i915_gem_gtt.c 105.3 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
			       	int enable_ppgtt)
138
{
139
	bool has_full_ppgtt;
140
	bool has_full_48bit_ppgtt;
141

142 143 144
	if (!dev_priv->info.has_aliasing_ppgtt)
		return 0;

145 146
	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147

148
	if (intel_vgpu_active(dev_priv)) {
149
		/* GVT-g has no support for 32bit ppgtt */
150
		has_full_ppgtt = false;
151
		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152
	}
153

154 155 156 157
	/*
	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
	 * execlists, the sole mechanism available to submit work.
	 */
158
	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 160 161 162 163
		return 0;

	if (enable_ppgtt == 1)
		return 1;

164
	if (enable_ppgtt == 2 && has_full_ppgtt)
165 166
		return 2;

167 168 169
	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
		return 3;

170
	/* Disable ppgtt on SNB if VT-d is on. */
171
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173
		return 0;
174 175
	}

176
	/* Early VLV doesn't have this */
177
	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 179 180 181
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
		return 0;
	}

182
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 184 185 186 187 188 189
		if (has_full_48bit_ppgtt)
			return 3;

		if (has_full_ppgtt)
			return 2;
	}

190
	return 1;
191 192
}

193 194 195
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
196
{
197
	u32 pte_flags;
198 199 200 201 202 203 204 205
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
206 207

	/* Currently applicable only to VLV */
208
	pte_flags = 0;
209 210 211
	if (vma->obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

212
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
213 214

	return 0;
215 216 217 218
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
219
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
220
}
221

222 223 224 225 226 227
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

228 229
	vma->page_sizes = vma->obj->mm.page_sizes;

230 231 232 233 234 235 236 237 238 239 240 241
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
242 243

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
244 245
}

246
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
247
				  enum i915_cache_level level)
B
Ben Widawsky 已提交
248
{
249
	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
250
	pte |= addr;
251 252 253

	switch (level) {
	case I915_CACHE_NONE:
254
		pte |= PPAT_UNCACHED;
255 256
		break;
	case I915_CACHE_WT:
257
		pte |= PPAT_DISPLAY_ELLC;
258 259
		break;
	default:
260
		pte |= PPAT_CACHED;
261 262 263
		break;
	}

B
Ben Widawsky 已提交
264 265 266
	return pte;
}

267 268
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
269
{
270
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
271 272
	pde |= addr;
	if (level != I915_CACHE_NONE)
273
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
274
	else
275
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
276 277 278
	return pde;
}

279 280 281
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

282 283
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
284
				 u32 unused)
285
{
286
	gen6_pte_t pte = GEN6_PTE_VALID;
287
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
288 289

	switch (level) {
290 291 292 293 294 295 296 297
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
298
		MISSING_CASE(level);
299 300 301 302 303
	}

	return pte;
}

304 305
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
306
				 u32 unused)
307
{
308
	gen6_pte_t pte = GEN6_PTE_VALID;
309 310 311 312 313
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
314 315 316 317 318
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
319
		pte |= GEN6_PTE_UNCACHED;
320 321
		break;
	default:
322
		MISSING_CASE(level);
323 324
	}

325 326 327
	return pte;
}

328 329
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
330
				 u32 flags)
331
{
332
	gen6_pte_t pte = GEN6_PTE_VALID;
333 334
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

335 336
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
337 338 339 340 341 342 343

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

344 345
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
346
				 u32 unused)
347
{
348
	gen6_pte_t pte = GEN6_PTE_VALID;
349
	pte |= HSW_PTE_ADDR_ENCODE(addr);
350 351

	if (level != I915_CACHE_NONE)
352
		pte |= HSW_WB_LLC_AGE3;
353 354 355 356

	return pte;
}

357 358
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
				  enum i915_cache_level level,
359
				  u32 unused)
360
{
361
	gen6_pte_t pte = GEN6_PTE_VALID;
362 363
	pte |= HSW_PTE_ADDR_ENCODE(addr);

364 365 366 367
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
368
		pte |= HSW_WT_ELLC_LLC_AGE3;
369 370
		break;
	default:
371
		pte |= HSW_WB_ELLC_LLC_AGE3;
372 373
		break;
	}
374 375 376 377

	return pte;
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

413
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
414
{
415 416
	struct pagevec stack;
	struct page *page;
417

418 419
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
420

421 422 423
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
424 425 426 427 428

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
429 430 431
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
432

433
	/*
434
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
435 436 437 438 439 440
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
441
	pagevec_init(&stack);
442 443
	do {
		struct page *page;
444

445 446 447 448
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

449 450
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
451

452 453
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
454

455 456
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
457

458 459 460
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
461
	}
462

463 464 465 466 467 468 469
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
470 471
}

472 473
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
474
{
475 476
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
477

478
	lockdep_assert_held(&vm->free_pages.lock);
479
	GEM_BUG_ON(!pagevec_count(pvec));
480

481
	if (vm->pt_kmap_wc) {
482 483
		/*
		 * When we use WC, first fill up the global stash and then
484 485
		 * only if full immediately free the overflow.
		 */
486
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
487

488 489 490 491 492 493 494 495
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
496

497 498 499 500 501 502 503 504 505 506
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
507
		set_pages_array_wb(pvec->pages, pvec->nr);
508 509

		spin_lock(&vm->free_pages.lock);
510 511 512
	}

	__pagevec_release(pvec);
513 514 515 516
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
517 518 519 520 521 522 523 524
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
525 526
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
527
		vm_free_pages_release(vm, false);
528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	spin_unlock(&vm->free_pages.lock);
}

static void i915_address_space_init(struct i915_address_space *vm,
				    struct drm_i915_private *dev_priv)
{
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
554
}
555

556 557 558 559
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
560
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
561 562
	if (unlikely(!p->page))
		return -ENOMEM;
563

564 565 566 567 568
	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
				PCI_DMA_BIDIRECTIONAL);
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
569
	}
570 571

	return 0;
572 573
}

574
static int setup_page_dma(struct i915_address_space *vm,
575
			  struct i915_page_dma *p)
576
{
577
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
578 579
}

580
static void cleanup_page_dma(struct i915_address_space *vm,
581
			     struct i915_page_dma *p)
582
{
583 584
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
585 586
}

587
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
588

589 590
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
591 592
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
593

594 595 596
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
597
{
598
	u64 * const vaddr = kmap_atomic(p->page);
599

600
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
601

602
	kunmap_atomic(vaddr);
603 604
}

605 606 607
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
608
{
609
	fill_page_dma(vm, p, (u64)v << 32 | v);
610 611
}

612
static int
613
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
614
{
615
	unsigned long size;
616

617 618 619 620 621 622 623 624 625 626 627 628
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert().
	 *
	 * TODO: we should really consider write-protecting the scratch-page and
	 * sharing between ppgtt
	 */
629
	size = I915_GTT_PAGE_SIZE_4K;
630 631
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
632 633
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
634
	}
635 636 637 638 639 640
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
641

642
		page = alloc_pages(gfp, order);
643
		if (unlikely(!page))
644
			goto skip;
645

646
		addr = dma_map_page(vm->dma, page, 0, size,
647
				    PCI_DMA_BIDIRECTIONAL);
648 649
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
650

651 652
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
653

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
670 671
}

672
static void cleanup_scratch_page(struct i915_address_space *vm)
673
{
674 675
	struct i915_page_dma *p = &vm->scratch_page;

676 677 678
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
679 680
}

681
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
682
{
683
	struct i915_page_table *pt;
684

685
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
686
	if (unlikely(!pt))
687 688
		return ERR_PTR(-ENOMEM);

689 690 691 692
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
693

694
	pt->used_ptes = 0;
695 696 697
	return pt;
}

698
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
699
{
700
	cleanup_px(vm, pt);
701 702 703 704 705 706
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
707 708
	fill_px(vm, pt,
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
709 710
}

711
static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
712 713
			       struct i915_page_table *pt)
{
714
	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
715 716
}

717
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
718
{
719
	struct i915_page_directory *pd;
720

721
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
722
	if (unlikely(!pd))
723 724
		return ERR_PTR(-ENOMEM);

725 726 727 728
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
729

730
	pd->used_pdes = 0;
731 732 733
	return pd;
}

734
static void free_pd(struct i915_address_space *vm,
735
		    struct i915_page_directory *pd)
736
{
737 738
	cleanup_px(vm, pd);
	kfree(pd);
739 740 741 742 743
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
744 745
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
746
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
747 748
}

749
static int __pdp_init(struct i915_address_space *vm,
750 751
		      struct i915_page_directory_pointer *pdp)
{
752
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
753

754
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
755
					    I915_GFP_ALLOW_FAIL);
756
	if (unlikely(!pdp->page_directory))
757 758
		return -ENOMEM;

759
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
760

761 762 763 764 765 766 767 768 769
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

770 771 772 773 774
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

775 776
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
777 778 779 780
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

781
	GEM_BUG_ON(!use_4lvl(vm));
782 783 784 785 786

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

787
	ret = __pdp_init(vm, pdp);
788 789 790
	if (ret)
		goto fail_bitmap;

791
	ret = setup_px(vm, pdp);
792 793 794 795 796 797 798 799 800 801 802 803 804
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

805
static void free_pdp(struct i915_address_space *vm,
806 807 808
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
809 810 811 812 813 814

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
815 816
}

817 818 819 820 821 822 823
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

824
	fill_px(vm, pdp, scratch_pdpe);
825 826 827 828 829
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
830 831
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
832
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
833 834
}

835 836 837 838 839 840 841
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
842
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
843 844
}

845 846 847 848
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
849
				struct i915_page_table *pt,
850
				u64 start, u64 length)
851
{
852
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
853 854
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
855 856 857
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
	gen8_pte_t *vaddr;
858

859
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
860

861 862 863
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
864

865
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
866
	while (pte < pte_end)
867
		vaddr[pte++] = scratch_pte;
868
	kunmap_atomic(vaddr);
869 870

	return false;
871
}
872

873 874 875 876 877 878 879 880 881 882 883 884 885 886
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

887
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
888
				struct i915_page_directory *pd,
889
				u64 start, u64 length)
890 891
{
	struct i915_page_table *pt;
892
	u32 pde;
893 894

	gen8_for_each_pde(pt, pd, start, length, pde) {
895 896
		GEM_BUG_ON(pt == vm->scratch_pt);

897 898
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
899

900
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
901
		GEM_BUG_ON(!pd->used_pdes);
902
		pd->used_pdes--;
903 904

		free_pt(vm, pt);
905 906
	}

907 908
	return !pd->used_pdes;
}
909

910 911 912 913 914 915 916 917
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
918
	if (!use_4lvl(vm))
919 920 921 922 923
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
924
}
925

926 927 928 929
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
930
				 struct i915_page_directory_pointer *pdp,
931
				 u64 start, u64 length)
932 933
{
	struct i915_page_directory *pd;
934
	unsigned int pdpe;
935

936
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
937 938
		GEM_BUG_ON(pd == vm->scratch_pd);

939 940
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
941

942
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
943
		GEM_BUG_ON(!pdp->used_pdpes);
944
		pdp->used_pdpes--;
945

946 947
		free_pd(vm, pd);
	}
948

949
	return !pdp->used_pdpes;
950
}
951

952 953 954 955 956 957
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

958 959 960 961 962 963 964 965 966 967 968 969 970
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

971 972 973 974
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
975 976
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
977
{
978 979
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
980
	struct i915_page_directory_pointer *pdp;
981
	unsigned int pml4e;
982

983
	GEM_BUG_ON(!use_4lvl(vm));
984

985
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
986 987
		GEM_BUG_ON(pdp == vm->scratch_pdp);

988 989
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
990

991 992 993
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
994 995 996
	}
}

997
static inline struct sgt_dma {
998 999
	struct scatterlist *sg;
	dma_addr_t dma, max;
1000 1001 1002 1003 1004
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
1005

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

1023 1024
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1025
			      struct i915_page_directory_pointer *pdp,
1026
			      struct sgt_dma *iter,
1027
			      struct gen8_insert_pte *idx,
1028 1029
			      enum i915_cache_level cache_level)
{
1030 1031 1032 1033
	struct i915_page_directory *pd;
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
	gen8_pte_t *vaddr;
	bool ret;
1034

1035
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1036 1037
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1038
	do {
1039 1040
		vaddr[idx->pte] = pte_encode | iter->dma;

1041 1042 1043 1044 1045 1046 1047
		iter->dma += PAGE_SIZE;
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1048

1049 1050
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1051
		}
1052

1053 1054 1055 1056 1057 1058
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1059
				/* Limited by sg length for 3lvl */
1060 1061
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1062
					ret = true;
1063
					break;
1064 1065
				}

1066
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1067
				pd = pdp->page_directory[idx->pdpe];
1068
			}
1069

1070
			kunmap_atomic(vaddr);
1071
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1072
		}
1073
	} while (1);
1074
	kunmap_atomic(vaddr);
1075

1076
	return ret;
1077 1078
}

1079
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1080
				   struct i915_vma *vma,
1081 1082
				   enum i915_cache_level cache_level,
				   u32 unused)
1083
{
1084
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1085
	struct sgt_dma iter = sgt_dma(vma);
1086
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1087

1088 1089
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
				      cache_level);
1090 1091

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1092
}
1093

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
					   enum i915_cache_level cache_level)
{
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1108
		bool maybe_64K = false;
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1130 1131 1132 1133 1134 1135 1136
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
			     rem >= (max - index) << PAGE_SHIFT))
				maybe_64K = true;

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1156 1157 1158 1159 1160 1161
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
				       rem >= (max - index) << PAGE_SHIFT)))
					maybe_64K = false;

1162 1163 1164 1165 1166 1167
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1184
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

				encode = pte_encode | vma->vm->scratch_page.daddr;
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1206
		}
1207 1208

		vma->page_sizes.gtt |= page_size;
1209 1210 1211
	} while (iter->sg);
}

1212
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1213
				   struct i915_vma *vma,
1214 1215 1216 1217
				   enum i915_cache_level cache_level,
				   u32 unused)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1218
	struct sgt_dma iter = sgt_dma(vma);
1219
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1220

1221 1222 1223 1224 1225 1226 1227 1228
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
						     &iter, &idx, cache_level))
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1229 1230

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1231
	}
1232 1233
}

1234
static void gen8_free_page_tables(struct i915_address_space *vm,
1235
				  struct i915_page_directory *pd)
1236 1237 1238
{
	int i;

1239
	if (!px_page(pd))
1240 1241
		return;

1242 1243 1244
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1245
	}
B
Ben Widawsky 已提交
1246 1247
}

1248 1249
static int gen8_init_scratch(struct i915_address_space *vm)
{
1250
	int ret;
1251

1252
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1253 1254
	if (ret)
		return ret;
1255

1256
	vm->scratch_pt = alloc_pt(vm);
1257
	if (IS_ERR(vm->scratch_pt)) {
1258 1259
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1260 1261
	}

1262
	vm->scratch_pd = alloc_pd(vm);
1263
	if (IS_ERR(vm->scratch_pd)) {
1264 1265
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1266 1267
	}

1268
	if (use_4lvl(vm)) {
1269
		vm->scratch_pdp = alloc_pdp(vm);
1270
		if (IS_ERR(vm->scratch_pdp)) {
1271 1272
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1273 1274 1275
		}
	}

1276 1277
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1278
	if (use_4lvl(vm))
1279
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1280 1281

	return 0;
1282 1283

free_pd:
1284
	free_pd(vm, vm->scratch_pd);
1285
free_pt:
1286
	free_pt(vm, vm->scratch_pt);
1287
free_scratch_page:
1288
	cleanup_scratch_page(vm);
1289 1290

	return ret;
1291 1292
}

1293 1294
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1295
	struct i915_address_space *vm = &ppgtt->vm;
1296
	struct drm_i915_private *dev_priv = vm->i915;
1297 1298 1299
	enum vgt_g2v_type msg;
	int i;

1300 1301
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1302

1303 1304
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1305 1306 1307 1308

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1309
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1310
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1311

1312 1313
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1325 1326
static void gen8_free_scratch(struct i915_address_space *vm)
{
1327
	if (use_4lvl(vm))
1328 1329 1330 1331
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1332 1333
}

1334
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1335
				    struct i915_page_directory_pointer *pdp)
1336
{
1337
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1338 1339
	int i;

1340
	for (i = 0; i < pdpes; i++) {
1341
		if (pdp->page_directory[i] == vm->scratch_pd)
1342 1343
			continue;

1344 1345
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1346
	}
1347

1348
	free_pdp(vm, pdp);
1349 1350 1351 1352 1353 1354
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1355
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1356
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1357 1358
			continue;

1359
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1360 1361
	}

1362
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1363 1364 1365 1366
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1367
	struct drm_i915_private *dev_priv = vm->i915;
1368
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1369

1370
	if (intel_vgpu_active(dev_priv))
1371 1372
		gen8_ppgtt_notify_vgt(ppgtt, false);

1373
	if (use_4lvl(vm))
1374
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1375
	else
1376
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1377

1378
	gen8_free_scratch(vm);
1379 1380
}

1381 1382 1383
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1384
{
1385
	struct i915_page_table *pt;
1386
	u64 from = start;
1387
	unsigned int pde;
1388

1389
	gen8_for_each_pde(pt, pd, start, length, pde) {
1390 1391
		int count = gen8_pte_count(start, length);

1392
		if (pt == vm->scratch_pt) {
1393 1394
			pd->used_pdes++;

1395
			pt = alloc_pt(vm);
1396 1397
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1398
				goto unwind;
1399
			}
1400

1401
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1402
				gen8_initialize_pt(vm, pt);
1403 1404

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1405
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1406
		}
1407

1408
		pt->used_ptes += count;
1409
	}
1410
	return 0;
1411

1412 1413
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1414
	return -ENOMEM;
1415 1416
}

1417 1418 1419
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1420
{
1421
	struct i915_page_directory *pd;
1422 1423
	u64 from = start;
	unsigned int pdpe;
1424 1425
	int ret;

1426
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1427
		if (pd == vm->scratch_pd) {
1428 1429
			pdp->used_pdpes++;

1430
			pd = alloc_pd(vm);
1431 1432
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1433
				goto unwind;
1434
			}
1435

1436
			gen8_initialize_pd(vm, pd);
1437
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1438
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1439 1440

			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1441 1442 1443
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1444 1445
		if (unlikely(ret))
			goto unwind_pd;
1446
	}
1447

B
Ben Widawsky 已提交
1448
	return 0;
1449

1450 1451 1452 1453 1454 1455 1456
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1457 1458 1459
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1460 1461
}

1462 1463
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1464
{
1465 1466 1467
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1468

1469 1470 1471 1472 1473 1474 1475 1476 1477
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1478

1479
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1480 1481 1482 1483
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1484

1485 1486 1487
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1488

1489
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1490 1491
		if (unlikely(ret))
			goto unwind_pdp;
1492 1493 1494 1495
	}

	return 0;

1496 1497 1498 1499 1500
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1501 1502 1503
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1504 1505
}

1506 1507
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1508
			  u64 start, u64 length,
1509 1510 1511
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1512
	struct i915_address_space *vm = &ppgtt->vm;
1513
	struct i915_page_directory *pd;
1514
	u32 pdpe;
1515

1516
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1517
		struct i915_page_table *pt;
1518 1519 1520
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1521

1522
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1523 1524 1525
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1526
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1527
			u32 pte;
1528 1529
			gen8_pte_t *pt_vaddr;

1530
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1531 1532
				continue;

1533
			pt_vaddr = kmap_atomic_px(pt);
1534
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1535 1536 1537
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1563
	struct i915_address_space *vm = &ppgtt->vm;
1564 1565
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1566
	u64 start = 0, length = ppgtt->vm.total;
1567

1568
	if (use_4lvl(vm)) {
1569
		u64 pml4e;
1570 1571 1572
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1573
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1574
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1575 1576 1577
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1578
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1579
		}
1580 1581
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1582 1583 1584
	}
}

1585
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1586
{
1587
	struct i915_address_space *vm = &ppgtt->vm;
1588 1589
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1590
	u64 start = 0, length = ppgtt->vm.total;
1591 1592
	u64 from = start;
	unsigned int pdpe;
1593

1594 1595 1596 1597
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1598

1599 1600 1601 1602
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1603

1604 1605
	pdp->used_pdpes++; /* never remove */
	return 0;
1606

1607 1608 1609 1610 1611 1612 1613 1614
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1615 1616
}

1617
/*
1618 1619 1620 1621
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1622
 *
1623
 */
1624
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1625
{
1626 1627 1628 1629 1630 1631 1632
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1633 1634
	kref_init(&ppgtt->ref);

1635 1636
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1637

1638
	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1639 1640 1641
		1ULL << 48 :
		1ULL << 32;

1642 1643
	i915_address_space_init(&ppgtt->vm, i915);

1644 1645 1646
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1647
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1648
		ppgtt->vm.pt_kmap_wc = true;
1649

1650 1651 1652
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1653

1654 1655 1656 1657
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1658

1659
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1660

1661 1662 1663
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1664
	} else {
1665 1666 1667
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1668

1669 1670 1671
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1672
				__pdp_fini(&ppgtt->pdp);
1673
				goto err_scratch;
1674
			}
1675
		}
1676

1677 1678 1679
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1680
	}
1681

1682
	if (intel_vgpu_active(i915))
1683 1684
		gen8_ppgtt_notify_vgt(ppgtt, true);

1685
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1686 1687
	ppgtt->debug_dump = gen8_dump_ppgtt;

1688
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1689 1690 1691 1692
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1693
	return ppgtt;
1694

1695
err_scratch:
1696
	gen8_free_scratch(&ppgtt->vm);
1697 1698 1699
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1700 1701
}

1702
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1703
{
1704
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1705
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
	struct i915_page_table *pt;
	u32 pte, pde;

	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);

			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1733
			int i;
1734

B
Ben Widawsky 已提交
1735
			for (i = 0; i < 4; i++)
1736 1737 1738
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1739 1740
				continue;

1741 1742 1743
			seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
				   pde, pte,
				   (pde * GEN6_PTES + pte) * PAGE_SIZE);
B
Ben Widawsky 已提交
1744
			for (i = 0; i < 4; i++) {
1745 1746
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1747
				else
1748
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1749 1750 1751
			}
			seq_puts(m, "\n");
		}
1752
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1753 1754 1755
	}
}

1756
/* Write pde (index) from the page directory @pd to the page table @pt */
1757
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1758 1759
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1760
{
1761
	/* Caller needs to make sure the write completes if necessary */
1762 1763
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1764
}
B
Ben Widawsky 已提交
1765

1766
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1767
{
1768
	struct intel_engine_cs *engine;
1769
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1770

1771
	for_each_engine(engine, dev_priv, id) {
1772 1773
		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
				 GEN8_GFX_PPGTT_48B : 0;
1774
		I915_WRITE(RING_MODE_GEN7(engine),
1775
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1776 1777
	}
}
B
Ben Widawsky 已提交
1778

1779
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1780
{
1781
	struct intel_engine_cs *engine;
1782
	u32 ecochk, ecobits;
1783
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1784

1785 1786
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1787

1788
	ecochk = I915_READ(GAM_ECOCHK);
1789
	if (IS_HASWELL(dev_priv)) {
1790 1791 1792 1793 1794 1795
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1796

1797
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1798
		/* GFX_MODE is per-ring on gen7+ */
1799
		I915_WRITE(RING_MODE_GEN7(engine),
1800
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1801
	}
1802
}
B
Ben Widawsky 已提交
1803

1804
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1805
{
1806
	u32 ecochk, gab_ctl, ecobits;
1807

1808 1809 1810
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1811

1812 1813 1814 1815 1816 1817 1818
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1819 1820
}

1821
/* PPGTT support for Sandybdrige/Gen6 and later */
1822
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1823
				   u64 start, u64 length)
1824
{
1825
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1826 1827 1828 1829
	unsigned int first_entry = start >> PAGE_SHIFT;
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
	unsigned int num_entries = length >> PAGE_SHIFT;
1830
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1831

1832
	while (num_entries) {
1833 1834 1835
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1836
		gen6_pte_t *vaddr;
1837

1838 1839 1840 1841 1842 1843 1844 1845
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1846

1847 1848
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1849 1850 1851 1852
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1853

1854 1855 1856 1857 1858
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1859

1860
		pte = 0;
1861
	}
1862 1863
}

1864
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1865
				      struct i915_vma *vma,
1866 1867
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1868
{
1869
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1870
	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1871 1872
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1873
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1874
	struct sgt_dma iter = sgt_dma(vma);
1875 1876
	gen6_pte_t *vaddr;

1877 1878
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1879
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1880 1881
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1882

1883 1884 1885 1886 1887
		iter.dma += PAGE_SIZE;
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1888

1889 1890 1891
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1892

1893
		if (++act_pte == GEN6_PTES) {
1894 1895
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1896
			act_pte = 0;
D
Daniel Vetter 已提交
1897
		}
1898
	} while (1);
1899
	kunmap_atomic(vaddr);
1900 1901

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1902 1903
}

1904
static int gen6_alloc_va_range(struct i915_address_space *vm,
1905
			       u64 start, u64 length)
1906
{
1907
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1908
	struct i915_page_table *pt;
1909 1910 1911
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1912

1913
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1914 1915
		const unsigned int count = gen6_pte_count(start, length);

1916 1917 1918 1919
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1920

1921
			gen6_initialize_pt(ppgtt, pt);
1922
			ppgtt->base.pd.page_table[pde] = pt;
1923 1924 1925 1926 1927 1928

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1929 1930

			GEM_BUG_ON(pt->used_ptes);
1931
		}
1932 1933

		pt->used_ptes += count;
1934 1935
	}

1936
	if (flush) {
1937 1938
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1939 1940 1941
	}

	return 0;
1942 1943

unwind_out:
1944
	gen6_ppgtt_clear_range(vm, from, start - from);
1945
	return -ENOMEM;
1946 1947
}

1948
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1949
{
1950 1951 1952
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1953
	int ret;
1954

1955
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1956 1957
	if (ret)
		return ret;
1958

1959 1960 1961 1962
	ppgtt->scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr,
			       I915_CACHE_NONE, PTE_READ_ONLY);

1963
	vm->scratch_pt = alloc_pt(vm);
1964
	if (IS_ERR(vm->scratch_pt)) {
1965
		cleanup_scratch_page(vm);
1966 1967 1968
		return PTR_ERR(vm->scratch_pt);
	}

1969
	gen6_initialize_pt(ppgtt, vm->scratch_pt);
1970 1971
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1972 1973 1974 1975

	return 0;
}

1976
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1977
{
1978 1979
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1980 1981
}

1982
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1983
{
1984
	struct i915_page_table *pt;
1985
	u32 pde;
1986

1987
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1988 1989 1990 1991 1992 1993 1994
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1995

1996
	i915_vma_destroy(ppgtt->vma);
1997 1998 1999

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
2000 2001
}

2002
static int pd_vma_set_pages(struct i915_vma *vma)
2003
{
2004 2005 2006
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
2007

2008 2009 2010
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
2011

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
	struct i915_page_table *pt;
	unsigned int pde;
2024

2025 2026
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2027

2028 2029
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2030

2031 2032
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2033

2034
	return 0;
2035
}
2036

2037
static void pd_vma_unbind(struct i915_vma *vma)
2038
{
2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;
	int i;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
		init_request_active(&vma->last_read[i], NULL);
	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
2098

2099
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2100 2101 2102
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

2103 2104 2105 2106 2107 2108 2109 2110 2111
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2112 2113 2114 2115 2116 2117 2118 2119
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	return i915_vma_pin(ppgtt->vma,
			    0, GEN6_PD_ALIGN,
			    PIN_GLOBAL | PIN_HIGH);
2120 2121
}

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2133
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2134
{
2135
	struct i915_ggtt * const ggtt = &i915->ggtt;
2136
	struct gen6_hw_ppgtt *ppgtt;
2137 2138 2139 2140 2141 2142
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2143 2144
	kref_init(&ppgtt->base.ref);

2145 2146
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2147

2148
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2149

2150 2151
	i915_address_space_init(&ppgtt->base.vm, i915);

2152
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2153 2154 2155 2156
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2157

2158
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2159 2160 2161
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2162

2163 2164
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2165
	err = gen6_ppgtt_init_scratch(ppgtt);
2166 2167 2168
	if (err)
		goto err_free;

2169 2170 2171
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2172
		goto err_scratch;
2173
	}
2174

2175
	return &ppgtt->base;
2176

2177 2178
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2179 2180 2181
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2182
}
2183

2184
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2185 2186 2187 2188 2189
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2190
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2191
	if (IS_BROADWELL(dev_priv))
2192
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2193
	else if (IS_CHERRYVIEW(dev_priv))
2194
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2195
	else if (IS_GEN9_LP(dev_priv))
2196
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2197 2198
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2216 2217
}

2218
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2219
{
2220
	gtt_write_workarounds(dev_priv);
2221

2222 2223 2224
	/* In the case of execlists, PPGTT is enabled by the context descriptor
	 * and the PDPs are contained within the context itself.  We don't
	 * need to do anything here. */
2225
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2226 2227
		return 0;

2228
	if (!USES_PPGTT(dev_priv))
2229 2230
		return 0;

2231
	if (IS_GEN6(dev_priv))
2232
		gen6_ppgtt_enable(dev_priv);
2233
	else if (IS_GEN7(dev_priv))
2234 2235 2236
		gen7_ppgtt_enable(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 8)
		gen8_ppgtt_enable(dev_priv);
2237
	else
2238
		MISSING_CASE(INTEL_GEN(dev_priv));
2239

2240 2241
	return 0;
}
2242

2243 2244 2245 2246 2247 2248 2249 2250 2251
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2252
struct i915_hw_ppgtt *
2253
i915_ppgtt_create(struct drm_i915_private *i915,
2254
		  struct drm_i915_file_private *fpriv)
2255 2256 2257
{
	struct i915_hw_ppgtt *ppgtt;

2258 2259 2260
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2261

2262
	ppgtt->vm.file = fpriv;
2263

2264
	trace_i915_ppgtt_create(&ppgtt->vm);
2265

2266 2267 2268
	return ppgtt;
}

2269
void i915_ppgtt_close(struct i915_address_space *vm)
2270 2271 2272 2273 2274 2275
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2289
			i915_vma_destroy(vma);
2290 2291 2292
	}
}

2293
void i915_ppgtt_release(struct kref *kref)
2294 2295 2296 2297
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2298
	trace_i915_ppgtt_release(&ppgtt->vm);
2299

2300
	ppgtt_destroy_vma(&ppgtt->vm);
2301

2302 2303 2304
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2305

2306 2307
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2308 2309
	kfree(ppgtt);
}
2310

2311 2312 2313
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2314
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2315 2316 2317 2318
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2319
	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2320 2321
}

2322
static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2323
{
2324
	struct intel_engine_cs *engine;
2325
	enum intel_engine_id id;
2326
	u32 fault;
2327

2328
	for_each_engine(engine, dev_priv, id) {
2329 2330
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2331
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2332
					 "\tAddr: 0x%08lx\n"
2333 2334 2335
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2336 2337 2338 2339
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2340
			I915_WRITE(RING_FAULT_REG(engine),
2341
				   fault & ~RING_FAULT_VALID);
2342 2343
		}
	}
2344

2345 2346 2347 2348 2349 2350 2351 2352
	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}

static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2353 2354 2355 2356 2357 2358 2359 2360
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2361
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2362 2363
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2364 2365 2366
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2367 2368 2369
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
		I915_WRITE(GEN8_RING_FAULT_REG,
			   fault & ~RING_FAULT_VALID);
	}

	POSTING_READ(GEN8_RING_FAULT_REG);
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
		gen8_check_and_clear_faults(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_check_and_clear_faults(dev_priv);
	else
		return;
2389 2390
}

2391
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2392
{
2393
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2394 2395 2396 2397

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2398
	if (INTEL_GEN(dev_priv) < 6)
2399 2400
		return;

2401
	i915_check_and_clear_faults(dev_priv);
2402

2403
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2404

2405
	i915_ggtt_invalidate(dev_priv);
2406 2407
}

2408 2409
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2410
{
2411
	do {
2412 2413 2414 2415
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2426
				 obj->base.size >> PAGE_SHIFT, NULL,
2427 2428 2429
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2430

2431
	return -ENOSPC;
2432 2433
}

2434
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2435 2436 2437 2438
{
	writeq(pte, addr);
}

2439 2440
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2441
				  u64 offset,
2442 2443 2444
				  enum i915_cache_level level,
				  u32 unused)
{
2445
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2446
	gen8_pte_t __iomem *pte =
2447
		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2448

2449
	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2450

2451
	ggtt->invalidate(vm->i915);
2452 2453
}

B
Ben Widawsky 已提交
2454
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2455
				     struct i915_vma *vma,
2456 2457
				     enum i915_cache_level level,
				     u32 unused)
B
Ben Widawsky 已提交
2458
{
2459
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2460 2461
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2462
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2463
	dma_addr_t addr;
2464

2465
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2466 2467
	gtt_entries += vma->node.start >> PAGE_SHIFT;
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2468
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2469

2470 2471 2472
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2473
	 */
2474
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2475 2476
}

2477 2478
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2479
				  u64 offset,
2480 2481 2482
				  enum i915_cache_level level,
				  u32 flags)
{
2483
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2484
	gen6_pte_t __iomem *pte =
2485
		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2486

2487
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2488

2489
	ggtt->invalidate(vm->i915);
2490 2491
}

2492 2493 2494 2495 2496 2497
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2498
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2499
				     struct i915_vma *vma,
2500 2501
				     enum i915_cache_level level,
				     u32 flags)
2502
{
2503
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2504
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2505
	unsigned int i = vma->node.start >> PAGE_SHIFT;
2506
	struct sgt_iter iter;
2507
	dma_addr_t addr;
2508
	for_each_sgt_dma(addr, iter, vma->pages)
2509
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2510

2511 2512 2513
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2514
	 */
2515
	ggtt->invalidate(vm->i915);
2516 2517
}

2518
static void nop_clear_range(struct i915_address_space *vm,
2519
			    u64 start, u64 length)
2520 2521 2522
{
}

B
Ben Widawsky 已提交
2523
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2524
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2525
{
2526
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2527 2528
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2529 2530 2531
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
	gen8_pte_t __iomem *gtt_base =
2532 2533
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2589
	struct i915_vma *vma;
2590 2591 2592 2593 2594 2595 2596
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2597
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2598 2599 2600 2601 2602 2603
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2604
					     struct i915_vma *vma,
2605 2606 2607
					     enum i915_cache_level level,
					     u32 unused)
{
2608
	struct insert_entries arg = { vm, vma, level };
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2638
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2639
				  u64 start, u64 length)
2640
{
2641
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2642 2643
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2644
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2645 2646
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2647 2648 2649 2650 2651 2652 2653
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2654
	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2655
				     I915_CACHE_LLC, 0);
2656

2657 2658 2659 2660
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2661 2662
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2663
				  u64 offset,
2664 2665 2666 2667 2668 2669 2670 2671 2672
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2673
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2674
				     struct i915_vma *vma,
2675 2676
				     enum i915_cache_level cache_level,
				     u32 unused)
2677 2678 2679 2680
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2681 2682
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2683 2684
}

2685
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2686
				  u64 start, u64 length)
2687
{
2688
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2689 2690
}

2691 2692 2693
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2694
{
2695
	struct drm_i915_private *i915 = vma->vm->i915;
2696
	struct drm_i915_gem_object *obj = vma->obj;
2697
	u32 pte_flags;
2698 2699

	/* Currently applicable only to VLV */
2700
	pte_flags = 0;
2701 2702 2703
	if (obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

2704
	intel_runtime_pm_get(i915);
2705
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2706
	intel_runtime_pm_put(i915);
2707

2708 2709
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2710 2711 2712 2713 2714
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2715
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2716 2717 2718 2719

	return 0;
}

2720 2721 2722 2723 2724 2725 2726 2727 2728
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2729 2730 2731
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2732
{
2733
	struct drm_i915_private *i915 = vma->vm->i915;
2734
	u32 pte_flags;
2735
	int ret;
2736

2737
	/* Currently applicable only to VLV */
2738 2739
	pte_flags = 0;
	if (vma->obj->gt_ro)
2740
		pte_flags |= PTE_READ_ONLY;
2741

2742 2743 2744
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2745
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2746 2747 2748
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2749
			if (ret)
2750
				return ret;
2751 2752
		}

2753 2754
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2755 2756
	}

2757
	if (flags & I915_VMA_GLOBAL_BIND) {
2758
		intel_runtime_pm_get(i915);
2759
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2760
		intel_runtime_pm_put(i915);
2761
	}
2762

2763
	return 0;
2764 2765
}

2766
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2767
{
2768
	struct drm_i915_private *i915 = vma->vm->i915;
2769

2770 2771
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2772
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2773 2774
		intel_runtime_pm_put(i915);
	}
2775

2776
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2777
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2778 2779 2780

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2781 2782
}

2783 2784
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2785
{
D
David Weinehall 已提交
2786 2787
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2788
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2789

2790
	if (unlikely(ggtt->do_idle_maps)) {
2791
		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2792 2793 2794 2795 2796
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2797

2798
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2799
}
2800

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2811 2812
	vma->page_sizes = vma->obj->mm.page_sizes;

2813 2814 2815
	return 0;
}

C
Chris Wilson 已提交
2816
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2817
				  unsigned long color,
2818 2819
				  u64 *start,
				  u64 *end)
2820
{
2821
	if (node->allocated && node->color != color)
2822
		*start += I915_GTT_PAGE_SIZE;
2823

2824 2825 2826 2827 2828
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2829
	node = list_next_entry(node, node_list);
2830
	if (node->color != color)
2831
		*end -= I915_GTT_PAGE_SIZE;
2832
}
B
Ben Widawsky 已提交
2833

2834 2835 2836 2837 2838 2839
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2840
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2841 2842
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2843

2844
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2845 2846 2847 2848
		err = -ENODEV;
		goto err_ppgtt;
	}

2849 2850 2851 2852 2853 2854 2855 2856 2857
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2858 2859

	i915->mm.aliasing_ppgtt = ppgtt;
2860

2861 2862
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2863

2864 2865
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2866

2867 2868 2869
	return 0;

err_ppgtt:
2870
	i915_ppgtt_put(ppgtt);
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2883
	i915_ppgtt_put(ppgtt);
2884

2885 2886
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2887 2888
}

2889
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2890
{
2891 2892 2893 2894 2895 2896 2897 2898 2899
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2900
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2901
	unsigned long hole_start, hole_end;
2902
	struct drm_mm_node *entry;
2903
	int ret;
2904

2905 2906 2907
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2908

2909
	/* Reserve a mappable slot for our lockless error capture */
2910
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2911 2912 2913
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2914 2915 2916
	if (ret)
		return ret;

2917
	/* Clear any non-preallocated blocks */
2918
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2919 2920
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2921 2922
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2923 2924 2925
	}

	/* And finally clear the reserved guard page */
2926
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2927

2928
	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2929
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2930
		if (ret)
2931
			goto err;
2932 2933
	}

2934
	return 0;
2935 2936 2937 2938

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2939 2940
}

2941 2942
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2943
 * @dev_priv: i915 device
2944
 */
2945
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2946
{
2947
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2948
	struct i915_vma *vma, *vn;
2949
	struct pagevec *pvec;
2950

2951
	ggtt->vm.closed = true;
2952 2953

	mutex_lock(&dev_priv->drm.struct_mutex);
2954 2955
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2956 2957
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2958
		WARN_ON(i915_vma_unbind(vma));
2959

2960 2961 2962
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2963
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2964
		intel_vgt_deballoon(dev_priv);
2965
		i915_address_space_fini(&ggtt->vm);
2966 2967
	}

2968
	ggtt->vm.cleanup(&ggtt->vm);
2969

2970
	pvec = &dev_priv->mm.wc_stash.pvec;
2971 2972 2973 2974 2975
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2976
	mutex_unlock(&dev_priv->drm.struct_mutex);
2977 2978

	arch_phys_wc_del(ggtt->mtrr);
2979
	io_mapping_fini(&ggtt->iomap);
2980 2981

	i915_gem_cleanup_stolen(&dev_priv->drm);
2982
}
2983

2984
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2985 2986 2987 2988 2989 2990
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2991
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2992 2993 2994 2995 2996
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2997 2998 2999 3000 3001 3002 3003

#ifdef CONFIG_X86_32
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

3004 3005 3006
	return bdw_gmch_ctl << 20;
}

3007
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

3018
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
3019
{
3020
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3021
	struct pci_dev *pdev = dev_priv->drm.pdev;
3022
	phys_addr_t phys_addr;
3023
	int ret;
B
Ben Widawsky 已提交
3024 3025

	/* For Modern GENs the PTEs and register space are split in the BAR */
3026
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
3027

I
Imre Deak 已提交
3028
	/*
3029 3030 3031
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
3032 3033 3034
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
3035
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
3036
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
3037
	else
3038
		ggtt->gsm = ioremap_wc(phys_addr, size);
3039
	if (!ggtt->gsm) {
3040
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
3041 3042 3043
		return -ENOMEM;
	}

3044
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
3045
	if (ret) {
B
Ben Widawsky 已提交
3046 3047
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3048
		iounmap(ggtt->gsm);
3049
		return ret;
B
Ben Widawsky 已提交
3050 3051
	}

3052
	return 0;
B
Ben Widawsky 已提交
3053 3054
}

3055 3056
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3057
{
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3101
	struct intel_ppat_entry *entry = NULL;
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3124
		if (!entry)
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3201
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3239 3240
}

B
Ben Widawsky 已提交
3241 3242 3243
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3244
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3245
{
3246 3247 3248 3249
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3250

3251
	if (!USES_PPGTT(ppat->i915)) {
3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3265 3266 3267
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3268

3269 3270 3271 3272 3273 3274 3275 3276
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3277 3278
}

3279
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3280
{
3281 3282 3283 3284
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3285 3286 3287 3288 3289 3290 3291

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3303 3304
	 */

3305 3306 3307 3308 3309 3310 3311 3312
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3313 3314
}

3315 3316 3317 3318 3319
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3320
	cleanup_scratch_page(vm);
3321 3322
}

3323 3324
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3325 3326 3327 3328 3329
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3330
	if (INTEL_GEN(dev_priv) >= 10)
3331
		cnl_setup_private_ppat(ppat);
3332
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3333
		chv_setup_private_ppat(ppat);
3334
	else
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3346 3347
}

3348
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3349
{
3350
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3351
	struct pci_dev *pdev = dev_priv->drm.pdev;
3352
	unsigned int size;
B
Ben Widawsky 已提交
3353
	u16 snb_gmch_ctl;
3354
	int err;
B
Ben Widawsky 已提交
3355 3356

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3357 3358 3359 3360
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3361

3362 3363 3364 3365 3366
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3367

3368
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3369
	if (IS_CHERRYVIEW(dev_priv))
3370
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3371
	else
3372
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3373

3374 3375 3376 3377
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3378
	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3379
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3380

3381
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3382

3383 3384
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3385 3386 3387 3388
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3389 3390
	}

3391 3392
	ggtt->invalidate = gen6_ggtt_invalidate;

3393 3394 3395 3396 3397
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3398 3399
	setup_private_pat(dev_priv);

3400
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3401 3402
}

3403
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3404
{
3405
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3406
	struct pci_dev *pdev = dev_priv->drm.pdev;
3407
	unsigned int size;
3408
	u16 snb_gmch_ctl;
3409
	int err;
3410

3411 3412 3413 3414
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3415

3416 3417
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3418
	 */
3419
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3420
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3421
		return -ENXIO;
3422 3423
	}

3424 3425 3426 3427 3428
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3429
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3430

3431
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3432
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3433

3434 3435 3436 3437
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3438

3439 3440
	ggtt->invalidate = gen6_ggtt_invalidate;

3441
	if (HAS_EDRAM(dev_priv))
3442
		ggtt->vm.pte_encode = iris_pte_encode;
3443
	else if (IS_HASWELL(dev_priv))
3444
		ggtt->vm.pte_encode = hsw_pte_encode;
3445
	else if (IS_VALLEYVIEW(dev_priv))
3446
		ggtt->vm.pte_encode = byt_pte_encode;
3447
	else if (INTEL_GEN(dev_priv) >= 7)
3448
		ggtt->vm.pte_encode = ivb_pte_encode;
3449
	else
3450
		ggtt->vm.pte_encode = snb_pte_encode;
3451

3452 3453 3454 3455 3456
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3457
	return ggtt_probe_common(ggtt, size);
3458 3459
}

3460
static void i915_gmch_remove(struct i915_address_space *vm)
3461
{
3462
	intel_gmch_remove();
3463
}
3464

3465
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3466
{
3467
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3468
	phys_addr_t gmadr_base;
3469 3470
	int ret;

3471
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3472 3473 3474 3475 3476
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3477
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3478

3479 3480 3481 3482
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3483
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3484 3485 3486 3487
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3488

3489 3490
	ggtt->invalidate = gmch_ggtt_invalidate;

3491 3492 3493 3494 3495
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3496
	if (unlikely(ggtt->do_idle_maps))
3497 3498
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3499 3500 3501
	return 0;
}

3502
/**
3503
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3504
 * @dev_priv: i915 device
3505
 */
3506
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3507
{
3508
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3509 3510
	int ret;

3511 3512
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3513

3514 3515 3516 3517 3518 3519
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3520
	if (ret)
3521 3522
		return ret;

3523 3524 3525 3526 3527
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3528
	if (USES_GUC(dev_priv)) {
3529 3530 3531
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3532 3533
	}

3534
	if ((ggtt->vm.total - 1) >> 32) {
3535
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3536
			  " of address space! Found %lldM!\n",
3537 3538 3539 3540
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3541 3542
	}

3543
	if (ggtt->mappable_end > ggtt->vm.total) {
3544
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3545
			  " aperture=%pa, total=%llx\n",
3546 3547
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3548 3549
	}

3550
	/* GMADR is the PCI mmio aperture into the global GTT. */
3551
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3552
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3553
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3554
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3555
	if (intel_vtd_active())
3556
		DRM_INFO("VT-d active for gfx access\n");
3557 3558

	return 0;
3559 3560 3561 3562
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3563
 * @dev_priv: i915 device
3564
 */
3565
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3566 3567 3568 3569
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3570 3571
	stash_init(&dev_priv->mm.wc_stash);

3572 3573 3574 3575
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3576
	 */
C
Chris Wilson 已提交
3577
	mutex_lock(&dev_priv->drm.struct_mutex);
3578
	i915_address_space_init(&ggtt->vm, dev_priv);
3579
	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3580
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3581
	mutex_unlock(&dev_priv->drm.struct_mutex);
3582

3583 3584
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3585
				dev_priv->ggtt.mappable_end)) {
3586 3587 3588 3589
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3590
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3591

3592 3593 3594 3595
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3596
	ret = i915_gem_init_stolen(dev_priv);
3597 3598 3599 3600
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3601 3602

out_gtt_cleanup:
3603
	ggtt->vm.cleanup(&ggtt->vm);
3604
	return ret;
3605
}
3606

3607
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3608
{
3609
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3610 3611 3612 3613 3614
		return -EIO;

	return 0;
}

3615 3616
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3617 3618
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3619
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3620 3621

	i915_ggtt_invalidate(i915);
3622 3623 3624 3625
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3626 3627 3628 3629
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3630 3631

	i915_ggtt_invalidate(i915);
3632 3633
}

3634
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3635
{
3636
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3637
	struct i915_vma *vma, *vn;
3638

3639
	i915_check_and_clear_faults(dev_priv);
3640 3641

	/* First fill our portion of the GTT with scratch pages */
3642
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3643

3644
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3645 3646

	/* clflush objects bound into the GGTT and rebind them. */
3647 3648
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3649
		struct drm_i915_gem_object *obj = vma->obj;
3650

3651 3652
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3653

3654 3655
		if (!i915_vma_unbind(vma))
			continue;
3656

3657 3658 3659 3660 3661
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3662
	}
3663

3664
	ggtt->vm.closed = false;
3665
	i915_ggtt_invalidate(dev_priv);
3666

3667
	if (INTEL_GEN(dev_priv) >= 8) {
3668
		struct intel_ppat *ppat = &dev_priv->ppat;
3669

3670 3671
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3672 3673 3674 3675
		return;
	}
}

3676
static struct scatterlist *
3677
rotate_pages(const dma_addr_t *in, unsigned int offset,
3678
	     unsigned int width, unsigned int height,
3679
	     unsigned int stride,
3680
	     struct sg_table *st, struct scatterlist *sg)
3681 3682 3683 3684 3685
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3686
		src_idx = stride * (height - 1) + column;
3687 3688 3689 3690 3691 3692 3693
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3694
			sg_dma_address(sg) = in[offset + src_idx];
3695 3696
			sg_dma_len(sg) = PAGE_SIZE;
			sg = sg_next(sg);
3697
			src_idx -= stride;
3698 3699
		}
	}
3700 3701

	return sg;
3702 3703
}

3704 3705 3706
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3707
{
3708
	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3709
	unsigned int size = intel_rotation_info_size(rot_info);
3710 3711
	struct sgt_iter sgt_iter;
	dma_addr_t dma_addr;
3712 3713 3714
	unsigned long i;
	dma_addr_t *page_addr_list;
	struct sg_table *st;
3715
	struct scatterlist *sg;
3716
	int ret = -ENOMEM;
3717 3718

	/* Allocate a temporary list of source pages for random access. */
M
Michal Hocko 已提交
3719
	page_addr_list = kvmalloc_array(n_pages,
3720
					sizeof(dma_addr_t),
3721
					GFP_KERNEL);
3722 3723 3724 3725 3726 3727 3728 3729
	if (!page_addr_list)
		return ERR_PTR(ret);

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3730
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3731 3732 3733 3734 3735
	if (ret)
		goto err_sg_alloc;

	/* Populate source page list from the object. */
	i = 0;
C
Chris Wilson 已提交
3736
	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3737
		page_addr_list[i++] = dma_addr;
3738

3739
	GEM_BUG_ON(i != n_pages);
3740 3741 3742
	st->nents = 0;
	sg = st->sgl;

3743 3744 3745 3746
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3747 3748
	}

M
Michal Hocko 已提交
3749
	kvfree(page_addr_list);
3750 3751 3752 3753 3754 3755

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:
M
Michal Hocko 已提交
3756
	kvfree(page_addr_list);
3757

3758 3759
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3760

3761 3762
	return ERR_PTR(ret);
}
3763

3764
static noinline struct sg_table *
3765 3766 3767 3768
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3769
	struct scatterlist *sg, *iter;
3770
	unsigned int count = view->partial.size;
3771
	unsigned int offset;
3772 3773 3774 3775 3776 3777
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3778
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3779 3780 3781
	if (ret)
		goto err_sg_alloc;

3782
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3783 3784
	GEM_BUG_ON(!iter);

3785 3786
	sg = st->sgl;
	st->nents = 0;
3787 3788
	do {
		unsigned int len;
3789

3790 3791 3792 3793 3794 3795
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3796 3797

		st->nents++;
3798 3799 3800 3801 3802
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
			return st;
		}
3803

3804 3805 3806 3807
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3808 3809 3810 3811 3812 3813 3814

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3815
static int
3816
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3817
{
3818
	int ret;
3819

3820 3821 3822 3823 3824 3825 3826
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3827
	switch (vma->ggtt_view.type) {
3828 3829 3830
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3831 3832
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3833 3834
		return 0;

3835
	case I915_GGTT_VIEW_ROTATED:
3836
		vma->pages =
3837 3838 3839 3840
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3841
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3842 3843
		break;
	}
3844

3845 3846
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3847 3848
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3849 3850
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3851
	}
3852
	return ret;
3853 3854
}

3855 3856
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3891
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3892
	GEM_BUG_ON(drm_mm_node_allocated(node));
3893 3894 3895 3896 3897 3898 3899 3900 3901

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3902 3903 3904
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3905 3906 3907 3908 3909 3910 3911
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3937 3938
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3939 3940 3941 3942 3943 3944 3945 3946 3947
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3948
 *         must be #I915_GTT_PAGE_SIZE aligned
3949 3950 3951
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3952 3953 3954 3955 3956 3957
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3958 3959
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3976
	enum drm_mm_insert_mode mode;
3977
	u64 offset;
3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3988
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3989
	GEM_BUG_ON(drm_mm_node_allocated(node));
3990 3991 3992 3993 3994 3995 3996

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3997 3998 3999 4000 4001
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
		mode = DRM_MM_INSERT_HIGH;
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4013 4014 4015
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4016 4017 4018
	if (err != -ENOSPC)
		return err;

4019 4020 4021
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4051 4052 4053 4054 4055
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4056 4057 4058
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4059
}
4060 4061 4062

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4063
#include "selftests/i915_gem_gtt.c"
4064
#endif