i915_gem_gtt.c 99.3 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34
#include <asm/set_memory.h>
C
Chris Wilson 已提交
35
#include <asm/smp.h>
L
Laura Abbott 已提交
36

37
#include <drm/i915_drm.h>
38

39
#include "display/intel_frontbuffer.h"
40
#include "gt/intel_gt.h"
41

42
#include "i915_drv.h"
43
#include "i915_scatterlist.h"
44
#include "i915_trace.h"
45
#include "i915_vgpu.h"
46

47
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
48

49 50 51 52 53 54
#if IS_ENABLED(CONFIG_DRM_I915_TRACE_GTT)
#define DBG(...) trace_printk(__VA_ARGS__)
#else
#define DBG(...)
#endif

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
91 92 93
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

116 117
#define as_pd(x) container_of((x), typeof(struct i915_page_directory), pt)

118 119 120
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

121
static void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
122
{
123
	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
124

125 126
	/*
	 * Note that as an uncached mmio write, this will flush the
127 128
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
129
	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
130 131
}

132
static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
133
{
134
	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
135
	struct drm_i915_private *i915 = ggtt->vm.i915;
136

137
	gen6_ggtt_invalidate(ggtt);
138 139 140 141 142 143

	if (INTEL_GEN(i915) >= 12)
		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
	else
		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
144 145
}

146
static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
147 148 149 150
{
	intel_gtt_chipset_flush();
}

151 152 153
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
154
{
155
	u32 pte_flags;
156 157
	int err;

158
	if (!i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND)) {
159 160 161 162 163
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
164

165
	/* Applicable to VLV, and gen8+ */
166
	pte_flags = 0;
167
	if (i915_gem_object_is_readonly(vma->obj))
168 169
		pte_flags |= PTE_READ_ONLY;

170
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
171
	wmb();
172 173

	return 0;
174 175 176 177
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
178
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
179
}
180

181 182 183 184 185 186
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

187 188
	vma->page_sizes = vma->obj->mm.page_sizes;

189 190 191 192 193 194 195 196 197 198 199 200
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
201 202

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
203 204
}

205 206 207
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
208
{
209 210 211 212
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
213 214 215

	switch (level) {
	case I915_CACHE_NONE:
216
		pte |= PPAT_UNCACHED;
217 218
		break;
	case I915_CACHE_WT:
219
		pte |= PPAT_DISPLAY_ELLC;
220 221
		break;
	default:
222
		pte |= PPAT_CACHED;
223 224 225
		break;
	}

B
Ben Widawsky 已提交
226 227 228
	return pte;
}

229 230
static u64 gen8_pde_encode(const dma_addr_t addr,
			   const enum i915_cache_level level)
B
Ben Widawsky 已提交
231
{
232
	u64 pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
233 234
	pde |= addr;
	if (level != I915_CACHE_NONE)
235
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
236
	else
237
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
238 239 240
	return pde;
}

241 242 243
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
244
{
245
	gen6_pte_t pte = GEN6_PTE_VALID;
246
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
247 248

	switch (level) {
249 250 251 252 253 254 255 256
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
257
		MISSING_CASE(level);
258 259 260 261 262
	}

	return pte;
}

263 264 265
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
266
{
267
	gen6_pte_t pte = GEN6_PTE_VALID;
268 269 270 271 272
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
273 274 275 276 277
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
278
		pte |= GEN6_PTE_UNCACHED;
279 280
		break;
	default:
281
		MISSING_CASE(level);
282 283
	}

284 285 286
	return pte;
}

287 288 289
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
290
{
291
	gen6_pte_t pte = GEN6_PTE_VALID;
292 293
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

294 295
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
296 297 298 299 300 301 302

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

303 304 305
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
306
{
307
	gen6_pte_t pte = GEN6_PTE_VALID;
308
	pte |= HSW_PTE_ADDR_ENCODE(addr);
309 310

	if (level != I915_CACHE_NONE)
311
		pte |= HSW_WB_LLC_AGE3;
312 313 314 315

	return pte;
}

316 317 318
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
319
{
320
	gen6_pte_t pte = GEN6_PTE_VALID;
321 322
	pte |= HSW_PTE_ADDR_ENCODE(addr);

323 324 325 326
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
327
		pte |= HSW_WT_ELLC_LLC_AGE3;
328 329
		break;
	default:
330
		pte |= HSW_WB_ELLC_LLC_AGE3;
331 332
		break;
	}
333 334 335 336

	return pte;
}

337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
357
	unsigned int nr;
358 359 360

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

361
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
362 363 364 365 366 367 368 369 370 371
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

372
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
373
{
374 375
	struct pagevec stack;
	struct page *page;
376

377 378
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
379

380 381 382
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
383 384 385 386 387

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
388 389 390
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
391

392
	/*
393
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
394 395 396 397 398 399
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
400
	pagevec_init(&stack);
401 402
	do {
		struct page *page;
403

404 405 406 407
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

408 409
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
410

411 412
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
413

414
		/* Merge spare WC pages to the global stash */
415 416
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
417

418 419 420
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
421
	}
422

423 424 425 426 427 428 429
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
430 431
}

432 433
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
434
{
435 436
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
437

438
	lockdep_assert_held(&vm->free_pages.lock);
439
	GEM_BUG_ON(!pagevec_count(pvec));
440

441
	if (vm->pt_kmap_wc) {
442 443
		/*
		 * When we use WC, first fill up the global stash and then
444 445
		 * only if full immediately free the overflow.
		 */
446
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
447

448 449 450 451 452 453 454 455
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
456

457 458 459 460 461 462 463 464 465 466
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
467
		set_pages_array_wb(pvec->pages, pvec->nr);
468 469

		spin_lock(&vm->free_pages.lock);
470 471 472
	}

	__pagevec_release(pvec);
473 474 475 476
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
477 478 479 480 481 482 483 484
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
485
	spin_lock(&vm->free_pages.lock);
486
	while (!pagevec_space(&vm->free_pages.pvec))
487
		vm_free_pages_release(vm, false);
488 489
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
490 491 492
	spin_unlock(&vm->free_pages.lock);
}

493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);

	mutex_destroy(&vm->mutex);
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
{
508
	struct i915_vma *vma, *vn;
509 510

	mutex_lock(&vm->i915->drm.struct_mutex);
511 512 513
	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link)
		i915_vma_destroy(vma);
	GEM_BUG_ON(!list_empty(&vm->bound_list));
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	mutex_unlock(&vm->i915->drm.struct_mutex);
}

static void __i915_vm_release(struct work_struct *work)
{
	struct i915_address_space *vm =
		container_of(work, struct i915_address_space, rcu.work);

	ppgtt_destroy_vma(vm);

	vm->cleanup(vm);
	i915_address_space_fini(vm);

	kfree(vm);
}

void i915_vm_release(struct kref *kref)
{
	struct i915_address_space *vm =
		container_of(kref, struct i915_address_space, ref);

	GEM_BUG_ON(i915_is_ggtt(vm));
	trace_i915_ppgtt_release(vm);

	vm->closed = true;
	queue_rcu_work(vm->i915->wq, &vm->rcu);
}

542
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
543
{
544
	kref_init(&vm->ref);
545
	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
546

547 548 549 550 551 552
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
553
	lockdep_set_subclass(&vm->mutex, subclass);
554
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
555

556 557 558 559 560 561
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

562
	INIT_LIST_HEAD(&vm->bound_list);
563 564
}

565 566 567 568
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
569
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
570 571
	if (unlikely(!p->page))
		return -ENOMEM;
572

573 574 575
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
576
				      DMA_ATTR_SKIP_CPU_SYNC |
577
				      DMA_ATTR_NO_WARN);
578 579 580
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
581
	}
582 583

	return 0;
584 585
}

586
static int setup_page_dma(struct i915_address_space *vm,
587
			  struct i915_page_dma *p)
588
{
589
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
590 591
}

592
static void cleanup_page_dma(struct i915_address_space *vm,
593
			     struct i915_page_dma *p)
594
{
595 596
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
597 598
}

599
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
600

601 602
static void
fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
603
{
604
	kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
605 606
}

607 608 609 610 611
#define fill_px(px, v) fill_page_dma(px_base(px), (v), PAGE_SIZE / sizeof(u64))
#define fill32_px(px, v) do {						\
	u64 v__ = lower_32_bits(v);					\
	fill_px((px), v__ << 32 | v__);					\
} while (0)
612

613
static int
614
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
615
{
616
	unsigned long size;
617

618 619 620 621 622 623 624
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
625 626 627
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
628
	 */
629
	size = I915_GTT_PAGE_SIZE_4K;
630
	if (i915_vm_is_4lvl(vm) &&
631
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
632 633
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
634
	}
635 636 637
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
638
		unsigned int order = get_order(size);
639 640
		struct page *page;
		dma_addr_t addr;
641

642
		page = alloc_pages(gfp, order);
643
		if (unlikely(!page))
644
			goto skip;
645

646 647 648
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
649
					  DMA_ATTR_SKIP_CPU_SYNC |
650
					  DMA_ATTR_NO_WARN);
651 652
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
653

654 655
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
656

657 658
		vm->scratch[0].base.page = page;
		vm->scratch[0].base.daddr = addr;
659
		vm->scratch_order = order;
660 661 662 663 664 665 666 667 668 669 670 671 672
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
673 674
}

675
static void cleanup_scratch_page(struct i915_address_space *vm)
676
{
677 678
	struct i915_page_dma *p = px_base(&vm->scratch[0]);
	unsigned int order = vm->scratch_order;
679

680
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
681
		       PCI_DMA_BIDIRECTIONAL);
682
	__free_pages(p->page, order);
683 684
}

685 686
static void free_scratch(struct i915_address_space *vm)
{
687 688 689
	int i;

	if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
690 691
		return;

692 693 694 695 696
	for (i = 1; i <= vm->top; i++) {
		if (!px_dma(&vm->scratch[i]))
			break;
		cleanup_page_dma(vm, px_base(&vm->scratch[i]));
	}
697 698 699 700

	cleanup_scratch_page(vm);
}

701
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
702
{
703
	struct i915_page_table *pt;
704

705
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
706
	if (unlikely(!pt))
707 708
		return ERR_PTR(-ENOMEM);

709
	if (unlikely(setup_page_dma(vm, &pt->base))) {
710 711 712
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
713

714
	atomic_set(&pt->used, 0);
715 716 717
	return pt;
}

718
static struct i915_page_directory *__alloc_pd(size_t sz)
719
{
720
	struct i915_page_directory *pd;
721

722
	pd = kzalloc(sz, I915_GFP_ALLOW_FAIL);
723 724 725 726 727 728 729 730 731 732 733
	if (unlikely(!pd))
		return NULL;

	spin_lock_init(&pd->lock);
	return pd;
}

static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
{
	struct i915_page_directory *pd;

734
	pd = __alloc_pd(sizeof(*pd));
735
	if (unlikely(!pd))
736 737
		return ERR_PTR(-ENOMEM);

738
	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
739 740 741
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
742

743 744 745
	return pd;
}

746
static void free_pd(struct i915_address_space *vm, struct i915_page_dma *pd)
747
{
748
	cleanup_page_dma(vm, pd);
749
	kfree(pd);
750 751
}

752 753
#define free_px(vm, px) free_pd(vm, px_base(px))

754 755
static inline void
write_dma_entry(struct i915_page_dma * const pdma,
756
		const unsigned short idx,
757 758 759 760
		const u64 encoded_entry)
{
	u64 * const vaddr = kmap_atomic(pdma->page);

761
	vaddr[idx] = encoded_entry;
762 763 764 765 766
	kunmap_atomic(vaddr);
}

static inline void
__set_pd_entry(struct i915_page_directory * const pd,
767
	       const unsigned short idx,
768 769
	       struct i915_page_dma * const to,
	       u64 (*encode)(const dma_addr_t, const enum i915_cache_level))
770
{
771 772
	/* Each thread pre-pins the pd, and we may have a thread per pde. */
	GEM_BUG_ON(atomic_read(px_used(pd)) > 2 * ARRAY_SIZE(pd->entry));
773

774
	atomic_inc(px_used(pd));
775 776
	pd->entry[idx] = to;
	write_dma_entry(px_base(pd), idx, encode(to->daddr, I915_CACHE_LLC));
777 778
}

779 780
#define set_pd_entry(pd, idx, to) \
	__set_pd_entry((pd), (idx), px_base(to), gen8_pde_encode)
781

782
static inline void
783
clear_pd_entry(struct i915_page_directory * const pd,
784 785
	       const unsigned short idx,
	       const struct i915_page_scratch * const scratch)
786
{
787
	GEM_BUG_ON(atomic_read(px_used(pd)) == 0);
788

789 790
	write_dma_entry(px_base(pd), idx, scratch->encode);
	pd->entry[idx] = NULL;
791
	atomic_dec(px_used(pd));
792 793
}

794 795
static bool
release_pd_entry(struct i915_page_directory * const pd,
796
		 const unsigned short idx,
797
		 struct i915_page_table * const pt,
798
		 const struct i915_page_scratch * const scratch)
799 800 801
{
	bool free = false;

802 803 804
	if (atomic_add_unless(&pt->used, -1, 1))
		return false;

805
	spin_lock(&pd->lock);
806
	if (atomic_dec_and_test(&pt->used)) {
807
		clear_pd_entry(pd, idx, scratch);
808 809 810 811 812 813
		free = true;
	}
	spin_unlock(&pd->lock);

	return free;
}
814

815
static void gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
816
{
817
	struct drm_i915_private *dev_priv = ppgtt->vm.i915;
818 819 820 821 822 823 824 825
	enum vgt_g2v_type msg;
	int i;

	if (create)
		atomic_inc(px_used(ppgtt->pd)); /* never remove */
	else
		atomic_dec(px_used(ppgtt->pd));

826 827 828
	mutex_lock(&dev_priv->vgpu.lock);

	if (i915_vm_is_4lvl(&ppgtt->vm)) {
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		const u64 daddr = px_dma(ppgtt->pd);

		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);

			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

848
	/* g2v_notify atomically (via hv trap) consumes the message packet. */
849 850
	I915_WRITE(vgtif_reg(g2v_notify), msg);

851
	mutex_unlock(&dev_priv->vgpu.lock);
852 853
}

854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/* Index shifts into the pagetable are offset by GEN8_PTE_SHIFT [12] */
#define GEN8_PAGE_SIZE (SZ_4K) /* page and page-directory sizes are the same */
#define GEN8_PTE_SHIFT (ilog2(GEN8_PAGE_SIZE))
#define GEN8_PDES (GEN8_PAGE_SIZE / sizeof(u64))
#define gen8_pd_shift(lvl) ((lvl) * ilog2(GEN8_PDES))
#define gen8_pd_index(i, lvl) i915_pde_index((i), gen8_pd_shift(lvl))
#define __gen8_pte_shift(lvl) (GEN8_PTE_SHIFT + gen8_pd_shift(lvl))
#define __gen8_pte_index(a, lvl) i915_pde_index((a), __gen8_pte_shift(lvl))

static inline unsigned int
gen8_pd_range(u64 start, u64 end, int lvl, unsigned int *idx)
{
	const int shift = gen8_pd_shift(lvl);
	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);

	GEM_BUG_ON(start >= end);
	end += ~mask >> gen8_pd_shift(1);

	*idx = i915_pde_index(start, shift);
	if ((start ^ end) & mask)
		return GEN8_PDES - *idx;
	else
		return i915_pde_index(end, shift) - *idx;
}

static inline bool gen8_pd_contains(u64 start, u64 end, int lvl)
{
	const u64 mask = ~0ull << gen8_pd_shift(lvl + 1);

	GEM_BUG_ON(start >= end);
	return (start ^ end) & mask && (start & ~mask) == 0;
}

static inline unsigned int gen8_pt_count(u64 start, u64 end)
{
	GEM_BUG_ON(start >= end);
	if ((start ^ end) >> gen8_pd_shift(1))
		return GEN8_PDES - (start & (GEN8_PDES - 1));
	else
		return end - start;
}

896 897 898 899 900 901
static inline unsigned int gen8_pd_top_count(const struct i915_address_space *vm)
{
	unsigned int shift = __gen8_pte_shift(vm->top);
	return (vm->total + (1ull << shift) - 1) >> shift;
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static inline struct i915_page_directory *
gen8_pdp_for_page_index(struct i915_address_space * const vm, const u64 idx)
{
	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);

	if (vm->top == 2)
		return ppgtt->pd;
	else
		return i915_pd_entry(ppgtt->pd, gen8_pd_index(idx, vm->top));
}

static inline struct i915_page_directory *
gen8_pdp_for_page_address(struct i915_address_space * const vm, const u64 addr)
{
	return gen8_pdp_for_page_index(vm, addr >> GEN8_PTE_SHIFT);
}

919 920 921
static void __gen8_ppgtt_cleanup(struct i915_address_space *vm,
				 struct i915_page_directory *pd,
				 int count, int lvl)
922
{
923 924
	if (lvl) {
		void **pde = pd->entry;
925

926 927 928
		do {
			if (!*pde)
				continue;
929

930 931
			__gen8_ppgtt_cleanup(vm, *pde, GEN8_PDES, lvl - 1);
		} while (pde++, --count);
932 933
	}

934
	free_px(vm, pd);
935 936 937 938 939 940
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);

941
	if (intel_vgpu_active(vm->i915))
942 943
		gen8_ppgtt_notify_vgt(ppgtt, false);

944
	__gen8_ppgtt_cleanup(vm, ppgtt->pd, gen8_pd_top_count(vm), vm->top);
945 946 947
	free_scratch(vm);
}

948 949 950
static u64 __gen8_ppgtt_clear(struct i915_address_space * const vm,
			      struct i915_page_directory * const pd,
			      u64 start, const u64 end, int lvl)
951
{
952 953
	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
	unsigned int idx, len;
954

955 956
	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);

957
	len = gen8_pd_range(start, end, lvl--, &idx);
958
	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
959 960 961
	    __func__, vm, lvl + 1, start, end,
	    idx, len, atomic_read(px_used(pd)));
	GEM_BUG_ON(!len || len >= atomic_read(px_used(pd)));
962

963 964 965 966 967 968 969 970 971 972 973 974
	do {
		struct i915_page_table *pt = pd->entry[idx];

		if (atomic_fetch_inc(&pt->used) >> gen8_pd_shift(1) &&
		    gen8_pd_contains(start, end, lvl)) {
			DBG("%s(%p):{ lvl:%d, idx:%d, start:%llx, end:%llx } removing pd\n",
			    __func__, vm, lvl + 1, idx, start, end);
			clear_pd_entry(pd, idx, scratch);
			__gen8_ppgtt_cleanup(vm, as_pd(pt), I915_PDES, lvl);
			start += (u64)I915_PDES << gen8_pd_shift(lvl);
			continue;
		}
975

976 977 978 979 980 981
		if (lvl) {
			start = __gen8_ppgtt_clear(vm, as_pd(pt),
						   start, end, lvl);
		} else {
			unsigned int count;
			u64 *vaddr;
982

983
			count = gen8_pt_count(start, end);
984
			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } removing pte\n",
985 986 987 988
			    __func__, vm, lvl, start, end,
			    gen8_pd_index(start, 0), count,
			    atomic_read(&pt->used));
			GEM_BUG_ON(!count || count >= atomic_read(&pt->used));
989

990 991 992 993 994 995 996 997 998 999 1000
			vaddr = kmap_atomic_px(pt);
			memset64(vaddr + gen8_pd_index(start, 0),
				 vm->scratch[0].encode,
				 count);
			kunmap_atomic(vaddr);

			atomic_sub(count, &pt->used);
			start += count;
		}

		if (release_pd_entry(pd, idx, pt, scratch))
1001
			free_px(vm, pt);
1002 1003 1004
	} while (idx++, --len);

	return start;
1005
}
1006

1007 1008
static void gen8_ppgtt_clear(struct i915_address_space *vm,
			     u64 start, u64 length)
1009
{
1010 1011
	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1012
	GEM_BUG_ON(range_overflows(start, length, vm->total));
1013

1014 1015 1016 1017 1018 1019
	start >>= GEN8_PTE_SHIFT;
	length >>= GEN8_PTE_SHIFT;
	GEM_BUG_ON(length == 0);

	__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
			   start, start + length, vm->top);
1020
}
1021

1022 1023
static int __gen8_ppgtt_alloc(struct i915_address_space * const vm,
			      struct i915_page_directory * const pd,
1024
			      u64 * const start, const u64 end, int lvl)
1025
{
1026 1027 1028
	const struct i915_page_scratch * const scratch = &vm->scratch[lvl];
	struct i915_page_table *alloc = NULL;
	unsigned int idx, len;
1029
	int ret = 0;
1030

1031 1032
	GEM_BUG_ON(end > vm->total >> GEN8_PTE_SHIFT);

1033
	len = gen8_pd_range(*start, end, lvl--, &idx);
1034
	DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d }\n",
1035 1036 1037 1038
	    __func__, vm, lvl + 1, *start, end,
	    idx, len, atomic_read(px_used(pd)));
	GEM_BUG_ON(!len || (idx + len - 1) >> gen8_pd_shift(1));

1039
	spin_lock(&pd->lock);
1040 1041 1042
	GEM_BUG_ON(!atomic_read(px_used(pd))); /* Must be pinned! */
	do {
		struct i915_page_table *pt = pd->entry[idx];
1043

1044
		if (!pt) {
1045
			spin_unlock(&pd->lock);
1046

1047 1048
			DBG("%s(%p):{ lvl:%d, idx:%d } allocating new tree\n",
			    __func__, vm, lvl + 1, idx);
1049

1050 1051 1052 1053 1054 1055 1056 1057 1058
			pt = fetch_and_zero(&alloc);
			if (lvl) {
				if (!pt) {
					pt = &alloc_pd(vm)->pt;
					if (IS_ERR(pt)) {
						ret = PTR_ERR(pt);
						goto out;
					}
				}
1059

1060
				fill_px(pt, vm->scratch[lvl].encode);
1061
			} else {
1062 1063 1064 1065 1066 1067 1068
				if (!pt) {
					pt = alloc_pt(vm);
					if (IS_ERR(pt)) {
						ret = PTR_ERR(pt);
						goto out;
					}
				}
1069

1070 1071 1072 1073
				if (intel_vgpu_active(vm->i915) ||
				    gen8_pt_count(*start, end) < I915_PDES)
					fill_px(pt, vm->scratch[lvl].encode);
			}
1074

1075 1076 1077 1078 1079 1080
			spin_lock(&pd->lock);
			if (likely(!pd->entry[idx]))
				set_pd_entry(pd, idx, pt);
			else
				alloc = pt, pt = pd->entry[idx];
		}
1081

1082 1083 1084
		if (lvl) {
			atomic_inc(&pt->used);
			spin_unlock(&pd->lock);
1085

1086 1087 1088 1089 1090 1091
			ret = __gen8_ppgtt_alloc(vm, as_pd(pt),
						 start, end, lvl);
			if (unlikely(ret)) {
				if (release_pd_entry(pd, idx, pt, scratch))
					free_px(vm, pt);
				goto out;
1092
			}
1093

1094 1095 1096 1097 1098
			spin_lock(&pd->lock);
			atomic_dec(&pt->used);
			GEM_BUG_ON(!atomic_read(&pt->used));
		} else {
			unsigned int count = gen8_pt_count(*start, end);
1099

1100
			DBG("%s(%p):{ lvl:%d, start:%llx, end:%llx, idx:%d, len:%d, used:%d } inserting pte\n",
1101 1102 1103
			    __func__, vm, lvl, *start, end,
			    gen8_pd_index(*start, 0), count,
			    atomic_read(&pt->used));
1104

1105
			atomic_add(count, &pt->used);
1106 1107
			/* All other pdes may be simultaneously removed */
			GEM_BUG_ON(atomic_read(&pt->used) > 2 * I915_PDES);
1108 1109 1110 1111
			*start += count;
		}
	} while (idx++, --len);
	spin_unlock(&pd->lock);
1112 1113 1114
out:
	if (alloc)
		free_px(vm, alloc);
1115
	return ret;
1116 1117
}

1118 1119
static int gen8_ppgtt_alloc(struct i915_address_space *vm,
			    u64 start, u64 length)
1120
{
1121
	u64 from;
1122
	int err;
1123

1124 1125
	GEM_BUG_ON(!IS_ALIGNED(start, BIT_ULL(GEN8_PTE_SHIFT)));
	GEM_BUG_ON(!IS_ALIGNED(length, BIT_ULL(GEN8_PTE_SHIFT)));
1126
	GEM_BUG_ON(range_overflows(start, length, vm->total));
1127

1128 1129 1130
	start >>= GEN8_PTE_SHIFT;
	length >>= GEN8_PTE_SHIFT;
	GEM_BUG_ON(length == 0);
1131
	from = start;
1132

1133 1134
	err = __gen8_ppgtt_alloc(vm, i915_vm_to_ppgtt(vm)->pd,
				 &start, start + length, vm->top);
1135
	if (unlikely(err && from != start))
1136 1137
		__gen8_ppgtt_clear(vm, i915_vm_to_ppgtt(vm)->pd,
				   from, start, vm->top);
1138

1139
	return err;
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
}

static inline struct sgt_dma {
	struct scatterlist *sg;
	dma_addr_t dma, max;
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}

1151
static __always_inline u64
1152 1153 1154 1155 1156 1157
gen8_ppgtt_insert_pte(struct i915_ppgtt *ppgtt,
		      struct i915_page_directory *pdp,
		      struct sgt_dma *iter,
		      u64 idx,
		      enum i915_cache_level cache_level,
		      u32 flags)
1158 1159 1160 1161 1162
{
	struct i915_page_directory *pd;
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
	gen8_pte_t *vaddr;

1163 1164
	pd = i915_pd_entry(pdp, gen8_pd_index(idx, 2));
	vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1165
	do {
1166
		vaddr[gen8_pd_index(idx, 0)] = pte_encode | iter->dma;
1167 1168 1169 1170 1171

		iter->dma += I915_GTT_PAGE_SIZE;
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
1172
				idx = 0;
1173 1174 1175 1176 1177 1178 1179
				break;
			}

			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
		}

1180 1181
		if (gen8_pd_index(++idx, 0) == 0) {
			if (gen8_pd_index(idx, 1) == 0) {
1182
				/* Limited by sg length for 3lvl */
1183
				if (gen8_pd_index(idx, 2) == 0)
1184 1185
					break;

1186
				pd = pdp->entry[gen8_pd_index(idx, 2)];
1187 1188 1189
			}

			kunmap_atomic(vaddr);
1190
			vaddr = kmap_atomic_px(i915_pt_entry(pd, gen8_pd_index(idx, 1)));
1191 1192 1193 1194
		}
	} while (1);
	kunmap_atomic(vaddr);

1195
	return idx;
1196 1197
}

1198 1199
static void gen8_ppgtt_insert_huge(struct i915_vma *vma,
				   struct sgt_dma *iter,
1200 1201
				   enum i915_cache_level cache_level,
				   u32 flags)
1202
{
1203
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1204 1205 1206
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

1207 1208
	GEM_BUG_ON(!i915_vm_is_4lvl(vma->vm));

1209
	do {
1210 1211 1212
		struct i915_page_directory * const pdp =
			gen8_pdp_for_page_address(vma->vm, start);
		struct i915_page_directory * const pd =
1213
			i915_pd_entry(pdp, __gen8_pte_index(start, 2));
1214
		gen8_pte_t encode = pte_encode;
1215 1216
		unsigned int maybe_64K = -1;
		unsigned int page_size;
1217
		gen8_pte_t *vaddr;
1218
		u16 index;
1219 1220 1221

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1222 1223 1224
		    rem >= I915_GTT_PAGE_SIZE_2M &&
		    !__gen8_pte_index(start, 0)) {
			index = __gen8_pte_index(start, 1);
1225
			encode |= GEN8_PDE_PS_2M;
1226
			page_size = I915_GTT_PAGE_SIZE_2M;
1227 1228 1229

			vaddr = kmap_atomic_px(pd);
		} else {
1230 1231
			struct i915_page_table *pt =
				i915_pt_entry(pd, __gen8_pte_index(start, 1));
1232

1233
			index = __gen8_pte_index(start, 0);
1234 1235
			page_size = I915_GTT_PAGE_SIZE;

1236 1237 1238 1239
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1240 1241
			     rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE))
				maybe_64K = __gen8_pte_index(start, 1);
1242

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1262
				if (maybe_64K != -1 && index < I915_PDES &&
1263 1264
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1265 1266
				       rem >= (I915_PDES - index) * I915_GTT_PAGE_SIZE)))
					maybe_64K = -1;
1267

1268 1269 1270
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
1271
		} while (rem >= page_size && index < I915_PDES);
1272 1273

		kunmap_atomic(vaddr);
1274 1275 1276 1277 1278 1279 1280

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
1281 1282
		if (maybe_64K != -1 &&
		    (index == I915_PDES ||
1283 1284 1285 1286 1287
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
1288
			vaddr[maybe_64K] |= GEN8_PDE_IPS_64K;
1289
			kunmap_atomic(vaddr);
1290
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1304
				encode = vma->vm->scratch[0].encode;
1305
				vaddr = kmap_atomic_px(i915_pt_entry(pd, maybe_64K));
M
Matthew Auld 已提交
1306 1307 1308 1309 1310 1311

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1312
		}
1313 1314

		vma->page_sizes.gtt |= page_size;
1315 1316 1317
	} while (iter->sg);
}

1318 1319 1320 1321
static void gen8_ppgtt_insert(struct i915_address_space *vm,
			      struct i915_vma *vma,
			      enum i915_cache_level cache_level,
			      u32 flags)
1322
{
1323
	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(vm);
1324
	struct sgt_dma iter = sgt_dma(vma);
1325

1326
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1327 1328
		gen8_ppgtt_insert_huge(vma, &iter, cache_level, flags);
	} else  {
1329
		u64 idx = vma->node.start >> GEN8_PTE_SHIFT;
1330

1331 1332 1333 1334 1335 1336 1337
		do {
			struct i915_page_directory * const pdp =
				gen8_pdp_for_page_index(vm, idx);

			idx = gen8_ppgtt_insert_pte(ppgtt, pdp, &iter, idx,
						    cache_level, flags);
		} while (idx);
1338 1339

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1340
	}
1341 1342
}

1343 1344
static int gen8_init_scratch(struct i915_address_space *vm)
{
1345
	int ret;
1346
	int i;
1347

1348 1349 1350 1351 1352 1353
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
1354 1355
	    vm->i915->kernel_context->vm) {
		struct i915_address_space *clone = vm->i915->kernel_context->vm;
1356 1357 1358

		GEM_BUG_ON(!clone->has_read_only);

1359
		vm->scratch_order = clone->scratch_order;
1360 1361
		memcpy(vm->scratch, clone->scratch, sizeof(vm->scratch));
		px_dma(&vm->scratch[0]) = 0; /* no xfer of ownership */
1362 1363 1364
		return 0;
	}

1365
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1366 1367
	if (ret)
		return ret;
1368

1369 1370 1371
	vm->scratch[0].encode =
		gen8_pte_encode(px_dma(&vm->scratch[0]),
				I915_CACHE_LLC, vm->has_read_only);
1372

1373 1374 1375
	for (i = 1; i <= vm->top; i++) {
		if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[i]))))
			goto free_scratch;
1376

1377 1378 1379 1380
		fill_px(&vm->scratch[i], vm->scratch[i - 1].encode);
		vm->scratch[i].encode =
			gen8_pde_encode(px_dma(&vm->scratch[i]),
					I915_CACHE_LLC);
1381 1382
	}

1383
	return 0;
1384

1385 1386 1387
free_scratch:
	free_scratch(vm);
	return -ENOMEM;
1388 1389
}

1390
static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1391
{
1392
	struct i915_address_space *vm = &ppgtt->vm;
1393 1394 1395 1396
	struct i915_page_directory *pd = ppgtt->pd;
	unsigned int idx;

	GEM_BUG_ON(vm->top != 2);
1397
	GEM_BUG_ON(gen8_pd_top_count(vm) != GEN8_3LVL_PDPES);
1398 1399 1400

	for (idx = 0; idx < GEN8_3LVL_PDPES; idx++) {
		struct i915_page_directory *pde;
1401

1402 1403 1404
		pde = alloc_pd(vm);
		if (IS_ERR(pde))
			return PTR_ERR(pde);
1405

1406 1407 1408
		fill_px(pde, vm->scratch[1].encode);
		set_pd_entry(pd, idx, pde);
		atomic_inc(px_used(pde)); /* keep pinned */
1409
	}
1410
	wmb();
1411

1412
	return 0;
1413 1414
}

1415
static void ppgtt_init(struct i915_ppgtt *ppgtt, struct intel_gt *gt)
1416
{
1417 1418 1419
	struct drm_i915_private *i915 = gt->i915;

	ppgtt->vm.gt = gt;
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1432 1433 1434
static struct i915_page_directory *
gen8_alloc_top_pd(struct i915_address_space *vm)
{
1435
	const unsigned int count = gen8_pd_top_count(vm);
1436 1437
	struct i915_page_directory *pd;

1438
	GEM_BUG_ON(count > ARRAY_SIZE(pd->entry));
1439

1440 1441 1442 1443 1444 1445 1446 1447
	pd = __alloc_pd(offsetof(typeof(*pd), entry[count]));
	if (unlikely(!pd))
		return ERR_PTR(-ENOMEM);

	if (unlikely(setup_page_dma(vm, px_base(pd)))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
1448

1449
	fill_page_dma(px_base(pd), vm->scratch[vm->top].encode, count);
1450
	atomic_inc(px_used(pd)); /* mark as pinned */
1451 1452 1453
	return pd;
}

1454
/*
1455 1456 1457 1458
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1459
 *
1460
 */
1461
static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1462
{
1463
	struct i915_ppgtt *ppgtt;
1464 1465 1466 1467 1468 1469
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1470
	ppgtt_init(ppgtt, &i915->gt);
1471
	ppgtt->vm.top = i915_vm_is_4lvl(&ppgtt->vm) ? 3 : 2;
1472

1473 1474 1475 1476 1477
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
1478 1479
	 *
	 * Gen12 has inherited the same read-only fault issue from gen11.
1480
	 */
1481
	ppgtt->vm.has_read_only = !IS_GEN_RANGE(i915, 11, 12);
1482

1483 1484 1485
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1486
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1487
		ppgtt->vm.pt_kmap_wc = true;
1488

1489 1490 1491
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1492

1493 1494 1495
	ppgtt->pd = gen8_alloc_top_pd(&ppgtt->vm);
	if (IS_ERR(ppgtt->pd)) {
		err = PTR_ERR(ppgtt->pd);
1496
		goto err_free_scratch;
1497
	}
1498

1499
	if (!i915_vm_is_4lvl(&ppgtt->vm)) {
1500 1501 1502
		err = gen8_preallocate_top_level_pdp(ppgtt);
		if (err)
			goto err_free_pd;
1503
	}
1504

1505
	ppgtt->vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1506
	ppgtt->vm.insert_entries = gen8_ppgtt_insert;
1507
	ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc;
1508 1509
	ppgtt->vm.clear_range = gen8_ppgtt_clear;

1510
	if (intel_vgpu_active(i915))
1511 1512
		gen8_ppgtt_notify_vgt(ppgtt, true);

1513
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1514

1515
	return ppgtt;
1516

1517
err_free_pd:
1518
	__gen8_ppgtt_cleanup(&ppgtt->vm, ppgtt->pd,
1519
			     gen8_pd_top_count(&ppgtt->vm), ppgtt->vm.top);
1520
err_free_scratch:
1521
	free_scratch(&ppgtt->vm);
1522 1523 1524
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1525 1526
}

1527
/* Write pde (index) from the page directory @pd to the page table @pt */
1528
static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
C
Chris Wilson 已提交
1529 1530
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1531
{
1532
	/* Caller needs to make sure the write completes if necessary */
1533 1534
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1535
}
B
Ben Widawsky 已提交
1536

1537
static void gen7_ppgtt_enable(struct intel_gt *gt)
B
Ben Widawsky 已提交
1538
{
1539 1540
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
1541
	struct intel_engine_cs *engine;
1542
	enum intel_engine_id id;
1543
	u32 ecochk;
B
Ben Widawsky 已提交
1544

1545
	intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1546

1547 1548
	ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
	if (IS_HASWELL(i915)) {
1549 1550 1551 1552 1553
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
1554
	intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1555

1556
	for_each_engine(engine, i915, id) {
B
Ben Widawsky 已提交
1557
		/* GFX_MODE is per-ring on gen7+ */
1558 1559 1560
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1561
	}
1562
}
B
Ben Widawsky 已提交
1563

1564
static void gen6_ppgtt_enable(struct intel_gt *gt)
1565
{
1566
	struct intel_uncore *uncore = gt->uncore;
1567

1568 1569 1570 1571
	intel_uncore_rmw(uncore,
			 GAC_ECO_BITS,
			 0,
			 ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1572

1573 1574 1575 1576
	intel_uncore_rmw(uncore,
			 GAB_CTL,
			 0,
			 GAB_CTL_CONT_AFTER_PAGEFAULT);
1577

1578 1579 1580 1581
	intel_uncore_rmw(uncore,
			 GAM_ECOCHK,
			 0,
			 ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1582

1583 1584 1585 1586
	if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
		intel_uncore_write(uncore,
				   GFX_MODE,
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1587 1588
}

1589
/* PPGTT support for Sandybdrige/Gen6 and later */
1590
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1591
				   u64 start, u64 length)
1592
{
1593 1594
	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1595
	const gen6_pte_t scratch_pte = vm->scratch[0].encode;
1596 1597
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1598
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1599

1600
	while (num_entries) {
1601 1602
		struct i915_page_table * const pt =
			i915_pt_entry(ppgtt->base.pd, pde++);
1603
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1604
		gen6_pte_t *vaddr;
1605

1606
		GEM_BUG_ON(px_base(pt) == px_base(&vm->scratch[1]));
1607 1608 1609

		num_entries -= count;

1610 1611
		GEM_BUG_ON(count > atomic_read(&pt->used));
		if (!atomic_sub_return(count, &pt->used))
1612
			ppgtt->scan_for_unused_pt = true;
1613

1614 1615
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1616 1617 1618 1619
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1620

1621
		vaddr = kmap_atomic_px(pt);
1622
		memset32(vaddr + pte, scratch_pte, count);
1623
		kunmap_atomic(vaddr);
1624

1625
		pte = 0;
1626
	}
1627 1628
}

1629
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1630
				      struct i915_vma *vma,
1631 1632
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1633
{
1634
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1635
	struct i915_page_directory * const pd = ppgtt->pd;
1636
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1637 1638
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1639
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1640
	struct sgt_dma iter = sgt_dma(vma);
1641 1642
	gen6_pte_t *vaddr;

1643
	GEM_BUG_ON(pd->entry[act_pt] == &vm->scratch[1]);
1644

1645
	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1646 1647
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1648

1649
		iter.dma += I915_GTT_PAGE_SIZE;
1650 1651 1652 1653
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1654

1655 1656 1657
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1658

1659
		if (++act_pte == GEN6_PTES) {
1660
			kunmap_atomic(vaddr);
1661
			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1662
			act_pte = 0;
D
Daniel Vetter 已提交
1663
		}
1664
	} while (1);
1665
	kunmap_atomic(vaddr);
1666 1667

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1668 1669
}

1670
static int gen6_alloc_va_range(struct i915_address_space *vm,
1671
			       u64 start, u64 length)
1672
{
1673
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1674
	struct i915_page_directory * const pd = ppgtt->base.pd;
1675
	struct i915_page_table *pt, *alloc = NULL;
1676
	intel_wakeref_t wakeref;
1677 1678 1679
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1680
	int ret = 0;
1681

1682
	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1683

1684 1685
	spin_lock(&pd->lock);
	gen6_for_each_pde(pt, pd, start, length, pde) {
1686 1687
		const unsigned int count = gen6_pte_count(start, length);

1688
		if (px_base(pt) == px_base(&vm->scratch[1])) {
1689
			spin_unlock(&pd->lock);
1690

1691 1692 1693 1694 1695
			pt = fetch_and_zero(&alloc);
			if (!pt)
				pt = alloc_pt(vm);
			if (IS_ERR(pt)) {
				ret = PTR_ERR(pt);
1696
				goto unwind_out;
1697
			}
1698

1699
			fill32_px(pt, vm->scratch[0].encode);
1700

1701
			spin_lock(&pd->lock);
1702
			if (pd->entry[pde] == &vm->scratch[1]) {
1703
				pd->entry[pde] = pt;
1704 1705 1706 1707 1708 1709
				if (i915_vma_is_bound(ppgtt->vma,
						      I915_VMA_GLOBAL_BIND)) {
					gen6_write_pde(ppgtt, pde, pt);
					flush = true;
				}
			} else {
1710 1711
				alloc = pt;
				pt = pd->entry[pde];
1712
			}
1713
		}
1714

1715
		atomic_add(count, &pt->used);
1716
	}
1717
	spin_unlock(&pd->lock);
1718

1719
	if (flush)
1720
		gen6_ggtt_invalidate(vm->gt->ggtt);
1721

1722
	goto out;
1723 1724

unwind_out:
1725
	gen6_ppgtt_clear_range(vm, from, start - from);
1726 1727
out:
	if (alloc)
1728
		free_px(vm, alloc);
1729 1730
	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
	return ret;
1731 1732
}

1733
static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1734
{
1735
	struct i915_address_space * const vm = &ppgtt->base.vm;
1736
	struct i915_page_directory * const pd = ppgtt->base.pd;
1737
	int ret;
1738

1739
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1740 1741
	if (ret)
		return ret;
1742

1743 1744 1745
	vm->scratch[0].encode =
		vm->pte_encode(px_dma(&vm->scratch[0]),
			       I915_CACHE_NONE, PTE_READ_ONLY);
1746

1747
	if (unlikely(setup_page_dma(vm, px_base(&vm->scratch[1])))) {
1748
		cleanup_scratch_page(vm);
1749
		return -ENOMEM;
1750
	}
1751

1752 1753
	fill32_px(&vm->scratch[1], vm->scratch[0].encode);
	memset_p(pd->entry, &vm->scratch[1], I915_PDES);
1754 1755 1756 1757

	return 0;
}

1758
static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1759
{
1760
	struct i915_page_directory * const pd = ppgtt->base.pd;
1761 1762
	struct i915_page_dma * const scratch =
		px_base(&ppgtt->base.vm.scratch[1]);
1763
	struct i915_page_table *pt;
1764
	u32 pde;
1765

1766
	gen6_for_all_pdes(pt, pd, pde)
1767
		if (px_base(pt) != scratch)
1768
			free_px(&ppgtt->base.vm, pt);
1769 1770 1771 1772
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
1773
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1774
	struct drm_i915_private *i915 = vm->i915;
1775

1776
	/* FIXME remove the struct_mutex to bring the locking under control */
1777 1778 1779
	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(ppgtt->vma);
	mutex_unlock(&i915->drm.struct_mutex);
1780 1781

	gen6_ppgtt_free_pd(ppgtt);
1782
	free_scratch(vm);
1783 1784

	mutex_destroy(&ppgtt->pin_mutex);
1785
	kfree(ppgtt->base.pd);
1786 1787
}

1788
static int pd_vma_set_pages(struct i915_vma *vma)
1789
{
1790 1791 1792
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1793

1794 1795 1796
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1797

1798 1799 1800 1801 1802 1803 1804 1805
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1806
	struct gen6_ppgtt *ppgtt = vma->private;
1807
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1808 1809
	struct i915_page_table *pt;
	unsigned int pde;
1810

1811
	px_base(ppgtt->base.pd)->ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1812
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1813

1814
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1815
		gen6_write_pde(ppgtt, pde, pt);
1816

1817
	gen6_ggtt_invalidate(ggtt);
1818

1819
	return 0;
1820
}
1821

1822
static void pd_vma_unbind(struct i915_vma *vma)
1823
{
1824
	struct gen6_ppgtt *ppgtt = vma->private;
1825
	struct i915_page_directory * const pd = ppgtt->base.pd;
1826 1827
	struct i915_page_dma * const scratch =
		px_base(&ppgtt->base.vm.scratch[1]);
1828 1829 1830 1831 1832 1833 1834
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
1835
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
1836
		if (px_base(pt) == scratch || atomic_read(&pt->used))
1837 1838
			continue;

1839
		free_px(&ppgtt->base.vm, pt);
1840
		pd->entry[pde] = scratch;
1841 1842 1843
	}

	ppgtt->scan_for_unused_pt = false;
1844 1845 1846 1847 1848 1849 1850 1851 1852
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

1853
static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
1854 1855
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
1856
	struct i915_ggtt *ggtt = ppgtt->base.vm.gt->ggtt;
1857 1858 1859 1860 1861
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

1862
	vma = i915_vma_alloc();
1863 1864 1865
	if (!vma)
		return ERR_PTR(-ENOMEM);

1866
	i915_active_init(i915, &vma->active, NULL, NULL);
1867 1868 1869 1870 1871 1872 1873

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
1874
	atomic_set(&vma->flags, I915_VMA_GGTT);
1875 1876 1877
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
1878
	INIT_LIST_HEAD(&vma->closed_link);
1879

1880 1881
	return vma;
}
1882

1883
int gen6_ppgtt_pin(struct i915_ppgtt *base)
1884
{
1885
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1886
	int err = 0;
1887

1888 1889
	GEM_BUG_ON(ppgtt->base.vm.closed);

1890 1891 1892 1893 1894 1895
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
1896
	if (atomic_add_unless(&ppgtt->pin_count, 1, 0))
1897 1898
		return 0;

1899 1900 1901
	if (mutex_lock_interruptible(&ppgtt->pin_mutex))
		return -EINTR;

1902 1903 1904 1905 1906
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
1907 1908 1909 1910 1911 1912 1913 1914
	if (!atomic_read(&ppgtt->pin_count)) {
		err = i915_vma_pin(ppgtt->vma,
				   0, GEN6_PD_ALIGN,
				   PIN_GLOBAL | PIN_HIGH);
	}
	if (!err)
		atomic_inc(&ppgtt->pin_count);
	mutex_unlock(&ppgtt->pin_mutex);
1915 1916

	return err;
1917 1918
}

1919
void gen6_ppgtt_unpin(struct i915_ppgtt *base)
1920
{
1921
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1922

1923 1924 1925
	GEM_BUG_ON(!atomic_read(&ppgtt->pin_count));
	if (atomic_dec_and_test(&ppgtt->pin_count))
		i915_vma_unpin(ppgtt->vma);
1926 1927
}

1928
void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
1929
{
1930
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
1931

1932
	if (!atomic_read(&ppgtt->pin_count))
1933 1934 1935
		return;

	i915_vma_unpin(ppgtt->vma);
1936
	atomic_set(&ppgtt->pin_count, 0);
1937 1938
}

1939
static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1940
{
1941
	struct i915_ggtt * const ggtt = &i915->ggtt;
1942
	struct gen6_ppgtt *ppgtt;
1943 1944 1945 1946 1947 1948
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1949 1950
	mutex_init(&ppgtt->pin_mutex);

1951
	ppgtt_init(&ppgtt->base, &i915->gt);
1952
	ppgtt->base.vm.top = 1;
1953

1954
	ppgtt->base.vm.bind_async_flags = I915_VMA_LOCAL_BIND;
1955
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1956 1957 1958
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
1959

1960 1961
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

1962
	ppgtt->base.pd = __alloc_pd(sizeof(*ppgtt->base.pd));
1963 1964
	if (!ppgtt->base.pd) {
		err = -ENOMEM;
1965
		goto err_free;
1966 1967
	}

1968
	err = gen6_ppgtt_init_scratch(ppgtt);
1969
	if (err)
1970
		goto err_pd;
1971

1972 1973 1974
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
1975
		goto err_scratch;
1976
	}
1977

1978
	return &ppgtt->base;
1979

1980
err_scratch:
1981
	free_scratch(&ppgtt->base.vm);
1982 1983
err_pd:
	kfree(ppgtt->base.pd);
1984 1985 1986
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1987
}
1988

1989
static void gtt_write_workarounds(struct intel_gt *gt)
1990
{
1991 1992 1993
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;

1994 1995 1996 1997
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
1998
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
	if (IS_BROADWELL(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
	else if (IS_CHERRYVIEW(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
	else if (IS_GEN9_LP(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2011
	else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
2012 2013 2014
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
2027 2028
	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(i915) <= 10)
2029 2030 2031 2032
		intel_uncore_rmw(uncore,
				 GEN8_GAMW_ECO_DEV_RW_IA,
				 0,
				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053

	if (IS_GEN_RANGE(i915, 8, 11)) {
		bool can_use_gtt_cache = true;

		/*
		 * According to the BSpec if we use 2M/1G pages then we also
		 * need to disable the GTT cache. At least on BDW we can see
		 * visual corruption when using 2M pages, and not disabling the
		 * GTT cache.
		 */
		if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
			can_use_gtt_cache = false;

		/* WaGttCachingOffByDefault */
		intel_uncore_write(uncore,
				   HSW_GTT_CACHE_EN,
				   can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
		WARN_ON_ONCE(can_use_gtt_cache &&
			     intel_uncore_read(uncore,
					       HSW_GTT_CACHE_EN) == 0);
	}
2054 2055
}

2056
int i915_ppgtt_init_hw(struct intel_gt *gt)
2057
{
2058 2059 2060
	struct drm_i915_private *i915 = gt->i915;

	gtt_write_workarounds(gt);
2061

2062 2063 2064 2065
	if (IS_GEN(i915, 6))
		gen6_ppgtt_enable(gt);
	else if (IS_GEN(i915, 7))
		gen7_ppgtt_enable(gt);
2066

2067 2068
	return 0;
}
2069

2070 2071
static struct i915_ppgtt *
__ppgtt_create(struct drm_i915_private *i915)
2072 2073 2074 2075 2076 2077 2078
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2079
struct i915_ppgtt *
2080
i915_ppgtt_create(struct drm_i915_private *i915)
2081
{
2082
	struct i915_ppgtt *ppgtt;
2083

2084
	ppgtt = __ppgtt_create(i915);
2085 2086
	if (IS_ERR(ppgtt))
		return ppgtt;
2087

2088
	trace_i915_ppgtt_create(&ppgtt->vm);
2089

2090 2091 2092
	return ppgtt;
}

2093 2094 2095
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2096
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2097 2098 2099 2100
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2101
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2102 2103
}

2104
static void ggtt_suspend_mappings(struct i915_ggtt *ggtt)
2105
{
2106
	struct drm_i915_private *i915 = ggtt->vm.i915;
2107 2108 2109 2110

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2111
	if (INTEL_GEN(i915) < 6)
2112 2113
		return;

2114
	intel_gt_check_and_clear_faults(ggtt->vm.gt);
2115

2116
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2117

2118
	ggtt->invalidate(ggtt);
2119 2120
}

2121 2122 2123 2124 2125
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *i915)
{
	ggtt_suspend_mappings(&i915->ggtt);
}

2126 2127
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2128
{
2129
	do {
2130 2131 2132 2133
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2134 2135
			return 0;

2136 2137
		/*
		 * If the DMA remap fails, one cause can be that we have
2138 2139 2140 2141 2142 2143 2144
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2145
				 obj->base.size >> PAGE_SHIFT, NULL,
2146
				 I915_SHRINK_BOUND |
2147
				 I915_SHRINK_UNBOUND));
2148

2149
	return -ENOSPC;
2150 2151
}

2152
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2153 2154 2155 2156
{
	writeq(pte, addr);
}

2157 2158
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2159
				  u64 offset,
2160 2161 2162
				  enum i915_cache_level level,
				  u32 unused)
{
2163
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2164
	gen8_pte_t __iomem *pte =
2165
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2166

2167
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2168

2169
	ggtt->invalidate(ggtt);
2170 2171
}

B
Ben Widawsky 已提交
2172
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2173
				     struct i915_vma *vma,
2174
				     enum i915_cache_level level,
2175
				     u32 flags)
B
Ben Widawsky 已提交
2176
{
2177
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2178 2179
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2180
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2181
	dma_addr_t addr;
2182

2183 2184 2185 2186
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2187

2188
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2189
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2190
	for_each_sgt_daddr(addr, sgt_iter, vma->pages)
2191
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2192

2193 2194 2195
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2196
	 */
2197
	ggtt->invalidate(ggtt);
B
Ben Widawsky 已提交
2198 2199
}

2200 2201
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2202
				  u64 offset,
2203 2204 2205
				  enum i915_cache_level level,
				  u32 flags)
{
2206
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2207
	gen6_pte_t __iomem *pte =
2208
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2209

2210
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2211

2212
	ggtt->invalidate(ggtt);
2213 2214
}

2215 2216 2217 2218 2219 2220
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2221
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2222
				     struct i915_vma *vma,
2223 2224
				     enum i915_cache_level level,
				     u32 flags)
2225
{
2226
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2227
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2228
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2229
	struct sgt_iter iter;
2230
	dma_addr_t addr;
2231
	for_each_sgt_daddr(addr, iter, vma->pages)
2232
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2233

2234 2235 2236
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2237
	 */
2238
	ggtt->invalidate(ggtt);
2239 2240
}

2241
static void nop_clear_range(struct i915_address_space *vm,
2242
			    u64 start, u64 length)
2243 2244 2245
{
}

B
Ben Widawsky 已提交
2246
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2247
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2248
{
2249
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2250 2251
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2252
	const gen8_pte_t scratch_pte = vm->scratch[0].encode;
2253
	gen8_pte_t __iomem *gtt_base =
2254 2255
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2311
	struct i915_vma *vma;
2312
	enum i915_cache_level level;
2313
	u32 flags;
2314 2315 2316 2317 2318 2319
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2320
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2321 2322 2323 2324 2325 2326
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2327
					     struct i915_vma *vma,
2328
					     enum i915_cache_level level,
2329
					     u32 flags)
2330
{
2331
	struct insert_entries arg = { vm, vma, level, flags };
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2361
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2362
				  u64 start, u64 length)
2363
{
2364
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2365 2366
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2367
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2368 2369
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2370 2371 2372 2373 2374 2375 2376
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2377
	scratch_pte = vm->scratch[0].encode;
2378 2379 2380 2381
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2382 2383
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2384
				  u64 offset,
2385 2386 2387 2388 2389 2390 2391 2392 2393
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2394
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2395
				     struct i915_vma *vma,
2396 2397
				     enum i915_cache_level cache_level,
				     u32 unused)
2398 2399 2400 2401
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2402 2403
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2404 2405
}

2406
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2407
				  u64 start, u64 length)
2408
{
2409
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2410 2411
}

2412 2413 2414
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2415
{
2416
	struct drm_i915_private *i915 = vma->vm->i915;
2417
	struct drm_i915_gem_object *obj = vma->obj;
2418
	intel_wakeref_t wakeref;
2419
	u32 pte_flags;
2420

2421
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2422
	pte_flags = 0;
2423
	if (i915_gem_object_is_readonly(obj))
2424 2425
		pte_flags |= PTE_READ_ONLY;

2426
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2427
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2428

2429 2430
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2431 2432 2433 2434 2435
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2436
	atomic_or(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND, &vma->flags);
2437 2438 2439 2440

	return 0;
}

2441 2442 2443
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2444
	intel_wakeref_t wakeref;
2445

2446
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2447
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2448 2449
}

2450 2451 2452
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2453
{
2454
	struct drm_i915_private *i915 = vma->vm->i915;
2455
	u32 pte_flags;
2456
	int ret;
2457

2458
	/* Currently applicable only to VLV */
2459
	pte_flags = 0;
2460
	if (i915_gem_object_is_readonly(vma->obj))
2461
		pte_flags |= PTE_READ_ONLY;
2462

2463
	if (flags & I915_VMA_LOCAL_BIND) {
2464
		struct i915_ppgtt *alias = i915_vm_to_ggtt(vma->vm)->alias;
2465

2466
		if (!i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND)) {
2467 2468 2469
			ret = alias->vm.allocate_va_range(&alias->vm,
							  vma->node.start,
							  vma->size);
2470
			if (ret)
2471
				return ret;
2472 2473
		}

2474 2475
		alias->vm.insert_entries(&alias->vm, vma,
					 cache_level, pte_flags);
2476 2477
	}

2478
	if (flags & I915_VMA_GLOBAL_BIND) {
2479 2480
		intel_wakeref_t wakeref;

2481
		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2482 2483 2484
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2485
	}
2486

2487
	return 0;
2488 2489
}

2490
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2491
{
2492
	struct drm_i915_private *i915 = vma->vm->i915;
2493

2494
	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
2495
		struct i915_address_space *vm = vma->vm;
2496 2497
		intel_wakeref_t wakeref;

2498
		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2499
			vm->clear_range(vm, vma->node.start, vma->size);
2500
	}
2501

2502
	if (i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND)) {
2503 2504
		struct i915_address_space *vm =
			&i915_vm_to_ggtt(vma->vm)->alias->vm;
2505 2506 2507

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2508 2509
}

2510 2511
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2512
{
D
David Weinehall 已提交
2513 2514
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2515
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2516

2517
	if (unlikely(ggtt->do_idle_maps)) {
2518
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2519 2520 2521 2522 2523
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2524

2525
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2526
}
2527

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2538 2539
	vma->page_sizes = vma->obj->mm.page_sizes;

2540 2541 2542
	return 0;
}

2543 2544 2545 2546
static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
				   unsigned long color,
				   u64 *start,
				   u64 *end)
2547
{
M
Matthew Auld 已提交
2548
	if (i915_node_color_differs(node, color))
2549
		*start += I915_GTT_PAGE_SIZE;
2550

2551 2552 2553 2554 2555
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2556
	node = list_next_entry(node, node_list);
2557
	if (node->color != color)
2558
		*end -= I915_GTT_PAGE_SIZE;
2559
}
B
Ben Widawsky 已提交
2560

2561
static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
2562
{
2563
	struct i915_ppgtt *ppgtt;
2564 2565
	int err;

2566
	ppgtt = i915_ppgtt_create(ggtt->vm.i915);
2567 2568
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2569

2570
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2571 2572 2573 2574
		err = -ENODEV;
		goto err_ppgtt;
	}

2575 2576 2577 2578 2579 2580 2581 2582 2583
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2584

2585
	ggtt->alias = ppgtt;
2586
	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
2587

2588 2589
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2590

2591 2592
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2593

2594 2595
	ppgtt->vm.total = ggtt->vm.total;

2596 2597 2598
	return 0;

err_ppgtt:
2599
	i915_vm_put(&ppgtt->vm);
2600 2601 2602
	return err;
}

2603
static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
2604
{
2605
	struct drm_i915_private *i915 = ggtt->vm.i915;
2606
	struct i915_ppgtt *ppgtt;
2607

2608 2609
	mutex_lock(&i915->drm.struct_mutex);

2610
	ppgtt = fetch_and_zero(&ggtt->alias);
2611
	if (!ppgtt)
2612
		goto out;
2613

2614
	i915_vm_put(&ppgtt->vm);
2615

2616 2617
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2618 2619 2620

out:
	mutex_unlock(&i915->drm.struct_mutex);
2621 2622
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
{
	u64 size;
	int ret;

	if (!USES_GUC(ggtt->vm.i915))
		return 0;

	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
	size = ggtt->vm.total - GUC_GGTT_TOP;

	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
				   PIN_NOEVICT);
	if (ret)
		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");

	return ret;
}

static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
{
	if (drm_mm_node_allocated(&ggtt->uc_fw))
		drm_mm_remove_node(&ggtt->uc_fw);
}

2649 2650 2651 2652 2653 2654 2655
static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
{
	ggtt_release_guc_top(ggtt);
	drm_mm_remove_node(&ggtt->error_capture);
}

static int init_ggtt(struct i915_ggtt *ggtt)
2656
{
2657 2658 2659 2660 2661 2662 2663 2664 2665
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2666
	unsigned long hole_start, hole_end;
2667
	struct drm_mm_node *entry;
2668
	int ret;
2669

2670 2671 2672 2673 2674 2675 2676
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2677
			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
2678

2679
	ret = intel_vgt_balloon(ggtt);
2680 2681
	if (ret)
		return ret;
2682

2683
	/* Reserve a mappable slot for our lockless error capture */
2684
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2685 2686 2687
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2688 2689 2690
	if (ret)
		return ret;

2691 2692 2693 2694 2695 2696 2697
	/*
	 * The upper portion of the GuC address space has a sizeable hole
	 * (several MB) that is inaccessible by GuC. Reserve this range within
	 * GGTT as it can comfortably hold GuC/HuC firmware images.
	 */
	ret = ggtt_reserve_guc_top(ggtt);
	if (ret)
2698
		goto err;
2699

2700
	/* Clear any non-preallocated blocks */
2701
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2702 2703
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2704 2705
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2706 2707 2708
	}

	/* And finally clear the reserved guard page */
2709
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2710

2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
	return 0;

err:
	cleanup_init_ggtt(ggtt);
	return ret;
}

int i915_init_ggtt(struct drm_i915_private *i915)
{
	int ret;

	ret = init_ggtt(&i915->ggtt);
	if (ret)
		return ret;

	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
2727
		ret = init_aliasing_ppgtt(&i915->ggtt);
2728
		if (ret)
2729
			cleanup_init_ggtt(&i915->ggtt);
2730 2731
	}

2732
	return 0;
2733 2734
}

2735
static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
2736
{
2737
	struct drm_i915_private *i915 = ggtt->vm.i915;
2738 2739
	struct i915_vma *vma, *vn;

2740
	ggtt->vm.closed = true;
2741

2742 2743 2744
	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
	flush_workqueue(i915->wq);

2745
	mutex_lock(&i915->drm.struct_mutex);
2746

2747
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2748
		WARN_ON(i915_vma_unbind(vma));
2749

2750 2751 2752
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2753
	ggtt_release_guc_top(ggtt);
2754

2755
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2756
		intel_vgt_deballoon(ggtt);
2757
		i915_address_space_fini(&ggtt->vm);
2758 2759
	}

2760
	ggtt->vm.cleanup(&ggtt->vm);
2761

2762 2763 2764 2765 2766 2767 2768
	mutex_unlock(&i915->drm.struct_mutex);

	arch_phys_wc_del(ggtt->mtrr);
	io_mapping_fini(&ggtt->iomap);
}

/**
2769
 * i915_ggtt_driver_release - Clean up GGTT hardware initialization
2770
 * @i915: i915 device
2771
 */
2772
void i915_ggtt_driver_release(struct drm_i915_private *i915)
2773 2774 2775
{
	struct pagevec *pvec;

2776
	fini_aliasing_ppgtt(&i915->ggtt);
2777 2778 2779 2780

	ggtt_cleanup_hw(&i915->ggtt);

	pvec = &i915->mm.wc_stash.pvec;
2781 2782 2783 2784 2785
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2786
	i915_gem_cleanup_stolen(i915);
2787
}
2788

2789
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2790 2791 2792 2793 2794 2795
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2796
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2797 2798 2799 2800 2801
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2802 2803

#ifdef CONFIG_X86_32
2804
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2805 2806 2807 2808
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2809 2810 2811
	return bdw_gmch_ctl << 20;
}

2812
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2823
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2824
{
2825
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2826
	struct pci_dev *pdev = dev_priv->drm.pdev;
2827
	phys_addr_t phys_addr;
2828
	int ret;
B
Ben Widawsky 已提交
2829 2830

	/* For Modern GENs the PTEs and register space are split in the BAR */
2831
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2832

I
Imre Deak 已提交
2833
	/*
2834 2835 2836
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2837 2838 2839
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2840
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2841
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2842
	else
2843
		ggtt->gsm = ioremap_wc(phys_addr, size);
2844
	if (!ggtt->gsm) {
2845
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2846 2847 2848
		return -ENOMEM;
	}

2849
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2850
	if (ret) {
B
Ben Widawsky 已提交
2851 2852
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2853
		iounmap(ggtt->gsm);
2854
		return ret;
B
Ben Widawsky 已提交
2855 2856
	}

2857 2858
	ggtt->vm.scratch[0].encode =
		ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]),
2859 2860
				    I915_CACHE_NONE, 0);

2861
	return 0;
B
Ben Widawsky 已提交
2862 2863
}

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
static void tgl_setup_private_ppat(struct drm_i915_private *dev_priv)
{
	/* TGL doesn't support LLC or AGE settings */
	I915_WRITE(GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
	I915_WRITE(GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
	I915_WRITE(GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
	I915_WRITE(GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
	I915_WRITE(GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
	I915_WRITE(GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
	I915_WRITE(GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
	I915_WRITE(GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
}

2877
static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
R
Rodrigo Vivi 已提交
2878
{
2879 2880 2881 2882 2883 2884 2885 2886
	I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
	I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
	I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
2887 2888
}

B
Ben Widawsky 已提交
2889 2890 2891
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
2892
static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
2893
{
2894
	u64 pat;
B
Ben Widawsky 已提交
2895

2896 2897 2898 2899 2900 2901 2902 2903
	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |	/* for normal objects, no eLLC */
	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |	/* for something pointing to ptes? */
	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |	/* for scanout with eLLC */
	      GEN8_PPAT(3, GEN8_PPAT_UC) |			/* Uncached objects, mostly for scanout */
	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2904

2905 2906
	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
B
Ben Widawsky 已提交
2907 2908
}

2909
static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2910
{
2911
	u64 pat;
2912 2913 2914 2915 2916 2917 2918

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
2930 2931
	 */

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(1, 0) |
	      GEN8_PPAT(2, 0) |
	      GEN8_PPAT(3, 0) |
	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
	      GEN8_PPAT(7, CHV_PPAT_SNOOP);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
2943 2944
}

2945 2946 2947 2948 2949
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
2950
	cleanup_scratch_page(vm);
2951 2952
}

2953 2954
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
2955 2956
	GEM_BUG_ON(INTEL_GEN(dev_priv) < 8);

2957 2958 2959
	if (INTEL_GEN(dev_priv) >= 12)
		tgl_setup_private_ppat(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 10)
2960
		cnl_setup_private_ppat(dev_priv);
2961
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2962
		chv_setup_private_ppat(dev_priv);
2963
	else
2964
		bdw_setup_private_ppat(dev_priv);
2965 2966
}

2967
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
2968
{
2969
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2970
	struct pci_dev *pdev = dev_priv->drm.pdev;
2971
	unsigned int size;
B
Ben Widawsky 已提交
2972
	u16 snb_gmch_ctl;
2973
	int err;
B
Ben Widawsky 已提交
2974 2975

	/* TODO: We're not aware of mappable constraints on gen8 yet */
2976 2977 2978 2979
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
2980

2981 2982 2983 2984 2985
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
2986

2987
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2988
	if (IS_CHERRYVIEW(dev_priv))
2989
		size = chv_get_total_gtt_size(snb_gmch_ctl);
2990
	else
2991
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
2992

2993
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
2994 2995 2996
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
2997
	if (intel_scanout_needs_vtd_wa(dev_priv))
2998
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
2999

3000
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3001

3002
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3003 3004
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3005 3006 3007 3008
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3009 3010
	}

3011 3012
	ggtt->invalidate = gen6_ggtt_invalidate;

3013 3014 3015 3016 3017
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3018 3019
	ggtt->vm.pte_encode = gen8_pte_encode;

3020 3021
	setup_private_pat(dev_priv);

3022
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3023 3024
}

3025
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3026
{
3027
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3028
	struct pci_dev *pdev = dev_priv->drm.pdev;
3029
	unsigned int size;
3030
	u16 snb_gmch_ctl;
3031
	int err;
3032

3033 3034 3035 3036
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3037

3038 3039
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3040
	 */
3041
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3042
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3043
		return -ENXIO;
3044 3045
	}

3046 3047 3048 3049 3050
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3051
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3052

3053
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3054
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3055

3056 3057 3058
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3059 3060 3061
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3062

3063 3064
	ggtt->invalidate = gen6_ggtt_invalidate;

3065
	if (HAS_EDRAM(dev_priv))
3066
		ggtt->vm.pte_encode = iris_pte_encode;
3067
	else if (IS_HASWELL(dev_priv))
3068
		ggtt->vm.pte_encode = hsw_pte_encode;
3069
	else if (IS_VALLEYVIEW(dev_priv))
3070
		ggtt->vm.pte_encode = byt_pte_encode;
3071
	else if (INTEL_GEN(dev_priv) >= 7)
3072
		ggtt->vm.pte_encode = ivb_pte_encode;
3073
	else
3074
		ggtt->vm.pte_encode = snb_pte_encode;
3075

3076 3077 3078 3079 3080
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3081
	return ggtt_probe_common(ggtt, size);
3082 3083
}

3084
static void i915_gmch_remove(struct i915_address_space *vm)
3085
{
3086
	intel_gmch_remove();
3087
}
3088

3089
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3090
{
3091
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3092
	phys_addr_t gmadr_base;
3093 3094
	int ret;

3095
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3096 3097 3098 3099 3100
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3101
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3102

3103 3104 3105 3106
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3107
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3108 3109 3110 3111
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3112

3113 3114
	ggtt->invalidate = gmch_ggtt_invalidate;

3115 3116 3117 3118 3119
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3120
	if (unlikely(ggtt->do_idle_maps))
3121 3122
		dev_notice(dev_priv->drm.dev,
			   "Applying Ironlake quirks for intel_iommu\n");
3123

3124 3125 3126
	return 0;
}

3127
static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
3128
{
3129
	struct drm_i915_private *i915 = gt->i915;
3130 3131
	int ret;

3132
	ggtt->vm.gt = gt;
3133 3134
	ggtt->vm.i915 = i915;
	ggtt->vm.dma = &i915->drm.pdev->dev;
3135

3136
	if (INTEL_GEN(i915) <= 5)
3137
		ret = i915_gmch_probe(ggtt);
3138
	else if (INTEL_GEN(i915) < 8)
3139 3140 3141
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3142
	if (ret)
3143 3144
		return ret;

3145
	if ((ggtt->vm.total - 1) >> 32) {
3146
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3147
			  " of address space! Found %lldM!\n",
3148 3149 3150 3151
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3152 3153
	}

3154
	if (ggtt->mappable_end > ggtt->vm.total) {
3155
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3156
			  " aperture=%pa, total=%llx\n",
3157 3158
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3159 3160
	}

3161
	/* GMADR is the PCI mmio aperture into the global GTT. */
3162
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3163
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3164
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3165
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3166 3167 3168 3169 3170 3171

	return 0;
}

/**
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3172
 * @i915: i915 device
3173 3174 3175 3176 3177
 */
int i915_ggtt_probe_hw(struct drm_i915_private *i915)
{
	int ret;

3178
	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
3179 3180 3181
	if (ret)
		return ret;

3182
	if (intel_vtd_active())
3183
		dev_info(i915->drm.dev, "VT-d active for gfx access\n");
3184 3185

	return 0;
3186 3187
}

3188 3189 3190 3191 3192 3193
static int ggtt_init_hw(struct i915_ggtt *ggtt)
{
	struct drm_i915_private *i915 = ggtt->vm.i915;
	int ret = 0;

	mutex_lock(&i915->drm.struct_mutex);
3194

3195
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3196

3197 3198
	ggtt->vm.is_ggtt = true;

3199
	/* Only VLV supports read-only GGTT mappings */
3200
	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3201

3202
	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3203
		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
3204

3205 3206 3207
	if (!io_mapping_init_wc(&ggtt->iomap,
				ggtt->gmadr.start,
				ggtt->mappable_end)) {
3208
		ggtt->vm.cleanup(&ggtt->vm);
3209
		ret = -EIO;
3210
		goto out;
3211 3212
	}

3213
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3214

3215 3216
	i915_ggtt_init_fences(ggtt);

3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
out:
	mutex_unlock(&i915->drm.struct_mutex);

	return ret;
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
 * @dev_priv: i915 device
 */
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
{
	int ret;

	stash_init(&dev_priv->mm.wc_stash);

	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
	 */
	ret = ggtt_init_hw(&dev_priv->ggtt);
	if (ret)
		return ret;

3242 3243 3244 3245
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3246
	ret = i915_gem_init_stolen(dev_priv);
3247 3248 3249 3250
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3251 3252

out_gtt_cleanup:
3253
	dev_priv->ggtt.vm.cleanup(&dev_priv->ggtt.vm);
3254
	return ret;
3255
}
3256

3257
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3258
{
3259
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3260 3261 3262 3263 3264
		return -EIO;

	return 0;
}

3265
void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
3266
{
3267
	GEM_BUG_ON(ggtt->invalidate != gen6_ggtt_invalidate);
3268

3269 3270 3271
	ggtt->invalidate = guc_ggtt_invalidate;

	ggtt->invalidate(ggtt);
3272 3273
}

3274
void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
3275
{
3276
	/* XXX Temporary pardon for error unload */
3277
	if (ggtt->invalidate == gen6_ggtt_invalidate)
3278 3279
		return;

3280
	/* We should only be called after i915_ggtt_enable_guc() */
3281
	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
3282

3283
	ggtt->invalidate = gen6_ggtt_invalidate;
3284

3285
	ggtt->invalidate(ggtt);
3286 3287
}

3288
static void ggtt_restore_mappings(struct i915_ggtt *ggtt)
3289
{
3290
	struct i915_vma *vma, *vn;
3291
	bool flush = false;
3292

3293
	intel_gt_check_and_clear_faults(ggtt->vm.gt);
3294

3295 3296
	mutex_lock(&ggtt->vm.mutex);

3297
	/* First fill our portion of the GTT with scratch pages */
3298 3299
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3300 3301

	/* clflush objects bound into the GGTT and rebind them. */
3302
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3303
		struct drm_i915_gem_object *obj = vma->obj;
3304

3305
		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
3306
			continue;
3307

3308 3309
		mutex_unlock(&ggtt->vm.mutex);

3310
		if (!i915_vma_unbind(vma))
3311
			goto lock;
3312

3313 3314 3315
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3316 3317 3318
		if (obj) { /* only used during resume => exclusive access */
			flush |= fetch_and_zero(&obj->write_domain);
			obj->read_domains |= I915_GEM_DOMAIN_GTT;
3319
		}
3320 3321 3322

lock:
		mutex_lock(&ggtt->vm.mutex);
3323
	}
3324

3325
	ggtt->vm.closed = false;
3326
	ggtt->invalidate(ggtt);
3327

3328
	mutex_unlock(&ggtt->vm.mutex);
3329 3330 3331

	if (flush)
		wbinvd_on_all_cpus();
3332 3333 3334 3335 3336
}

void i915_gem_restore_gtt_mappings(struct drm_i915_private *i915)
{
	ggtt_restore_mappings(&i915->ggtt);
3337

3338 3339
	if (INTEL_GEN(i915) >= 8)
		setup_private_pat(i915);
3340 3341
}

3342
static struct scatterlist *
3343
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3344
	     unsigned int width, unsigned int height,
3345
	     unsigned int stride,
3346
	     struct sg_table *st, struct scatterlist *sg)
3347 3348 3349 3350 3351
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3352
		src_idx = stride * (height - 1) + column + offset;
3353 3354 3355 3356 3357 3358
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3359
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3360 3361
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3362
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3363
			sg = sg_next(sg);
3364
			src_idx -= stride;
3365 3366
		}
	}
3367 3368

	return sg;
3369 3370
}

3371 3372 3373
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3374
{
3375
	unsigned int size = intel_rotation_info_size(rot_info);
3376
	struct sg_table *st;
3377
	struct scatterlist *sg;
3378
	int ret = -ENOMEM;
3379
	int i;
3380 3381 3382 3383 3384 3385

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3386
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3387 3388 3389
	if (ret)
		goto err_sg_alloc;

3390 3391 3392
	st->nents = 0;
	sg = st->sgl;

3393
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3394
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3395 3396
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3397 3398
	}

3399 3400 3401 3402 3403 3404
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3405 3406
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3407

3408 3409
	return ERR_PTR(ret);
}
3410

3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3494
static noinline struct sg_table *
3495 3496 3497 3498
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3499
	struct scatterlist *sg, *iter;
3500
	unsigned int count = view->partial.size;
3501
	unsigned int offset;
3502 3503 3504 3505 3506 3507
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3508
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3509 3510 3511
	if (ret)
		goto err_sg_alloc;

3512
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3513 3514
	GEM_BUG_ON(!iter);

3515 3516
	sg = st->sgl;
	st->nents = 0;
3517 3518
	do {
		unsigned int len;
3519

3520 3521 3522 3523 3524 3525
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3526 3527

		st->nents++;
3528 3529 3530
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3531 3532
			i915_sg_trim(st); /* Drop any unused tail entries. */

3533 3534
			return st;
		}
3535

3536 3537 3538 3539
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3540 3541 3542 3543 3544 3545 3546

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3547
static int
3548
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3549
{
3550
	int ret;
3551

3552 3553 3554 3555 3556 3557 3558
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3559
	switch (vma->ggtt_view.type) {
3560 3561 3562
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3563 3564
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3565 3566
		return 0;

3567
	case I915_GGTT_VIEW_ROTATED:
3568
		vma->pages =
3569 3570 3571
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3572 3573 3574 3575 3576
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3577
	case I915_GGTT_VIEW_PARTIAL:
3578
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3579 3580
		break;
	}
3581

3582
	ret = 0;
3583
	if (IS_ERR(vma->pages)) {
3584 3585
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3586 3587
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3588
	}
3589
	return ret;
3590 3591
}

3592 3593
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3628
	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3629
	GEM_BUG_ON(drm_mm_node_allocated(node));
3630 3631 3632 3633 3634 3635 3636 3637 3638

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3639 3640 3641
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3642 3643 3644 3645 3646 3647 3648
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3674 3675
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3676 3677 3678 3679 3680 3681 3682 3683 3684
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3685
 *         must be #I915_GTT_PAGE_SIZE aligned
3686 3687 3688
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3689 3690 3691 3692 3693 3694
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3695 3696
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3713
	enum drm_mm_insert_mode mode;
3714
	u64 offset;
3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3725
	GEM_BUG_ON(vm == &vm->i915->ggtt.alias->vm);
3726
	GEM_BUG_ON(drm_mm_node_allocated(node));
3727 3728 3729 3730 3731 3732 3733

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3734 3735
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
3736
		mode = DRM_MM_INSERT_HIGHEST;
3737 3738
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3750 3751 3752
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3753 3754 3755
	if (err != -ENOSPC)
		return err;

3756 3757 3758 3759 3760 3761 3762 3763 3764
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

3765 3766 3767
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3768 3769
	/*
	 * No free space, pick a slot at random.
3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

3797 3798 3799
	if (flags & PIN_NOSEARCH)
		return -ENOSPC;

3800
	/* Randomly selected placement is pinned, do a search */
3801 3802 3803 3804 3805
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

3806 3807 3808
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
3809
}
3810 3811 3812

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
3813
#include "selftests/i915_gem_gtt.c"
3814
#endif