else if (IS_GEN9_LP(dev_priv))
2214
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2215 2216
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2234 2235
}

2236
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2237
{
2238
	gtt_write_workarounds(dev_priv);
2239

2240 2241 2242
	/* In the case of execlists, PPGTT is enabled by the context descriptor
	 * and the PDPs are contained within the context itself.  We don't
	 * need to do anything here. */
2243
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2244 2245
		return 0;

2246
	if (!USES_PPGTT(dev_priv))
2247 2248
		return 0;

2249
	if (IS_GEN6(dev_priv))
2250
		gen6_ppgtt_enable(dev_priv);
2251
	else if (IS_GEN7(dev_priv))
2252 2253 2254
		gen7_ppgtt_enable(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 8)
		gen8_ppgtt_enable(dev_priv);
2255
	else
2256
		MISSING_CASE(INTEL_GEN(dev_priv));
2257

2258 2259
	return 0;
}
2260

2261 2262 2263 2264 2265 2266 2267 2268 2269
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2270
struct i915_hw_ppgtt *
2271
i915_ppgtt_create(struct drm_i915_private *i915,
2272
		  struct drm_i915_file_private *fpriv)
2273 2274 2275
{
	struct i915_hw_ppgtt *ppgtt;

2276 2277 2278
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2279

2280
	ppgtt->vm.file = fpriv;
2281

2282
	trace_i915_ppgtt_create(&ppgtt->vm);
2283

2284 2285 2286
	return ppgtt;
}

2287
void i915_ppgtt_close(struct i915_address_space *vm)
2288 2289 2290 2291 2292 2293
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2307
			i915_vma_destroy(vma);
2308 2309 2310
	}
}

2311
void i915_ppgtt_release(struct kref *kref)
2312 2313 2314 2315
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2316
	trace_i915_ppgtt_release(&ppgtt->vm);
2317

2318
	ppgtt_destroy_vma(&ppgtt->vm);
2319

2320 2321 2322
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2323

2324 2325
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2326 2327
	kfree(ppgtt);
}
2328

2329 2330 2331
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2332
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2333 2334 2335 2336
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2337
	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2338 2339
}

2340
static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2341
{
2342
	struct intel_engine_cs *engine;
2343
	enum intel_engine_id id;
2344
	u32 fault;
2345

2346
	for_each_engine(engine, dev_priv, id) {
2347 2348
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2349
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2350
					 "\tAddr: 0x%08lx\n"
2351 2352 2353
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2354 2355 2356 2357
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2358
			I915_WRITE(RING_FAULT_REG(engine),
2359
				   fault & ~RING_FAULT_VALID);
2360 2361
		}
	}
2362

2363 2364 2365 2366 2367 2368 2369 2370
	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}

static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2371 2372 2373 2374 2375 2376 2377 2378
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2379
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2380 2381
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2382 2383 2384
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2385 2386 2387
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
		I915_WRITE(GEN8_RING_FAULT_REG,
			   fault & ~RING_FAULT_VALID);
	}

	POSTING_READ(GEN8_RING_FAULT_REG);
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
		gen8_check_and_clear_faults(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_check_and_clear_faults(dev_priv);
	else
		return;
2407 2408
}

2409
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2410
{
2411
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2412 2413 2414 2415

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2416
	if (INTEL_GEN(dev_priv) < 6)
2417 2418
		return;

2419
	i915_check_and_clear_faults(dev_priv);
2420

2421
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2422

2423
	i915_ggtt_invalidate(dev_priv);
2424 2425
}

2426 2427
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2428
{
2429
	do {
2430 2431 2432 2433
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2444
				 obj->base.size >> PAGE_SHIFT, NULL,
2445 2446 2447
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2448

2449
	return -ENOSPC;
2450 2451
}

2452
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2453 2454 2455 2456
{
	writeq(pte, addr);
}

2457 2458
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2459
				  u64 offset,
2460 2461 2462
				  enum i915_cache_level level,
				  u32 unused)
{
2463
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2464
	gen8_pte_t __iomem *pte =
2465
		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2466

2467
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2468

2469
	ggtt->invalidate(vm->i915);
2470 2471
}

B
Ben Widawsky 已提交
2472
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2473
				     struct i915_vma *vma,
2474 2475
				     enum i915_cache_level level,
				     u32 unused)
B
Ben Widawsky 已提交
2476
{
2477
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2478 2479
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2480
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2481
	dma_addr_t addr;
2482

2483
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2484 2485
	gtt_entries += vma->node.start >> PAGE_SHIFT;
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2486
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2487

2488 2489 2490
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2491
	 */
2492
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2493 2494
}

2495 2496
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2497
				  u64 offset,
2498 2499 2500
				  enum i915_cache_level level,
				  u32 flags)
{
2501
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2502
	gen6_pte_t __iomem *pte =
2503
		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2504

2505
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2506

2507
	ggtt->invalidate(vm->i915);
2508 2509
}

2510 2511 2512 2513 2514 2515
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2516
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2517
				     struct i915_vma *vma,
2518 2519
				     enum i915_cache_level level,
				     u32 flags)
2520
{
2521
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2522
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2523
	unsigned int i = vma->node.start >> PAGE_SHIFT;
2524
	struct sgt_iter iter;
2525
	dma_addr_t addr;
2526
	for_each_sgt_dma(addr, iter, vma->pages)
2527
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2528

2529 2530 2531
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2532
	 */
2533
	ggtt->invalidate(vm->i915);
2534 2535
}

2536
static void nop_clear_range(struct i915_address_space *vm,
2537
			    u64 start, u64 length)
2538 2539 2540
{
}

B
Ben Widawsky 已提交
2541
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2542
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2543
{
2544
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2545 2546
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2547
	const gen8_pte_t scratch_pte =
2548
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2549
	gen8_pte_t __iomem *gtt_base =
2550 2551
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2607
	struct i915_vma *vma;
2608 2609 2610 2611 2612 2613 2614
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2615
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2616 2617 2618 2619 2620 2621
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2622
					     struct i915_vma *vma,
2623 2624 2625
					     enum i915_cache_level level,
					     u32 unused)
{
2626
	struct insert_entries arg = { vm, vma, level };
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2656
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2657
				  u64 start, u64 length)
2658
{
2659
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2660 2661
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2662
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2663 2664
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2665 2666 2667 2668 2669 2670 2671
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2672
	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2673
				     I915_CACHE_LLC, 0);
2674

2675 2676 2677 2678
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2679 2680
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2681
				  u64 offset,
2682 2683 2684 2685 2686 2687 2688 2689 2690
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2691
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2692
				     struct i915_vma *vma,
2693 2694
				     enum i915_cache_level cache_level,
				     u32 unused)
2695 2696 2697 2698
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2699 2700
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2701 2702
}

2703
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2704
				  u64 start, u64 length)
2705
{
2706
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2707 2708
}

2709 2710 2711
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2712
{
2713
	struct drm_i915_private *i915 = vma->vm->i915;
2714
	struct drm_i915_gem_object *obj = vma->obj;
2715
	u32 pte_flags;
2716 2717

	/* Currently applicable only to VLV */
2718
	pte_flags = 0;
2719 2720 2721
	if (obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

2722
	intel_runtime_pm_get(i915);
2723
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2724
	intel_runtime_pm_put(i915);
2725

2726 2727
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2728 2729 2730 2731 2732
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2733
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2734 2735 2736 2737

	return 0;
}

2738 2739 2740 2741 2742 2743 2744 2745 2746
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2747 2748 2749
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2750
{
2751
	struct drm_i915_private *i915 = vma->vm->i915;
2752
	u32 pte_flags;
2753
	int ret;
2754

2755
	/* Currently applicable only to VLV */
2756 2757
	pte_flags = 0;
	if (vma->obj->gt_ro)
2758
		pte_flags |= PTE_READ_ONLY;
2759

2760 2761 2762
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2763
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2764 2765 2766
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2767
			if (ret)
2768
				return ret;
2769 2770
		}

2771 2772
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2773 2774
	}

2775
	if (flags & I915_VMA_GLOBAL_BIND) {
2776
		intel_runtime_pm_get(i915);
2777
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2778
		intel_runtime_pm_put(i915);
2779
	}
2780

2781
	return 0;
2782 2783
}

2784
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2785
{
2786
	struct drm_i915_private *i915 = vma->vm->i915;
2787

2788 2789
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2790
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2791 2792
		intel_runtime_pm_put(i915);
	}
2793

2794
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2795
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2796 2797 2798

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2799 2800
}

2801 2802
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2803
{
D
David Weinehall 已提交
2804 2805
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2806
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2807

2808
	if (unlikely(ggtt->do_idle_maps)) {
2809
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2810 2811 2812 2813 2814
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2815

2816
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2817
}
2818

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2829 2830
	vma->page_sizes = vma->obj->mm.page_sizes;

2831 2832 2833
	return 0;
}

C
Chris Wilson 已提交
2834
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2835
				  unsigned long color,
2836 2837
				  u64 *start,
				  u64 *end)
2838
{
2839
	if (node->allocated && node->color != color)
2840
		*start += I915_GTT_PAGE_SIZE;
2841

2842 2843 2844 2845 2846
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2847
	node = list_next_entry(node, node_list);
2848
	if (node->color != color)
2849
		*end -= I915_GTT_PAGE_SIZE;
2850
}
B
Ben Widawsky 已提交
2851

2852 2853 2854 2855 2856 2857
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2858
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2859 2860
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2861

2862
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2863 2864 2865 2866
		err = -ENODEV;
		goto err_ppgtt;
	}

2867 2868 2869 2870 2871 2872 2873 2874 2875
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2876 2877

	i915->mm.aliasing_ppgtt = ppgtt;
2878

2879 2880
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2881

2882 2883
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2884

2885 2886 2887
	return 0;

err_ppgtt:
2888
	i915_ppgtt_put(ppgtt);
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2901
	i915_ppgtt_put(ppgtt);
2902

2903 2904
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2905 2906
}

2907
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2908
{
2909 2910 2911 2912 2913 2914 2915 2916 2917
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2918
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2919
	unsigned long hole_start, hole_end;
2920
	struct drm_mm_node *entry;
2921
	int ret;
2922

2923 2924 2925
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2926

2927
	/* Reserve a mappable slot for our lockless error capture */
2928
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2929 2930 2931
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2932 2933 2934
	if (ret)
		return ret;

2935
	/* Clear any non-preallocated blocks */
2936
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2937 2938
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2939 2940
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2941 2942 2943
	}

	/* And finally clear the reserved guard page */
2944
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2945

2946
	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2947
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2948
		if (ret)
2949
			goto err;
2950 2951
	}

2952
	return 0;
2953 2954 2955 2956

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2957 2958
}

2959 2960
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2961
 * @dev_priv: i915 device
2962
 */
2963
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2964
{
2965
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2966
	struct i915_vma *vma, *vn;
2967
	struct pagevec *pvec;
2968

2969
	ggtt->vm.closed = true;
2970 2971

	mutex_lock(&dev_priv->drm.struct_mutex);
2972 2973
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2974 2975
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2976
		WARN_ON(i915_vma_unbind(vma));
2977

2978 2979 2980
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2981
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2982
		intel_vgt_deballoon(dev_priv);
2983
		i915_address_space_fini(&ggtt->vm);
2984 2985
	}

2986
	ggtt->vm.cleanup(&ggtt->vm);
2987

2988
	pvec = &dev_priv->mm.wc_stash.pvec;
2989 2990 2991 2992 2993
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2994
	mutex_unlock(&dev_priv->drm.struct_mutex);
2995 2996

	arch_phys_wc_del(ggtt->mtrr);
2997
	io_mapping_fini(&ggtt->iomap);
2998 2999

	i915_gem_cleanup_stolen(&dev_priv->drm);
3000
}
3001

3002
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
3003 3004 3005 3006 3007 3008
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

3009
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
3010 3011 3012 3013 3014
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
3015 3016 3017 3018 3019 3020 3021

#ifdef CONFIG_X86_32
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

3022 3023 3024
	return bdw_gmch_ctl << 20;
}

3025
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

3036
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
3037
{
3038
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3039
	struct pci_dev *pdev = dev_priv->drm.pdev;
3040
	phys_addr_t phys_addr;
3041
	int ret;
B
Ben Widawsky 已提交
3042 3043

	/* For Modern GENs the PTEs and register space are split in the BAR */
3044
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
3045

I
Imre Deak 已提交
3046
	/*
3047 3048 3049
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
3050 3051 3052
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
3053
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3054
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
3055
	else
3056
		ggtt->gsm = ioremap_wc(phys_addr, size);
3057
	if (!ggtt->gsm) {
3058
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
3059 3060 3061
		return -ENOMEM;
	}

3062
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3063
	if (ret) {
B
Ben Widawsky 已提交
3064 3065
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3066
		iounmap(ggtt->gsm);
3067
		return ret;
B
Ben Widawsky 已提交
3068 3069
	}

3070
	return 0;
B
Ben Widawsky 已提交
3071 3072
}

3073 3074
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3075
{
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3119
	struct intel_ppat_entry *entry = NULL;
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3142
		if (!entry)
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3219
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3257 3258
}

B
Ben Widawsky 已提交
3259 3260 3261
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3262
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3263
{
3264 3265 3266 3267
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3268

3269
	if (!USES_PPGTT(ppat->i915)) {
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3283 3284 3285
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3286

3287 3288 3289 3290 3291 3292 3293 3294
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3295 3296
}

3297
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3298
{
3299 3300 3301 3302
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3303 3304 3305 3306 3307 3308 3309

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3321 3322
	 */

3323 3324 3325 3326 3327 3328 3329 3330
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3331 3332
}

3333 3334 3335 3336 3337
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3338
	cleanup_scratch_page(vm);
3339 3340
}

3341 3342
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3343 3344 3345 3346 3347
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3348
	if (INTEL_GEN(dev_priv) >= 10)
3349
		cnl_setup_private_ppat(ppat);
3350
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3351
		chv_setup_private_ppat(ppat);
3352
	else
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3364 3365
}

3366
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3367
{
3368
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3369
	struct pci_dev *pdev = dev_priv->drm.pdev;
3370
	unsigned int size;
B
Ben Widawsky 已提交
3371
	u16 snb_gmch_ctl;
3372
	int err;
B
Ben Widawsky 已提交
3373 3374

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3375 3376 3377 3378
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3379

3380 3381 3382 3383 3384
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3385

3386
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3387
	if (IS_CHERRYVIEW(dev_priv))
3388
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3389
	else
3390
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3391

3392 3393 3394 3395
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3396
	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3397
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3398

3399
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3400

3401 3402
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3403 3404 3405 3406
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3407 3408
	}

3409 3410
	ggtt->invalidate = gen6_ggtt_invalidate;

3411 3412 3413 3414 3415
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3416 3417
	setup_private_pat(dev_priv);

3418
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3419 3420
}

3421
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3422
{
3423
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3424
	struct pci_dev *pdev = dev_priv->drm.pdev;
3425
	unsigned int size;
3426
	u16 snb_gmch_ctl;
3427
	int err;
3428

3429 3430 3431 3432
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3433

3434 3435
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3436
	 */
3437
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3438
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3439
		return -ENXIO;
3440 3441
	}

3442 3443 3444 3445 3446
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3447
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3448

3449
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3450
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3451

3452 3453 3454 3455
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3456

3457 3458
	ggtt->invalidate = gen6_ggtt_invalidate;

3459
	if (HAS_EDRAM(dev_priv))
3460
		ggtt->vm.pte_encode = iris_pte_encode;
3461
	else if (IS_HASWELL(dev_priv))
3462
		ggtt->vm.pte_encode = hsw_pte_encode;
3463
	else if (IS_VALLEYVIEW(dev_priv))
3464
		ggtt->vm.pte_encode = byt_pte_encode;
3465
	else if (INTEL_GEN(dev_priv) >= 7)
3466
		ggtt->vm.pte_encode = ivb_pte_encode;
3467
	else
3468
		ggtt->vm.pte_encode = snb_pte_encode;
3469

3470 3471 3472 3473 3474
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3475
	return ggtt_probe_common(ggtt, size);
3476 3477
}

3478
static void i915_gmch_remove(struct i915_address_space *vm)
3479
{
3480
	intel_gmch_remove();
3481
}
3482

3483
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3484
{
3485
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3486
	phys_addr_t gmadr_base;
3487 3488
	int ret;

3489
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3490 3491 3492 3493 3494
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3495
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3496

3497 3498 3499 3500
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3501
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3502 3503 3504 3505
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3506

3507 3508
	ggtt->invalidate = gmch_ggtt_invalidate;

3509 3510 3511 3512 3513
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3514
	if (unlikely(ggtt->do_idle_maps))
3515 3516
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3517 3518 3519
	return 0;
}

3520
/**
3521
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3522
 * @dev_priv: i915 device
3523
 */
3524
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3525
{
3526
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3527 3528
	int ret;

3529 3530
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3531

3532 3533 3534 3535 3536 3537
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3538
	if (ret)
3539 3540
		return ret;

3541 3542 3543 3544 3545
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3546
	if (USES_GUC(dev_priv)) {
3547 3548 3549
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3550 3551
	}

3552
	if ((ggtt->vm.total - 1) >> 32) {
3553
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3554
			  " of address space! Found %lldM!\n",
3555 3556 3557 3558
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3559 3560
	}

3561
	if (ggtt->mappable_end > ggtt->vm.total) {
3562
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3563
			  " aperture=%pa, total=%llx\n",
3564 3565
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3566 3567
	}

3568
	/* GMADR is the PCI mmio aperture into the global GTT. */
3569
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3570
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3571
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3572
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3573
	if (intel_vtd_active())
3574
		DRM_INFO("VT-d active for gfx access\n");
3575 3576

	return 0;
3577 3578 3579 3580
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3581
 * @dev_priv: i915 device
3582
 */
3583
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3584 3585 3586 3587
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3588 3589
	stash_init(&dev_priv->mm.wc_stash);

3590 3591 3592 3593
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3594
	 */
C
Chris Wilson 已提交
3595
	mutex_lock(&dev_priv->drm.struct_mutex);
3596
	i915_address_space_init(&ggtt->vm, dev_priv);
3597
	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3598
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3599
	mutex_unlock(&dev_priv->drm.struct_mutex);
3600

3601 3602
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3603
				dev_priv->ggtt.mappable_end)) {
3604 3605 3606 3607
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3608
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3609

3610 3611 3612 3613
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3614
	ret = i915_gem_init_stolen(dev_priv);
3615 3616 3617 3618
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3619 3620

out_gtt_cleanup:
3621
	ggtt->vm.cleanup(&ggtt->vm);
3622
	return ret;
3623
}
3624

3625
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3626
{
3627
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3628 3629 3630 3631 3632
		return -EIO;

	return 0;
}

3633 3634
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3635 3636
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3637
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3638 3639

	i915_ggtt_invalidate(i915);
3640 3641 3642 3643
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3644 3645 3646 3647
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3648 3649

	i915_ggtt_invalidate(i915);
3650 3651
}

3652
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3653
{
3654
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3655
	struct i915_vma *vma, *vn;
3656

3657
	i915_check_and_clear_faults(dev_priv);
3658 3659

	/* First fill our portion of the GTT with scratch pages */
3660
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3661

3662
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3663 3664

	/* clflush objects bound into the GGTT and rebind them. */
3665 3666
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3667
		struct drm_i915_gem_object *obj = vma->obj;
3668

3669 3670
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3671

3672 3673
		if (!i915_vma_unbind(vma))
			continue;
3674

3675 3676 3677 3678 3679
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3680
	}
3681

3682
	ggtt->vm.closed = false;
3683
	i915_ggtt_invalidate(dev_priv);
3684

3685
	if (INTEL_GEN(dev_priv) >= 8) {
3686
		struct intel_ppat *ppat = &dev_priv->ppat;
3687

3688 3689
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3690 3691 3692 3693
		return;
	}
}

3694
static struct scatterlist *
3695
rotate_pages(const dma_addr_t *in, unsigned int offset,
3696
	     unsigned int width, unsigned int height,
3697
	     unsigned int stride,
3698
	     struct sg_table *st, struct scatterlist *sg)
3699 3700 3701 3702 3703
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3704
		src_idx = stride * (height - 1) + column;
3705 3706 3707 3708 3709 3710 3711
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3712
			sg_dma_address(sg) = in[offset + src_idx];
3713 3714
			sg_dma_len(sg) = PAGE_SIZE;
			sg = sg_next(sg);
3715
			src_idx -= stride;
3716 3717
		}
	}
3718 3719

	return sg;
3720 3721
}

3722 3723 3724
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3725
{
3726
	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3727
	unsigned int size = intel_rotation_info_size(rot_info);
3728 3729
	struct sgt_iter sgt_iter;
	dma_addr_t dma_addr;
3730 3731 3732
	unsigned long i;
	dma_addr_t *page_addr_list;
	struct sg_table *st;
3733
	struct scatterlist *sg;
3734
	int ret = -ENOMEM;
3735 3736

	/* Allocate a temporary list of source pages for random access. */
M
Michal Hocko 已提交
3737
	page_addr_list = kvmalloc_array(n_pages,
3738
					sizeof(dma_addr_t),
3739
					GFP_KERNEL);
3740 3741 3742 3743 3744 3745 3746 3747
	if (!page_addr_list)
		return ERR_PTR(ret);

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3748
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3749 3750 3751 3752 3753
	if (ret)
		goto err_sg_alloc;

	/* Populate source page list from the object. */
	i = 0;
C
Chris Wilson 已提交
3754
	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3755
		page_addr_list[i++] = dma_addr;
3756

3757
	GEM_BUG_ON(i != n_pages);
3758 3759 3760
	st->nents = 0;
	sg = st->sgl;

3761 3762 3763 3764
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3765 3766
	}

M
Michal Hocko 已提交
3767
	kvfree(page_addr_list);
3768 3769 3770 3771 3772 3773

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:
M
Michal Hocko 已提交
3774
	kvfree(page_addr_list);
3775

3776 3777
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3778

3779 3780
	return ERR_PTR(ret);
}
3781

3782
static noinline struct sg_table *
3783 3784 3785 3786
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3787
	struct scatterlist *sg, *iter;
3788
	unsigned int count = view->partial.size;
3789
	unsigned int offset;
3790 3791 3792 3793 3794 3795
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3796
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3797 3798 3799
	if (ret)
		goto err_sg_alloc;

3800
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3801 3802
	GEM_BUG_ON(!iter);

3803 3804
	sg = st->sgl;
	st->nents = 0;
3805 3806
	do {
		unsigned int len;
3807

3808 3809 3810 3811 3812 3813
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3814 3815

		st->nents++;
3816 3817 3818 3819 3820
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
			return st;
		}
3821

3822 3823 3824 3825
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3826 3827 3828 3829 3830 3831 3832

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3833
static int
3834
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3835
{
3836
	int ret;
3837

3838 3839 3840 3841 3842 3843 3844
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3845
	switch (vma->ggtt_view.type) {
3846 3847 3848
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3849 3850
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3851 3852
		return 0;

3853
	case I915_GGTT_VIEW_ROTATED:
3854
		vma->pages =
3855 3856 3857 3858
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3859
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3860 3861
		break;
	}
3862

3863 3864
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3865 3866
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3867 3868
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3869
	}
3870
	return ret;
3871 3872
}

3873 3874
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3909
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3910
	GEM_BUG_ON(drm_mm_node_allocated(node));
3911 3912 3913 3914 3915 3916 3917 3918 3919

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3920 3921 3922
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3923 3924 3925 3926 3927 3928 3929
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3955 3956
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3957 3958 3959 3960 3961 3962 3963 3964 3965
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3966
 *         must be #I915_GTT_PAGE_SIZE aligned
3967 3968 3969
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3970 3971 3972 3973 3974 3975
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3976 3977
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3994
	enum drm_mm_insert_mode mode;
3995
	u64 offset;
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4006
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4007
	GEM_BUG_ON(drm_mm_node_allocated(node));
4008 4009 4010 4011 4012 4013 4014

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4015 4016 4017 4018 4019
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
		mode = DRM_MM_INSERT_HIGH;
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4031 4032 4033
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4034 4035 4036
	if (err != -ENOSPC)
		return err;

4037 4038 4039
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4069 4070 4071 4072 4073
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4074 4075 4076
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4077
}
4078 4079 4080

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4081
#include "selftests/i915_gem_gtt.c"
4082
#endif