i915_gem_gtt.c 102.0 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_vgpu.h"
40
#include "i915_reset.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137 138
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
139
{
140
	u32 pte_flags;
141 142 143 144 145 146 147 148
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
149

150
	/* Applicable to VLV, and gen8+ */
151
	pte_flags = 0;
152
	if (i915_gem_object_is_readonly(vma->obj))
153 154
		pte_flags |= PTE_READ_ONLY;

155
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 157

	return 0;
158 159 160 161
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
162
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163
}
164

165 166 167 168 169 170
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

171 172
	vma->page_sizes = vma->obj->mm.page_sizes;

173 174 175 176 177 178 179 180 181 182 183 184
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
185 186

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 188
}

189 190 191
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
192
{
193 194 195 196
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
197 198 199

	switch (level) {
	case I915_CACHE_NONE:
200
		pte |= PPAT_UNCACHED;
201 202
		break;
	case I915_CACHE_WT:
203
		pte |= PPAT_DISPLAY_ELLC;
204 205
		break;
	default:
206
		pte |= PPAT_CACHED;
207 208 209
		break;
	}

B
Ben Widawsky 已提交
210 211 212
	return pte;
}

213 214
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
215
{
216
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
217 218
	pde |= addr;
	if (level != I915_CACHE_NONE)
219
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
220
	else
221
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
222 223 224
	return pde;
}

225 226 227
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

228 229 230
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
231
{
232
	gen6_pte_t pte = GEN6_PTE_VALID;
233
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 235

	switch (level) {
236 237 238 239 240 241 242 243
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
244
		MISSING_CASE(level);
245 246 247 248 249
	}

	return pte;
}

250 251 252
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
253
{
254
	gen6_pte_t pte = GEN6_PTE_VALID;
255 256 257 258 259
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
260 261 262 263 264
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
265
		pte |= GEN6_PTE_UNCACHED;
266 267
		break;
	default:
268
		MISSING_CASE(level);
269 270
	}

271 272 273
	return pte;
}

274 275 276
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
277
{
278
	gen6_pte_t pte = GEN6_PTE_VALID;
279 280
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

281 282
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
283 284 285 286 287 288 289

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

290 291 292
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
293
{
294
	gen6_pte_t pte = GEN6_PTE_VALID;
295
	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 297

	if (level != I915_CACHE_NONE)
298
		pte |= HSW_WB_LLC_AGE3;
299 300 301 302

	return pte;
}

303 304 305
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
306
{
307
	gen6_pte_t pte = GEN6_PTE_VALID;
308 309
	pte |= HSW_PTE_ADDR_ENCODE(addr);

310 311 312 313
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
314
		pte |= HSW_WT_ELLC_LLC_AGE3;
315 316
		break;
	default:
317
		pte |= HSW_WB_ELLC_LLC_AGE3;
318 319
		break;
	}
320 321 322 323

	return pte;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

359
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360
{
361 362
	struct pagevec stack;
	struct page *page;
363

364 365
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
366

367 368 369
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
370 371 372 373 374

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
375 376 377
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
378

379
	/*
380
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 382 383 384 385 386
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
387
	pagevec_init(&stack);
388 389
	do {
		struct page *page;
390

391 392 393 394
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

395 396
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
397

398 399
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
400

401 402
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
403

404 405 406
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
407
	}
408

409 410 411 412 413 414 415
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
416 417
}

418 419
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
420
{
421 422
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
423

424
	lockdep_assert_held(&vm->free_pages.lock);
425
	GEM_BUG_ON(!pagevec_count(pvec));
426

427
	if (vm->pt_kmap_wc) {
428 429
		/*
		 * When we use WC, first fill up the global stash and then
430 431
		 * only if full immediately free the overflow.
		 */
432
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
433

434 435 436 437 438 439 440 441
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
442

443 444 445 446 447 448 449 450 451 452
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
453
		set_pages_array_wb(pvec->pages, pvec->nr);
454 455

		spin_lock(&vm->free_pages.lock);
456 457 458
	}

	__pagevec_release(pvec);
459 460 461 462
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
463 464 465 466 467 468 469 470
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
471 472
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
473
		vm_free_pages_release(vm, false);
474 475 476
	spin_unlock(&vm->free_pages.lock);
}

477
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
478
{
479 480 481 482 483 484
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
485
	lockdep_set_subclass(&vm->mutex, subclass);
486
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
487

488 489 490 491 492 493 494
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
495
	INIT_LIST_HEAD(&vm->bound_list);
496 497 498 499 500 501 502 503 504 505 506
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
507 508

	mutex_destroy(&vm->mutex);
509
}
510

511 512 513 514
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
515
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
516 517
	if (unlikely(!p->page))
		return -ENOMEM;
518

519 520 521
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
522
				      DMA_ATTR_SKIP_CPU_SYNC |
523
				      DMA_ATTR_NO_WARN);
524 525 526
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
527
	}
528 529

	return 0;
530 531
}

532
static int setup_page_dma(struct i915_address_space *vm,
533
			  struct i915_page_dma *p)
534
{
535
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
536 537
}

538
static void cleanup_page_dma(struct i915_address_space *vm,
539
			     struct i915_page_dma *p)
540
{
541 542
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
543 544
}

545
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
546

547 548
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
549 550
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
551

552 553 554
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
555
{
556
	u64 * const vaddr = kmap_atomic(p->page);
557

558
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
559

560
	kunmap_atomic(vaddr);
561 562
}

563 564 565
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
566
{
567
	fill_page_dma(vm, p, (u64)v << 32 | v);
568 569
}

570
static int
571
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
572
{
573
	unsigned long size;
574

575 576 577 578 579 580 581
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
582 583 584
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
585
	 */
586
	size = I915_GTT_PAGE_SIZE_4K;
587 588
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
589 590
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
591
	}
592 593 594 595 596 597
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
598

599
		page = alloc_pages(gfp, order);
600
		if (unlikely(!page))
601
			goto skip;
602

603 604 605
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
606
					  DMA_ATTR_SKIP_CPU_SYNC |
607
					  DMA_ATTR_NO_WARN);
608 609
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
610

611 612
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
630 631
}

632
static void cleanup_scratch_page(struct i915_address_space *vm)
633
{
634 635
	struct i915_page_dma *p = &vm->scratch_page;

636 637 638
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
639 640
}

641
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
642
{
643
	struct i915_page_table *pt;
644

645
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
646
	if (unlikely(!pt))
647 648
		return ERR_PTR(-ENOMEM);

649 650 651 652
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
653

654
	pt->used_ptes = 0;
655 656 657
	return pt;
}

658
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
659
{
660
	cleanup_px(vm, pt);
661 662 663 664 665 666
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
667
	fill_px(vm, pt, vm->scratch_pte);
668 669
}

670
static void gen6_initialize_pt(struct i915_address_space *vm,
671 672
			       struct i915_page_table *pt)
{
673
	fill32_px(vm, pt, vm->scratch_pte);
674 675
}

676
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
677
{
678
	struct i915_page_directory *pd;
679

680
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
681
	if (unlikely(!pd))
682 683
		return ERR_PTR(-ENOMEM);

684 685 686 687
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
688

689
	pd->used_pdes = 0;
690 691 692
	return pd;
}

693
static void free_pd(struct i915_address_space *vm,
694
		    struct i915_page_directory *pd)
695
{
696 697
	cleanup_px(vm, pd);
	kfree(pd);
698 699 700 701 702
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
703 704
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
705
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
706 707
}

708
static int __pdp_init(struct i915_address_space *vm,
709 710
		      struct i915_page_directory_pointer *pdp)
{
711
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
712

713
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
714
					    I915_GFP_ALLOW_FAIL);
715
	if (unlikely(!pdp->page_directory))
716 717
		return -ENOMEM;

718
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
719

720 721 722 723 724 725 726 727 728
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

729 730 731 732 733
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

734 735
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
736 737 738 739
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

740
	GEM_BUG_ON(!use_4lvl(vm));
741 742 743 744 745

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

746
	ret = __pdp_init(vm, pdp);
747 748 749
	if (ret)
		goto fail_bitmap;

750
	ret = setup_px(vm, pdp);
751 752 753 754 755 756 757 758 759 760 761 762 763
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

764
static void free_pdp(struct i915_address_space *vm,
765 766 767
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
768 769 770 771 772 773

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
774 775
}

776 777 778 779 780 781 782
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

783
	fill_px(vm, pdp, scratch_pdpe);
784 785 786 787 788
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
789 790
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
791
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
792 793
}

794 795 796 797 798 799 800
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
801
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
802 803
}

804 805 806
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
807
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
808
				struct i915_page_table *pt,
809
				u64 start, u64 length)
810
{
811
	unsigned int num_entries = gen8_pte_count(start, length);
812
	gen8_pte_t *vaddr;
813

814
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
815

816 817 818
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
819

820
	vaddr = kmap_atomic_px(pt);
821
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
822
	kunmap_atomic(vaddr);
823 824

	return false;
825
}
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

841
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
842
				struct i915_page_directory *pd,
843
				u64 start, u64 length)
844 845
{
	struct i915_page_table *pt;
846
	u32 pde;
847 848

	gen8_for_each_pde(pt, pd, start, length, pde) {
849 850
		GEM_BUG_ON(pt == vm->scratch_pt);

851 852
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
853

854
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
855
		GEM_BUG_ON(!pd->used_pdes);
856
		pd->used_pdes--;
857 858

		free_pt(vm, pt);
859 860
	}

861 862
	return !pd->used_pdes;
}
863

864 865 866 867 868 869 870 871
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
872
	if (!use_4lvl(vm))
873 874 875 876 877
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
878
}
879

880 881 882 883
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
884
				 struct i915_page_directory_pointer *pdp,
885
				 u64 start, u64 length)
886 887
{
	struct i915_page_directory *pd;
888
	unsigned int pdpe;
889

890
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
891 892
		GEM_BUG_ON(pd == vm->scratch_pd);

893 894
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
895

896
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
897
		GEM_BUG_ON(!pdp->used_pdpes);
898
		pdp->used_pdpes--;
899

900 901
		free_pd(vm, pd);
	}
902

903
	return !pdp->used_pdpes;
904
}
905

906 907 908 909 910 911
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

912 913 914 915 916 917 918 919 920 921 922 923 924
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

925 926 927 928
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
929 930
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
931
{
932 933
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
934
	struct i915_page_directory_pointer *pdp;
935
	unsigned int pml4e;
936

937
	GEM_BUG_ON(!use_4lvl(vm));
938

939
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
940 941
		GEM_BUG_ON(pdp == vm->scratch_pdp);

942 943
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
944

945 946 947
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
948 949 950
	}
}

951
static inline struct sgt_dma {
952 953
	struct scatterlist *sg;
	dma_addr_t dma, max;
954 955 956 957 958
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

977 978
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
979
			      struct i915_page_directory_pointer *pdp,
980
			      struct sgt_dma *iter,
981
			      struct gen8_insert_pte *idx,
982 983
			      enum i915_cache_level cache_level,
			      u32 flags)
984
{
985
	struct i915_page_directory *pd;
986
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
987 988
	gen8_pte_t *vaddr;
	bool ret;
989

990
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
991 992
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
993
	do {
994 995
		vaddr[idx->pte] = pte_encode | iter->dma;

996
		iter->dma += I915_GTT_PAGE_SIZE;
997 998 999 1000 1001 1002
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1003

1004 1005
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1006
		}
1007

1008 1009 1010 1011 1012 1013
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1014
				/* Limited by sg length for 3lvl */
1015 1016
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1017
					ret = true;
1018
					break;
1019 1020
				}

1021
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1022
				pd = pdp->page_directory[idx->pdpe];
1023
			}
1024

1025
			kunmap_atomic(vaddr);
1026
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1027
		}
1028
	} while (1);
1029
	kunmap_atomic(vaddr);
1030

1031
	return ret;
1032 1033
}

1034
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1035
				   struct i915_vma *vma,
1036
				   enum i915_cache_level cache_level,
1037
				   u32 flags)
1038
{
1039
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1040
	struct sgt_dma iter = sgt_dma(vma);
1041
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1042

1043
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1044
				      cache_level, flags);
1045 1046

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1047
}
1048

1049 1050 1051
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1052 1053
					   enum i915_cache_level cache_level,
					   u32 flags)
1054
{
1055
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1056 1057 1058 1059 1060 1061 1062 1063
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1064
		bool maybe_64K = false;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1086 1087 1088 1089
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1090
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1091 1092
				maybe_64K = true;

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1112 1113 1114
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1115
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1116 1117
					maybe_64K = false;

1118 1119 1120 1121 1122 1123
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1140
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1154
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1155 1156 1157 1158 1159 1160 1161
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1162
		}
1163 1164

		vma->page_sizes.gtt |= page_size;
1165 1166 1167
	} while (iter->sg);
}

1168
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1169
				   struct i915_vma *vma,
1170
				   enum i915_cache_level cache_level,
1171
				   u32 flags)
1172 1173
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1174
	struct sgt_dma iter = sgt_dma(vma);
1175
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1176

1177
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1178 1179
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1180 1181 1182 1183
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1184 1185
						     &iter, &idx, cache_level,
						     flags))
1186
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1187 1188

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1189
	}
1190 1191
}

1192
static void gen8_free_page_tables(struct i915_address_space *vm,
1193
				  struct i915_page_directory *pd)
1194 1195 1196
{
	int i;

1197 1198 1199
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1200
	}
B
Ben Widawsky 已提交
1201 1202
}

1203 1204
static int gen8_init_scratch(struct i915_address_space *vm)
{
1205
	int ret;
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

		vm->scratch_page.order = clone->scratch_page.order;
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1227
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1228 1229
	if (ret)
		return ret;
1230

1231 1232 1233 1234 1235
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
				PTE_READ_ONLY);

1236
	vm->scratch_pt = alloc_pt(vm);
1237
	if (IS_ERR(vm->scratch_pt)) {
1238 1239
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1240 1241
	}

1242
	vm->scratch_pd = alloc_pd(vm);
1243
	if (IS_ERR(vm->scratch_pd)) {
1244 1245
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1246 1247
	}

1248
	if (use_4lvl(vm)) {
1249
		vm->scratch_pdp = alloc_pdp(vm);
1250
		if (IS_ERR(vm->scratch_pdp)) {
1251 1252
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1253 1254 1255
		}
	}

1256 1257
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1258
	if (use_4lvl(vm))
1259
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1260 1261

	return 0;
1262 1263

free_pd:
1264
	free_pd(vm, vm->scratch_pd);
1265
free_pt:
1266
	free_pt(vm, vm->scratch_pt);
1267
free_scratch_page:
1268
	cleanup_scratch_page(vm);
1269 1270

	return ret;
1271 1272
}

1273 1274
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1275
	struct i915_address_space *vm = &ppgtt->vm;
1276
	struct drm_i915_private *dev_priv = vm->i915;
1277 1278 1279
	enum vgt_g2v_type msg;
	int i;

1280 1281
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1282

1283 1284
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1285 1286 1287 1288

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1289
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1290
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1291

1292 1293
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1305 1306
static void gen8_free_scratch(struct i915_address_space *vm)
{
1307 1308 1309
	if (!vm->scratch_page.daddr)
		return;

1310
	if (use_4lvl(vm))
1311 1312 1313 1314
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1315 1316
}

1317
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1318
				    struct i915_page_directory_pointer *pdp)
1319
{
1320
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1321 1322
	int i;

1323
	for (i = 0; i < pdpes; i++) {
1324
		if (pdp->page_directory[i] == vm->scratch_pd)
1325 1326
			continue;

1327 1328
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1329
	}
1330

1331
	free_pdp(vm, pdp);
1332 1333 1334 1335 1336 1337
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1338
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1339
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1340 1341
			continue;

1342
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1343 1344
	}

1345
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1346 1347 1348 1349
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1350
	struct drm_i915_private *dev_priv = vm->i915;
1351
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1352

1353
	if (intel_vgpu_active(dev_priv))
1354 1355
		gen8_ppgtt_notify_vgt(ppgtt, false);

1356
	if (use_4lvl(vm))
1357
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1358
	else
1359
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1360

1361
	gen8_free_scratch(vm);
1362 1363
}

1364 1365 1366
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1367
{
1368
	struct i915_page_table *pt;
1369
	u64 from = start;
1370
	unsigned int pde;
1371

1372
	gen8_for_each_pde(pt, pd, start, length, pde) {
1373 1374
		int count = gen8_pte_count(start, length);

1375
		if (pt == vm->scratch_pt) {
1376 1377
			pd->used_pdes++;

1378
			pt = alloc_pt(vm);
1379 1380
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1381
				goto unwind;
1382
			}
1383

1384
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1385
				gen8_initialize_pt(vm, pt);
1386 1387

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1388
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1389
		}
1390

1391
		pt->used_ptes += count;
1392
	}
1393
	return 0;
1394

1395 1396
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1397
	return -ENOMEM;
1398 1399
}

1400 1401 1402
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1403
{
1404
	struct i915_page_directory *pd;
1405 1406
	u64 from = start;
	unsigned int pdpe;
1407 1408
	int ret;

1409
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1410
		if (pd == vm->scratch_pd) {
1411 1412
			pdp->used_pdpes++;

1413
			pd = alloc_pd(vm);
1414 1415
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1416
				goto unwind;
1417
			}
1418

1419
			gen8_initialize_pd(vm, pd);
1420
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1421
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1422 1423 1424
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1425 1426
		if (unlikely(ret))
			goto unwind_pd;
1427
	}
1428

B
Ben Widawsky 已提交
1429
	return 0;
1430

1431 1432 1433 1434 1435 1436 1437
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1438 1439 1440
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1441 1442
}

1443 1444
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1445
{
1446 1447 1448
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1459

1460
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1461 1462 1463 1464
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1465

1466 1467 1468
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1469

1470
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1471 1472
		if (unlikely(ret))
			goto unwind_pdp;
1473 1474 1475 1476
	}

	return 0;

1477 1478 1479 1480 1481
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1482 1483 1484
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1485 1486
}

1487
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1488
{
1489
	struct i915_address_space *vm = &ppgtt->vm;
1490 1491
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1492
	u64 start = 0, length = ppgtt->vm.total;
1493 1494
	u64 from = start;
	unsigned int pdpe;
1495

1496 1497 1498 1499
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1500

1501 1502 1503 1504
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1505

1506 1507
	pdp->used_pdpes++; /* never remove */
	return 0;
1508

1509 1510 1511 1512 1513 1514 1515 1516
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1517 1518
}

1519
/*
1520 1521 1522 1523
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1524
 *
1525
 */
1526
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1527
{
1528 1529 1530 1531 1532 1533 1534
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1535 1536
	kref_init(&ppgtt->ref);

1537 1538
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1539

1540
	ppgtt->vm.total = HAS_FULL_48BIT_PPGTT(i915) ?
1541 1542 1543
		1ULL << 48 :
		1ULL << 32;

1544 1545
	/* From bdw, there is support for read-only pages in the PPGTT. */
	ppgtt->vm.has_read_only = true;
1546

1547
	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1548

1549 1550 1551
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1552
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1553
		ppgtt->vm.pt_kmap_wc = true;
1554

1555 1556 1557
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1558

1559 1560 1561 1562
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1563

1564
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1565

1566 1567 1568
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1569
	} else {
1570 1571 1572
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1573

1574 1575 1576
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1577
				__pdp_fini(&ppgtt->pdp);
1578
				goto err_scratch;
1579
			}
1580
		}
1581

1582 1583 1584
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1585
	}
1586

1587
	if (intel_vgpu_active(i915))
1588 1589
		gen8_ppgtt_notify_vgt(ppgtt, true);

1590
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1591

1592
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1593 1594 1595 1596
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1597
	return ppgtt;
1598

1599
err_scratch:
1600
	gen8_free_scratch(&ppgtt->vm);
1601 1602 1603
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1604 1605
}

1606
/* Write pde (index) from the page directory @pd to the page table @pt */
1607
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1608 1609
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1610
{
1611
	/* Caller needs to make sure the write completes if necessary */
1612 1613
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1614
}
B
Ben Widawsky 已提交
1615

1616
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1617
{
1618
	struct intel_engine_cs *engine;
1619
	u32 ecochk, ecobits;
1620
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1621

1622 1623
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1624

1625
	ecochk = I915_READ(GAM_ECOCHK);
1626
	if (IS_HASWELL(dev_priv)) {
1627 1628 1629 1630 1631 1632
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1633

1634
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1635
		/* GFX_MODE is per-ring on gen7+ */
1636
		I915_WRITE(RING_MODE_GEN7(engine),
1637
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1638
	}
1639
}
B
Ben Widawsky 已提交
1640

1641
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1642
{
1643
	u32 ecochk, gab_ctl, ecobits;
1644

1645 1646 1647
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1648

1649 1650 1651 1652 1653 1654
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1655 1656
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1657 1658
}

1659
/* PPGTT support for Sandybdrige/Gen6 and later */
1660
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1661
				   u64 start, u64 length)
1662
{
1663
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1664
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1665 1666
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1667
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1668
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1669

1670
	while (num_entries) {
1671
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1672
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1673
		gen6_pte_t *vaddr;
1674

1675 1676 1677 1678 1679 1680 1681 1682
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1683

1684 1685
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1686 1687 1688 1689
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1690

1691
		vaddr = kmap_atomic_px(pt);
1692
		memset32(vaddr + pte, scratch_pte, count);
1693
		kunmap_atomic(vaddr);
1694

1695
		pte = 0;
1696
	}
1697 1698
}

1699
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1700
				      struct i915_vma *vma,
1701 1702
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1703
{
1704
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1705
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1706 1707
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1708
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1709
	struct sgt_dma iter = sgt_dma(vma);
1710 1711
	gen6_pte_t *vaddr;

1712 1713
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1714
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1715 1716
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1717

1718
		iter.dma += I915_GTT_PAGE_SIZE;
1719 1720 1721 1722
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1723

1724 1725 1726
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1727

1728
		if (++act_pte == GEN6_PTES) {
1729 1730
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1731
			act_pte = 0;
D
Daniel Vetter 已提交
1732
		}
1733
	} while (1);
1734
	kunmap_atomic(vaddr);
1735 1736

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1737 1738
}

1739
static int gen6_alloc_va_range(struct i915_address_space *vm,
1740
			       u64 start, u64 length)
1741
{
1742
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1743
	struct i915_page_table *pt;
1744 1745 1746
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1747

1748
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1749 1750
		const unsigned int count = gen6_pte_count(start, length);

1751 1752 1753 1754
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1755

1756
			gen6_initialize_pt(vm, pt);
1757
			ppgtt->base.pd.page_table[pde] = pt;
1758 1759 1760 1761 1762 1763

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1764 1765

			GEM_BUG_ON(pt->used_ptes);
1766
		}
1767 1768

		pt->used_ptes += count;
1769 1770
	}

1771
	if (flush) {
1772 1773
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1774 1775 1776
	}

	return 0;
1777 1778

unwind_out:
1779
	gen6_ppgtt_clear_range(vm, from, start - from);
1780
	return -ENOMEM;
1781 1782
}

1783
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1784
{
1785 1786 1787
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1788
	int ret;
1789

1790
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1791 1792
	if (ret)
		return ret;
1793

1794 1795 1796
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1797

1798
	vm->scratch_pt = alloc_pt(vm);
1799
	if (IS_ERR(vm->scratch_pt)) {
1800
		cleanup_scratch_page(vm);
1801 1802 1803
		return PTR_ERR(vm->scratch_pt);
	}

1804
	gen6_initialize_pt(vm, vm->scratch_pt);
1805 1806
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1807 1808 1809 1810

	return 0;
}

1811
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1812
{
1813 1814
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1815 1816
}

1817
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1818
{
1819
	struct i915_page_table *pt;
1820
	u32 pde;
1821

1822
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1823 1824 1825 1826 1827 1828 1829
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1830

1831
	i915_vma_destroy(ppgtt->vma);
1832 1833 1834

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1835 1836
}

1837
static int pd_vma_set_pages(struct i915_vma *vma)
1838
{
1839 1840 1841
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1842

1843 1844 1845
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1846

1847 1848 1849 1850 1851 1852 1853 1854 1855
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1856
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1857 1858
	struct i915_page_table *pt;
	unsigned int pde;
1859

1860 1861
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1862

1863 1864
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1865

1866 1867
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1868

1869
	return 0;
1870
}
1871

1872
static void pd_vma_unbind(struct i915_vma *vma)
1873
{
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

1910
	vma = i915_vma_alloc();
1911 1912 1913
	if (!vma)
		return ERR_PTR(-ENOMEM);

1914
	i915_active_init(i915, &vma->active, NULL);
1915
	INIT_ACTIVE_REQUEST(&vma->last_fence);
1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
1927 1928

	mutex_lock(&vma->vm->mutex);
1929
	list_add(&vma->vm_link, &vma->vm->unbound_list);
1930
	mutex_unlock(&vma->vm->mutex);
1931 1932 1933

	return vma;
}
1934

1935
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
1936 1937
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1938
	int err;
1939

1940 1941 1942 1943 1944 1945 1946 1947 1948
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

1949 1950 1951 1952 1953
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
1965 1966
}

1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

1978
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1979
{
1980
	struct i915_ggtt * const ggtt = &i915->ggtt;
1981
	struct gen6_hw_ppgtt *ppgtt;
1982 1983 1984 1985 1986 1987
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1988 1989
	kref_init(&ppgtt->base.ref);

1990 1991
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
1992

1993
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
1994

1995
	i915_address_space_init(&ppgtt->base.vm, VM_CLASS_PPGTT);
1996

1997
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
1998 1999 2000
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2001

2002
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2003 2004 2005
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2006

2007 2008
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2009
	err = gen6_ppgtt_init_scratch(ppgtt);
2010 2011 2012
	if (err)
		goto err_free;

2013 2014 2015
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2016
		goto err_scratch;
2017
	}
2018

2019
	return &ppgtt->base;
2020

2021 2022
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2023 2024 2025
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2026
}
2027

2028
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2029 2030 2031 2032 2033
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2034
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2035
	if (IS_BROADWELL(dev_priv))
2036
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2037
	else if (IS_CHERRYVIEW(dev_priv))
2038
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2039
	else if (IS_GEN9_LP(dev_priv))
2040
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2041 2042
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2060 2061
}

2062
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2063
{
2064
	gtt_write_workarounds(dev_priv);
2065

2066
	if (IS_GEN(dev_priv, 6))
2067
		gen6_ppgtt_enable(dev_priv);
2068
	else if (IS_GEN(dev_priv, 7))
2069
		gen7_ppgtt_enable(dev_priv);
2070

2071 2072
	return 0;
}
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2083
struct i915_hw_ppgtt *
2084
i915_ppgtt_create(struct drm_i915_private *i915,
2085
		  struct drm_i915_file_private *fpriv)
2086 2087 2088
{
	struct i915_hw_ppgtt *ppgtt;

2089 2090 2091
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2092

2093
	ppgtt->vm.file = fpriv;
2094

2095
	trace_i915_ppgtt_create(&ppgtt->vm);
2096

2097 2098 2099
	return ppgtt;
}

2100
void i915_ppgtt_close(struct i915_address_space *vm)
2101 2102 2103 2104 2105 2106
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2107 2108
{
	struct list_head *phases[] = {
2109
		&vm->bound_list,
2110 2111 2112 2113 2114 2115 2116 2117 2118
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2119
			i915_vma_destroy(vma);
2120 2121 2122
	}
}

2123
void i915_ppgtt_release(struct kref *kref)
2124 2125 2126 2127
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2128
	trace_i915_ppgtt_release(&ppgtt->vm);
2129

2130
	ppgtt_destroy_vma(&ppgtt->vm);
2131

2132
	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2133
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2134

2135 2136
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2137 2138
	kfree(ppgtt);
}
2139

2140 2141 2142
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2143
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2144 2145 2146 2147
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2148
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2149 2150
}

2151
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2152
{
2153
	struct intel_engine_cs *engine;
2154
	enum intel_engine_id id;
2155
	u32 fault;
2156

2157
	for_each_engine(engine, dev_priv, id) {
2158 2159
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2160
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2161
					 "\tAddr: 0x%08lx\n"
2162 2163 2164
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2165 2166 2167 2168
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2169 2170
		}
	}
2171 2172
}

2173
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2174 2175 2176 2177
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2178 2179 2180 2181 2182 2183 2184 2185
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2186
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2187 2188
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2189 2190 2191
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2192 2193 2194
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2205
		gen8_check_faults(dev_priv);
2206
	else if (INTEL_GEN(dev_priv) >= 6)
2207
		gen6_check_faults(dev_priv);
2208 2209
	else
		return;
2210 2211

	i915_clear_error_registers(dev_priv);
2212 2213
}

2214
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2215
{
2216
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2217 2218 2219 2220

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2221
	if (INTEL_GEN(dev_priv) < 6)
2222 2223
		return;

2224
	i915_check_and_clear_faults(dev_priv);
2225

2226
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2227

2228
	i915_ggtt_invalidate(dev_priv);
2229 2230
}

2231 2232
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2233
{
2234
	do {
2235 2236 2237 2238
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2239 2240
			return 0;

2241 2242
		/*
		 * If the DMA remap fails, one cause can be that we have
2243 2244 2245 2246 2247 2248 2249
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2250
				 obj->base.size >> PAGE_SHIFT, NULL,
2251
				 I915_SHRINK_BOUND |
2252
				 I915_SHRINK_UNBOUND));
2253

2254
	return -ENOSPC;
2255 2256
}

2257
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2258 2259 2260 2261
{
	writeq(pte, addr);
}

2262 2263
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2264
				  u64 offset,
2265 2266 2267
				  enum i915_cache_level level,
				  u32 unused)
{
2268
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2269
	gen8_pte_t __iomem *pte =
2270
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2271

2272
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2273

2274
	ggtt->invalidate(vm->i915);
2275 2276
}

B
Ben Widawsky 已提交
2277
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2278
				     struct i915_vma *vma,
2279
				     enum i915_cache_level level,
2280
				     u32 flags)
B
Ben Widawsky 已提交
2281
{
2282
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2283 2284
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2285
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2286
	dma_addr_t addr;
2287

2288 2289 2290 2291
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2292

2293
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2294
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2295
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2296
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2297

2298 2299 2300
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2301
	 */
2302
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2303 2304
}

2305 2306
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2307
				  u64 offset,
2308 2309 2310
				  enum i915_cache_level level,
				  u32 flags)
{
2311
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2312
	gen6_pte_t __iomem *pte =
2313
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2314

2315
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2316

2317
	ggtt->invalidate(vm->i915);
2318 2319
}

2320 2321 2322 2323 2324 2325
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2326
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2327
				     struct i915_vma *vma,
2328 2329
				     enum i915_cache_level level,
				     u32 flags)
2330
{
2331
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2332
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2333
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2334
	struct sgt_iter iter;
2335
	dma_addr_t addr;
2336
	for_each_sgt_dma(addr, iter, vma->pages)
2337
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2338

2339 2340 2341
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2342
	 */
2343
	ggtt->invalidate(vm->i915);
2344 2345
}

2346
static void nop_clear_range(struct i915_address_space *vm,
2347
			    u64 start, u64 length)
2348 2349 2350
{
}

B
Ben Widawsky 已提交
2351
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2352
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2353
{
2354
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2355 2356
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2357
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2358
	gen8_pte_t __iomem *gtt_base =
2359 2360
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2416
	struct i915_vma *vma;
2417
	enum i915_cache_level level;
2418
	u32 flags;
2419 2420 2421 2422 2423 2424
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2425
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2426 2427 2428 2429 2430 2431
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2432
					     struct i915_vma *vma,
2433
					     enum i915_cache_level level,
2434
					     u32 flags)
2435
{
2436
	struct insert_entries arg = { vm, vma, level, flags };
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2466
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2467
				  u64 start, u64 length)
2468
{
2469
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2470 2471
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2472
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2473 2474
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2475 2476 2477 2478 2479 2480 2481
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2482
	scratch_pte = vm->scratch_pte;
2483

2484 2485 2486 2487
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2488 2489
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2490
				  u64 offset,
2491 2492 2493 2494 2495 2496 2497 2498 2499
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2500
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2501
				     struct i915_vma *vma,
2502 2503
				     enum i915_cache_level cache_level,
				     u32 unused)
2504 2505 2506 2507
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2508 2509
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2510 2511
}

2512
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2513
				  u64 start, u64 length)
2514
{
2515
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2516 2517
}

2518 2519 2520
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2521
{
2522
	struct drm_i915_private *i915 = vma->vm->i915;
2523
	struct drm_i915_gem_object *obj = vma->obj;
2524
	intel_wakeref_t wakeref;
2525
	u32 pte_flags;
2526

2527
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2528
	pte_flags = 0;
2529
	if (i915_gem_object_is_readonly(obj))
2530 2531
		pte_flags |= PTE_READ_ONLY;

2532 2533
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2534

2535 2536
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2537 2538 2539 2540 2541
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2542
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2543 2544 2545 2546

	return 0;
}

2547 2548 2549
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2550
	intel_wakeref_t wakeref;
2551

2552 2553
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2554 2555
}

2556 2557 2558
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2559
{
2560
	struct drm_i915_private *i915 = vma->vm->i915;
2561
	u32 pte_flags;
2562
	int ret;
2563

2564
	/* Currently applicable only to VLV */
2565
	pte_flags = 0;
2566
	if (i915_gem_object_is_readonly(vma->obj))
2567
		pte_flags |= PTE_READ_ONLY;
2568

2569 2570 2571
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2572
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2573 2574 2575
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2576
			if (ret)
2577
				return ret;
2578 2579
		}

2580 2581
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2582 2583
	}

2584
	if (flags & I915_VMA_GLOBAL_BIND) {
2585 2586
		intel_wakeref_t wakeref;

2587 2588 2589 2590
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2591
	}
2592

2593
	return 0;
2594 2595
}

2596
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2597
{
2598
	struct drm_i915_private *i915 = vma->vm->i915;
2599

2600
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2601
		struct i915_address_space *vm = vma->vm;
2602 2603
		intel_wakeref_t wakeref;

2604 2605
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2606
	}
2607

2608
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2609
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2610 2611 2612

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2613 2614
}

2615 2616
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2617
{
D
David Weinehall 已提交
2618 2619
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2620
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2621

2622
	if (unlikely(ggtt->do_idle_maps)) {
2623
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2624 2625 2626 2627 2628
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2629

2630
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2631
}
2632

2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2643 2644
	vma->page_sizes = vma->obj->mm.page_sizes;

2645 2646 2647
	return 0;
}

C
Chris Wilson 已提交
2648
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2649
				  unsigned long color,
2650 2651
				  u64 *start,
				  u64 *end)
2652
{
2653
	if (node->allocated && node->color != color)
2654
		*start += I915_GTT_PAGE_SIZE;
2655

2656 2657 2658 2659 2660
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2661
	node = list_next_entry(node, node_list);
2662
	if (node->color != color)
2663
		*end -= I915_GTT_PAGE_SIZE;
2664
}
B
Ben Widawsky 已提交
2665

2666 2667 2668 2669 2670 2671
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2672
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2673 2674
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2675

2676
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2677 2678 2679 2680
		err = -ENODEV;
		goto err_ppgtt;
	}

2681 2682 2683 2684 2685 2686 2687 2688 2689
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2690 2691

	i915->mm.aliasing_ppgtt = ppgtt;
2692

2693 2694
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2695

2696 2697
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2698

2699 2700 2701
	return 0;

err_ppgtt:
2702
	i915_ppgtt_put(ppgtt);
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2715
	i915_ppgtt_put(ppgtt);
2716

2717 2718
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2719 2720
}

2721
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2722
{
2723 2724 2725 2726 2727 2728 2729 2730 2731
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2732
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2733
	unsigned long hole_start, hole_end;
2734
	struct drm_mm_node *entry;
2735
	int ret;
2736

2737 2738 2739 2740 2741 2742 2743 2744 2745
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2746 2747 2748
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2749

2750
	/* Reserve a mappable slot for our lockless error capture */
2751
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2752 2753 2754
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2755 2756 2757
	if (ret)
		return ret;

2758
	/* Clear any non-preallocated blocks */
2759
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2760 2761
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2762 2763
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2764 2765 2766
	}

	/* And finally clear the reserved guard page */
2767
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2768

2769
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2770
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2771
		if (ret)
2772
			goto err;
2773 2774
	}

2775
	return 0;
2776 2777 2778 2779

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2780 2781
}

2782 2783
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2784
 * @dev_priv: i915 device
2785
 */
2786
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2787
{
2788
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2789
	struct i915_vma *vma, *vn;
2790
	struct pagevec *pvec;
2791

2792
	ggtt->vm.closed = true;
2793 2794

	mutex_lock(&dev_priv->drm.struct_mutex);
2795 2796
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2797
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2798
		WARN_ON(i915_vma_unbind(vma));
2799

2800 2801 2802
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2803
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2804
		intel_vgt_deballoon(dev_priv);
2805
		i915_address_space_fini(&ggtt->vm);
2806 2807
	}

2808
	ggtt->vm.cleanup(&ggtt->vm);
2809

2810
	pvec = &dev_priv->mm.wc_stash.pvec;
2811 2812 2813 2814 2815
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2816
	mutex_unlock(&dev_priv->drm.struct_mutex);
2817 2818

	arch_phys_wc_del(ggtt->mtrr);
2819
	io_mapping_fini(&ggtt->iomap);
2820

2821
	i915_gem_cleanup_stolen(dev_priv);
2822
}
2823

2824
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2825 2826 2827 2828 2829 2830
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2831
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2832 2833 2834 2835 2836
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2837 2838

#ifdef CONFIG_X86_32
2839
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2840 2841 2842 2843
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2844 2845 2846
	return bdw_gmch_ctl << 20;
}

2847
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2858
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2859
{
2860
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2861
	struct pci_dev *pdev = dev_priv->drm.pdev;
2862
	phys_addr_t phys_addr;
2863
	int ret;
B
Ben Widawsky 已提交
2864 2865

	/* For Modern GENs the PTEs and register space are split in the BAR */
2866
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2867

I
Imre Deak 已提交
2868
	/*
2869 2870 2871
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2872 2873 2874
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2875
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2876
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2877
	else
2878
		ggtt->gsm = ioremap_wc(phys_addr, size);
2879
	if (!ggtt->gsm) {
2880
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2881 2882 2883
		return -ENOMEM;
	}

2884
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2885
	if (ret) {
B
Ben Widawsky 已提交
2886 2887
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2888
		iounmap(ggtt->gsm);
2889
		return ret;
B
Ben Widawsky 已提交
2890 2891
	}

2892 2893 2894 2895
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2896
	return 0;
B
Ben Widawsky 已提交
2897 2898
}

2899 2900
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2901
{
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
2945
	struct intel_ppat_entry *entry = NULL;
2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
2968
		if (!entry)
2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3045
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3083 3084
}

B
Ben Widawsky 已提交
3085 3086 3087
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3088
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3089
{
3090 3091 3092 3093
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3094

3095
	if (!HAS_PPGTT(ppat->i915)) {
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3109 3110 3111
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3112

3113 3114 3115 3116 3117 3118 3119 3120
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3121 3122
}

3123
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3124
{
3125 3126 3127 3128
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3129 3130 3131 3132 3133 3134 3135

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3147 3148
	 */

3149 3150 3151 3152 3153 3154 3155 3156
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3157 3158
}

3159 3160 3161 3162 3163
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3164
	cleanup_scratch_page(vm);
3165 3166
}

3167 3168
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3169 3170 3171 3172 3173
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3174
	if (INTEL_GEN(dev_priv) >= 10)
3175
		cnl_setup_private_ppat(ppat);
3176
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3177
		chv_setup_private_ppat(ppat);
3178
	else
3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3190 3191
}

3192
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3193
{
3194
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3195
	struct pci_dev *pdev = dev_priv->drm.pdev;
3196
	unsigned int size;
B
Ben Widawsky 已提交
3197
	u16 snb_gmch_ctl;
3198
	int err;
B
Ben Widawsky 已提交
3199 3200

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3201 3202 3203 3204
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3205

3206 3207 3208 3209 3210
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3211

3212
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3213
	if (IS_CHERRYVIEW(dev_priv))
3214
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3215
	else
3216
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3217

3218
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3219 3220 3221
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3222
	if (intel_scanout_needs_vtd_wa(dev_priv))
3223
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3224

3225
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3226

3227
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3228 3229
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3230 3231 3232 3233
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3234 3235 3236 3237 3238

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3239 3240
	}

3241 3242
	ggtt->invalidate = gen6_ggtt_invalidate;

3243 3244 3245 3246 3247
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3248 3249
	ggtt->vm.pte_encode = gen8_pte_encode;

3250 3251
	setup_private_pat(dev_priv);

3252
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3253 3254
}

3255
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3256
{
3257
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3258
	struct pci_dev *pdev = dev_priv->drm.pdev;
3259
	unsigned int size;
3260
	u16 snb_gmch_ctl;
3261
	int err;
3262

3263 3264 3265 3266
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3267

3268 3269
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3270
	 */
3271
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3272
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3273
		return -ENXIO;
3274 3275
	}

3276 3277 3278 3279 3280
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3281
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3282

3283
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3284
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3285

3286 3287 3288 3289
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3290

3291 3292
	ggtt->invalidate = gen6_ggtt_invalidate;

3293
	if (HAS_EDRAM(dev_priv))
3294
		ggtt->vm.pte_encode = iris_pte_encode;
3295
	else if (IS_HASWELL(dev_priv))
3296
		ggtt->vm.pte_encode = hsw_pte_encode;
3297
	else if (IS_VALLEYVIEW(dev_priv))
3298
		ggtt->vm.pte_encode = byt_pte_encode;
3299
	else if (INTEL_GEN(dev_priv) >= 7)
3300
		ggtt->vm.pte_encode = ivb_pte_encode;
3301
	else
3302
		ggtt->vm.pte_encode = snb_pte_encode;
3303

3304 3305 3306 3307 3308
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3309
	return ggtt_probe_common(ggtt, size);
3310 3311
}

3312
static void i915_gmch_remove(struct i915_address_space *vm)
3313
{
3314
	intel_gmch_remove();
3315
}
3316

3317
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3318
{
3319
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3320
	phys_addr_t gmadr_base;
3321 3322
	int ret;

3323
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3324 3325 3326 3327 3328
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3329
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3330

3331 3332 3333 3334
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3335
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3336 3337 3338 3339
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3340

3341 3342
	ggtt->invalidate = gmch_ggtt_invalidate;

3343 3344 3345 3346 3347
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3348
	if (unlikely(ggtt->do_idle_maps))
3349 3350
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3351 3352 3353
	return 0;
}

3354
/**
3355
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3356
 * @dev_priv: i915 device
3357
 */
3358
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3359
{
3360
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3361 3362
	int ret;

3363 3364
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3365

3366 3367 3368 3369 3370 3371
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3372
	if (ret)
3373 3374
		return ret;

3375 3376 3377 3378 3379
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3380
	if (USES_GUC(dev_priv)) {
3381 3382 3383
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3384 3385
	}

3386
	if ((ggtt->vm.total - 1) >> 32) {
3387
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3388
			  " of address space! Found %lldM!\n",
3389 3390 3391 3392
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3393 3394
	}

3395
	if (ggtt->mappable_end > ggtt->vm.total) {
3396
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3397
			  " aperture=%pa, total=%llx\n",
3398 3399
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3400 3401
	}

3402
	/* GMADR is the PCI mmio aperture into the global GTT. */
3403
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3404
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3405
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3406
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3407
	if (intel_vtd_active())
3408
		DRM_INFO("VT-d active for gfx access\n");
3409 3410

	return 0;
3411 3412 3413 3414
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3415
 * @dev_priv: i915 device
3416
 */
3417
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3418 3419 3420 3421
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3422 3423
	stash_init(&dev_priv->mm.wc_stash);

3424 3425 3426 3427
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3428
	 */
C
Chris Wilson 已提交
3429
	mutex_lock(&dev_priv->drm.struct_mutex);
3430
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3431

3432 3433
	ggtt->vm.is_ggtt = true;

3434 3435 3436
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3437
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3438
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3439
	mutex_unlock(&dev_priv->drm.struct_mutex);
3440

3441 3442
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3443
				dev_priv->ggtt.mappable_end)) {
3444 3445 3446 3447
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3448
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3449

3450 3451 3452 3453
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3454
	ret = i915_gem_init_stolen(dev_priv);
3455 3456 3457 3458
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3459 3460

out_gtt_cleanup:
3461
	ggtt->vm.cleanup(&ggtt->vm);
3462
	return ret;
3463
}
3464

3465
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3466
{
3467
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3468 3469 3470 3471 3472
		return -EIO;

	return 0;
}

3473 3474
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3475 3476
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3477
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3478 3479

	i915_ggtt_invalidate(i915);
3480 3481 3482 3483
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3484 3485 3486 3487
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3488 3489 3490 3491
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3492 3493

	i915_ggtt_invalidate(i915);
3494 3495
}

3496
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3497
{
3498
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3499
	struct i915_vma *vma, *vn;
3500

3501
	i915_check_and_clear_faults(dev_priv);
3502

3503 3504
	mutex_lock(&ggtt->vm.mutex);

3505
	/* First fill our portion of the GTT with scratch pages */
3506 3507
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3508 3509

	/* clflush objects bound into the GGTT and rebind them. */
3510
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3511
		struct drm_i915_gem_object *obj = vma->obj;
3512

3513 3514
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3515

3516 3517
		mutex_unlock(&ggtt->vm.mutex);

3518
		if (!i915_vma_unbind(vma))
3519
			goto lock;
3520

3521 3522 3523 3524 3525
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3526 3527 3528

lock:
		mutex_lock(&ggtt->vm.mutex);
3529
	}
3530

3531
	ggtt->vm.closed = false;
3532
	i915_ggtt_invalidate(dev_priv);
3533

3534 3535
	mutex_unlock(&ggtt->vm.mutex);

3536
	if (INTEL_GEN(dev_priv) >= 8) {
3537
		struct intel_ppat *ppat = &dev_priv->ppat;
3538

3539 3540
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3541 3542 3543 3544
		return;
	}
}

3545
static struct scatterlist *
3546
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3547
	     unsigned int width, unsigned int height,
3548
	     unsigned int stride,
3549
	     struct sg_table *st, struct scatterlist *sg)
3550 3551 3552 3553 3554
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3555
		src_idx = stride * (height - 1) + column + offset;
3556 3557 3558 3559 3560 3561
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3562
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3563 3564
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3565
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3566
			sg = sg_next(sg);
3567
			src_idx -= stride;
3568 3569
		}
	}
3570 3571

	return sg;
3572 3573
}

3574 3575 3576
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3577
{
3578
	unsigned int size = intel_rotation_info_size(rot_info);
3579
	struct sg_table *st;
3580
	struct scatterlist *sg;
3581
	int ret = -ENOMEM;
3582
	int i;
3583 3584 3585 3586 3587 3588

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3589
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3590 3591 3592
	if (ret)
		goto err_sg_alloc;

3593 3594 3595
	st->nents = 0;
	sg = st->sgl;

3596
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3597
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3598 3599
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3600 3601
	}

3602 3603 3604 3605 3606 3607
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3608 3609
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3610

3611 3612
	return ERR_PTR(ret);
}
3613

3614
static noinline struct sg_table *
3615 3616 3617 3618
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3619
	struct scatterlist *sg, *iter;
3620
	unsigned int count = view->partial.size;
3621
	unsigned int offset;
3622 3623 3624 3625 3626 3627
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3628
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3629 3630 3631
	if (ret)
		goto err_sg_alloc;

3632
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3633 3634
	GEM_BUG_ON(!iter);

3635 3636
	sg = st->sgl;
	st->nents = 0;
3637 3638
	do {
		unsigned int len;
3639

3640 3641 3642 3643 3644 3645
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3646 3647

		st->nents++;
3648 3649 3650
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3651 3652
			i915_sg_trim(st); /* Drop any unused tail entries. */

3653 3654
			return st;
		}
3655

3656 3657 3658 3659
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3660 3661 3662 3663 3664 3665 3666

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3667
static int
3668
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3669
{
3670
	int ret;
3671

3672 3673 3674 3675 3676 3677 3678
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3679
	switch (vma->ggtt_view.type) {
3680 3681 3682
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3683 3684
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3685 3686
		return 0;

3687
	case I915_GGTT_VIEW_ROTATED:
3688
		vma->pages =
3689 3690 3691 3692
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3693
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3694 3695
		break;
	}
3696

3697
	ret = 0;
3698
	if (IS_ERR(vma->pages)) {
3699 3700
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3701 3702
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3703
	}
3704
	return ret;
3705 3706
}

3707 3708
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3743
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3744
	GEM_BUG_ON(drm_mm_node_allocated(node));
3745 3746 3747 3748 3749 3750 3751 3752 3753

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3754 3755 3756
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3757 3758 3759 3760 3761 3762 3763
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3789 3790
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3791 3792 3793 3794 3795 3796 3797 3798 3799
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3800
 *         must be #I915_GTT_PAGE_SIZE aligned
3801 3802 3803
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3804 3805 3806 3807 3808 3809
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3810 3811
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3828
	enum drm_mm_insert_mode mode;
3829
	u64 offset;
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3840
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3841
	GEM_BUG_ON(drm_mm_node_allocated(node));
3842 3843 3844 3845 3846 3847 3848

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3849 3850
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
3851
		mode = DRM_MM_INSERT_HIGHEST;
3852 3853
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3865 3866 3867
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3868 3869 3870
	if (err != -ENOSPC)
		return err;

3871 3872 3873 3874 3875 3876 3877 3878 3879
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

3880 3881 3882
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
3912 3913 3914 3915 3916
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

3917 3918 3919
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
3920
}
3921 3922 3923

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
3924
#include "selftests/i915_gem_gtt.c"
3925
#endif