i915_gem_gtt.c 104.6 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137 138
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
139
{
140
	u32 pte_flags;
141 142 143 144 145 146 147 148
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
149

150
	/* Applicable to VLV, and gen8+ */
151
	pte_flags = 0;
152
	if (i915_gem_object_is_readonly(vma->obj))
153 154
		pte_flags |= PTE_READ_ONLY;

155
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 157

	return 0;
158 159 160 161
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
162
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163
}
164

165 166 167 168 169 170
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

171 172
	vma->page_sizes = vma->obj->mm.page_sizes;

173 174 175 176 177 178 179 180 181 182 183 184
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
185 186

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 188
}

189
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
190 191
				  enum i915_cache_level level,
				  u32 flags)
B
Ben Widawsky 已提交
192
{
193 194 195 196
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
197 198 199

	switch (level) {
	case I915_CACHE_NONE:
200
		pte |= PPAT_UNCACHED;
201 202
		break;
	case I915_CACHE_WT:
203
		pte |= PPAT_DISPLAY_ELLC;
204 205
		break;
	default:
206
		pte |= PPAT_CACHED;
207 208 209
		break;
	}

B
Ben Widawsky 已提交
210 211 212
	return pte;
}

213 214
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
215
{
216
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
217 218
	pde |= addr;
	if (level != I915_CACHE_NONE)
219
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
220
	else
221
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
222 223 224
	return pde;
}

225 226 227
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

228 229
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
230
				 u32 unused)
231
{
232
	gen6_pte_t pte = GEN6_PTE_VALID;
233
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 235

	switch (level) {
236 237 238 239 240 241 242 243
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
244
		MISSING_CASE(level);
245 246 247 248 249
	}

	return pte;
}

250 251
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
252
				 u32 unused)
253
{
254
	gen6_pte_t pte = GEN6_PTE_VALID;
255 256 257 258 259
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
260 261 262 263 264
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
265
		pte |= GEN6_PTE_UNCACHED;
266 267
		break;
	default:
268
		MISSING_CASE(level);
269 270
	}

271 272 273
	return pte;
}

274 275
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
276
				 u32 flags)
277
{
278
	gen6_pte_t pte = GEN6_PTE_VALID;
279 280
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

281 282
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
283 284 285 286 287 288 289

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

290 291
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
292
				 u32 unused)
293
{
294
	gen6_pte_t pte = GEN6_PTE_VALID;
295
	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 297

	if (level != I915_CACHE_NONE)
298
		pte |= HSW_WB_LLC_AGE3;
299 300 301 302

	return pte;
}

303 304
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
				  enum i915_cache_level level,
305
				  u32 unused)
306
{
307
	gen6_pte_t pte = GEN6_PTE_VALID;
308 309
	pte |= HSW_PTE_ADDR_ENCODE(addr);

310 311 312 313
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
314
		pte |= HSW_WT_ELLC_LLC_AGE3;
315 316
		break;
	default:
317
		pte |= HSW_WB_ELLC_LLC_AGE3;
318 319
		break;
	}
320 321 322 323

	return pte;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

359
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360
{
361 362
	struct pagevec stack;
	struct page *page;
363

364 365
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
366

367 368 369
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
370 371 372 373 374

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
375 376 377
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
378

379
	/*
380
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 382 383 384 385 386
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
387
	pagevec_init(&stack);
388 389
	do {
		struct page *page;
390

391 392 393 394
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

395 396
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
397

398 399
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
400

401 402
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
403

404 405 406
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
407
	}
408

409 410 411 412 413 414 415
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
416 417
}

418 419
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
420
{
421 422
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
423

424
	lockdep_assert_held(&vm->free_pages.lock);
425
	GEM_BUG_ON(!pagevec_count(pvec));
426

427
	if (vm->pt_kmap_wc) {
428 429
		/*
		 * When we use WC, first fill up the global stash and then
430 431
		 * only if full immediately free the overflow.
		 */
432
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
433

434 435 436 437 438 439 440 441
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
442

443 444 445 446 447 448 449 450 451 452
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
453
		set_pages_array_wb(pvec->pages, pvec->nr);
454 455

		spin_lock(&vm->free_pages.lock);
456 457 458
	}

	__pagevec_release(pvec);
459 460 461 462
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
463 464 465 466 467 468 469 470
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
471 472
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
473
		vm_free_pages_release(vm, false);
474 475 476 477 478 479
	spin_unlock(&vm->free_pages.lock);
}

static void i915_address_space_init(struct i915_address_space *vm,
				    struct drm_i915_private *dev_priv)
{
480 481 482 483 484 485 486 487
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
	i915_gem_shrinker_taints_mutex(&vm->mutex);

488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
508 509

	mutex_destroy(&vm->mutex);
510
}
511

512 513 514 515
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
516
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
517 518
	if (unlikely(!p->page))
		return -ENOMEM;
519

520 521 522
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
523
				      DMA_ATTR_SKIP_CPU_SYNC |
524
				      DMA_ATTR_NO_WARN);
525 526 527
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
528
	}
529 530

	return 0;
531 532
}

533
static int setup_page_dma(struct i915_address_space *vm,
534
			  struct i915_page_dma *p)
535
{
536
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
537 538
}

539
static void cleanup_page_dma(struct i915_address_space *vm,
540
			     struct i915_page_dma *p)
541
{
542 543
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
544 545
}

546
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
547

548 549
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
550 551
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
552

553 554 555
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
556
{
557
	u64 * const vaddr = kmap_atomic(p->page);
558

559
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
560

561
	kunmap_atomic(vaddr);
562 563
}

564 565 566
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
567
{
568
	fill_page_dma(vm, p, (u64)v << 32 | v);
569 570
}

571
static int
572
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
573
{
574
	unsigned long size;
575

576 577 578 579 580 581 582 583 584 585 586 587
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert().
	 *
	 * TODO: we should really consider write-protecting the scratch-page and
	 * sharing between ppgtt
	 */
588
	size = I915_GTT_PAGE_SIZE_4K;
589 590
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
591 592
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
593
	}
594 595 596 597 598 599
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
600

601
		page = alloc_pages(gfp, order);
602
		if (unlikely(!page))
603
			goto skip;
604

605 606 607
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
608
					  DMA_ATTR_SKIP_CPU_SYNC |
609
					  DMA_ATTR_NO_WARN);
610 611
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
612

613 614
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
615

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
632 633
}

634
static void cleanup_scratch_page(struct i915_address_space *vm)
635
{
636 637
	struct i915_page_dma *p = &vm->scratch_page;

638 639 640
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
641 642
}

643
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
644
{
645
	struct i915_page_table *pt;
646

647
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
648
	if (unlikely(!pt))
649 650
		return ERR_PTR(-ENOMEM);

651 652 653 654
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
655

656
	pt->used_ptes = 0;
657 658 659
	return pt;
}

660
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
661
{
662
	cleanup_px(vm, pt);
663 664 665 666 667 668
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
669
	fill_px(vm, pt,
670
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
671 672
}

673
static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt,
674 675
			       struct i915_page_table *pt)
{
676
	fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte);
677 678
}

679
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
680
{
681
	struct i915_page_directory *pd;
682

683
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
684
	if (unlikely(!pd))
685 686
		return ERR_PTR(-ENOMEM);

687 688 689 690
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
691

692
	pd->used_pdes = 0;
693 694 695
	return pd;
}

696
static void free_pd(struct i915_address_space *vm,
697
		    struct i915_page_directory *pd)
698
{
699 700
	cleanup_px(vm, pd);
	kfree(pd);
701 702 703 704 705
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
706 707
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
708
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
709 710
}

711
static int __pdp_init(struct i915_address_space *vm,
712 713
		      struct i915_page_directory_pointer *pdp)
{
714
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
715

716
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
717
					    I915_GFP_ALLOW_FAIL);
718
	if (unlikely(!pdp->page_directory))
719 720
		return -ENOMEM;

721
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
722

723 724 725 726 727 728 729 730 731
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

732 733 734 735 736
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

737 738
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
739 740 741 742
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

743
	GEM_BUG_ON(!use_4lvl(vm));
744 745 746 747 748

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

749
	ret = __pdp_init(vm, pdp);
750 751 752
	if (ret)
		goto fail_bitmap;

753
	ret = setup_px(vm, pdp);
754 755 756 757 758 759 760 761 762 763 764 765 766
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

767
static void free_pdp(struct i915_address_space *vm,
768 769 770
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
771 772 773 774 775 776

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
777 778
}

779 780 781 782 783 784 785
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

786
	fill_px(vm, pdp, scratch_pdpe);
787 788 789 790 791
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
792 793
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
794
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
795 796
}

797 798 799 800 801 802 803
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
804
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
805 806
}

807 808 809 810
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
811
				struct i915_page_table *pt,
812
				u64 start, u64 length)
813
{
814
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
815 816
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
817
	const gen8_pte_t scratch_pte =
818
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
819
	gen8_pte_t *vaddr;
820

821
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
822

823 824 825
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
826

827
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
828
	while (pte < pte_end)
829
		vaddr[pte++] = scratch_pte;
830
	kunmap_atomic(vaddr);
831 832

	return false;
833
}
834

835 836 837 838 839 840 841 842 843 844 845 846 847 848
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

849
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
850
				struct i915_page_directory *pd,
851
				u64 start, u64 length)
852 853
{
	struct i915_page_table *pt;
854
	u32 pde;
855 856

	gen8_for_each_pde(pt, pd, start, length, pde) {
857 858
		GEM_BUG_ON(pt == vm->scratch_pt);

859 860
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
861

862
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
863
		GEM_BUG_ON(!pd->used_pdes);
864
		pd->used_pdes--;
865 866

		free_pt(vm, pt);
867 868
	}

869 870
	return !pd->used_pdes;
}
871

872 873 874 875 876 877 878 879
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
880
	if (!use_4lvl(vm))
881 882 883 884 885
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
886
}
887

888 889 890 891
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
892
				 struct i915_page_directory_pointer *pdp,
893
				 u64 start, u64 length)
894 895
{
	struct i915_page_directory *pd;
896
	unsigned int pdpe;
897

898
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
899 900
		GEM_BUG_ON(pd == vm->scratch_pd);

901 902
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
903

904
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
905
		GEM_BUG_ON(!pdp->used_pdpes);
906
		pdp->used_pdpes--;
907

908 909
		free_pd(vm, pd);
	}
910

911
	return !pdp->used_pdpes;
912
}
913

914 915 916 917 918 919
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

920 921 922 923 924 925 926 927 928 929 930 931 932
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

933 934 935 936
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
937 938
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
939
{
940 941
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
942
	struct i915_page_directory_pointer *pdp;
943
	unsigned int pml4e;
944

945
	GEM_BUG_ON(!use_4lvl(vm));
946

947
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
948 949
		GEM_BUG_ON(pdp == vm->scratch_pdp);

950 951
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
952

953 954 955
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
956 957 958
	}
}

959
static inline struct sgt_dma {
960 961
	struct scatterlist *sg;
	dma_addr_t dma, max;
962 963 964 965 966
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
967

968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

985 986
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
987
			      struct i915_page_directory_pointer *pdp,
988
			      struct sgt_dma *iter,
989
			      struct gen8_insert_pte *idx,
990 991
			      enum i915_cache_level cache_level,
			      u32 flags)
992
{
993
	struct i915_page_directory *pd;
994
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
995 996
	gen8_pte_t *vaddr;
	bool ret;
997

998
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
999 1000
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1001
	do {
1002 1003
		vaddr[idx->pte] = pte_encode | iter->dma;

1004
		iter->dma += I915_GTT_PAGE_SIZE;
1005 1006 1007 1008 1009 1010
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1011

1012 1013
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1014
		}
1015

1016 1017 1018 1019 1020 1021
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1022
				/* Limited by sg length for 3lvl */
1023 1024
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1025
					ret = true;
1026
					break;
1027 1028
				}

1029
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1030
				pd = pdp->page_directory[idx->pdpe];
1031
			}
1032

1033
			kunmap_atomic(vaddr);
1034
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1035
		}
1036
	} while (1);
1037
	kunmap_atomic(vaddr);
1038

1039
	return ret;
1040 1041
}

1042
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1043
				   struct i915_vma *vma,
1044
				   enum i915_cache_level cache_level,
1045
				   u32 flags)
1046
{
1047
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1048
	struct sgt_dma iter = sgt_dma(vma);
1049
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1050

1051
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1052
				      cache_level, flags);
1053 1054

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1055
}
1056

1057 1058 1059
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1060 1061
					   enum i915_cache_level cache_level,
					   u32 flags)
1062
{
1063
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1064 1065 1066 1067 1068 1069 1070 1071
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1072
		bool maybe_64K = false;
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1094 1095 1096 1097
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1098
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1099 1100
				maybe_64K = true;

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1120 1121 1122
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1123
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1124 1125
					maybe_64K = false;

1126 1127 1128 1129 1130 1131
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1148
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

				encode = pte_encode | vma->vm->scratch_page.daddr;
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1170
		}
1171 1172

		vma->page_sizes.gtt |= page_size;
1173 1174 1175
	} while (iter->sg);
}

1176
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1177
				   struct i915_vma *vma,
1178
				   enum i915_cache_level cache_level,
1179
				   u32 flags)
1180 1181
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1182
	struct sgt_dma iter = sgt_dma(vma);
1183
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1184

1185
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1186 1187
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1188 1189 1190 1191
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1192 1193
						     &iter, &idx, cache_level,
						     flags))
1194
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1195 1196

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1197
	}
1198 1199
}

1200
static void gen8_free_page_tables(struct i915_address_space *vm,
1201
				  struct i915_page_directory *pd)
1202 1203 1204
{
	int i;

1205 1206 1207
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1208
	}
B
Ben Widawsky 已提交
1209 1210
}

1211 1212
static int gen8_init_scratch(struct i915_address_space *vm)
{
1213
	int ret;
1214

1215
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1216 1217
	if (ret)
		return ret;
1218

1219
	vm->scratch_pt = alloc_pt(vm);
1220
	if (IS_ERR(vm->scratch_pt)) {
1221 1222
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1223 1224
	}

1225
	vm->scratch_pd = alloc_pd(vm);
1226
	if (IS_ERR(vm->scratch_pd)) {
1227 1228
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1229 1230
	}

1231
	if (use_4lvl(vm)) {
1232
		vm->scratch_pdp = alloc_pdp(vm);
1233
		if (IS_ERR(vm->scratch_pdp)) {
1234 1235
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1236 1237 1238
		}
	}

1239 1240
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1241
	if (use_4lvl(vm))
1242
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1243 1244

	return 0;
1245 1246

free_pd:
1247
	free_pd(vm, vm->scratch_pd);
1248
free_pt:
1249
	free_pt(vm, vm->scratch_pt);
1250
free_scratch_page:
1251
	cleanup_scratch_page(vm);
1252 1253

	return ret;
1254 1255
}

1256 1257
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1258
	struct i915_address_space *vm = &ppgtt->vm;
1259
	struct drm_i915_private *dev_priv = vm->i915;
1260 1261 1262
	enum vgt_g2v_type msg;
	int i;

1263 1264
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1265

1266 1267
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1268 1269 1270 1271

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1272
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1273
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1274

1275 1276
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1288 1289
static void gen8_free_scratch(struct i915_address_space *vm)
{
1290
	if (use_4lvl(vm))
1291 1292 1293 1294
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1295 1296
}

1297
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1298
				    struct i915_page_directory_pointer *pdp)
1299
{
1300
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1301 1302
	int i;

1303
	for (i = 0; i < pdpes; i++) {
1304
		if (pdp->page_directory[i] == vm->scratch_pd)
1305 1306
			continue;

1307 1308
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1309
	}
1310

1311
	free_pdp(vm, pdp);
1312 1313 1314 1315 1316 1317
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1318
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1319
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1320 1321
			continue;

1322
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1323 1324
	}

1325
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1326 1327 1328 1329
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1330
	struct drm_i915_private *dev_priv = vm->i915;
1331
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1332

1333
	if (intel_vgpu_active(dev_priv))
1334 1335
		gen8_ppgtt_notify_vgt(ppgtt, false);

1336
	if (use_4lvl(vm))
1337
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1338
	else
1339
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1340

1341
	gen8_free_scratch(vm);
1342 1343
}

1344 1345 1346
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1347
{
1348
	struct i915_page_table *pt;
1349
	u64 from = start;
1350
	unsigned int pde;
1351

1352
	gen8_for_each_pde(pt, pd, start, length, pde) {
1353 1354
		int count = gen8_pte_count(start, length);

1355
		if (pt == vm->scratch_pt) {
1356 1357
			pd->used_pdes++;

1358
			pt = alloc_pt(vm);
1359 1360
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1361
				goto unwind;
1362
			}
1363

1364
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1365
				gen8_initialize_pt(vm, pt);
1366 1367

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1368
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1369
		}
1370

1371
		pt->used_ptes += count;
1372
	}
1373
	return 0;
1374

1375 1376
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1377
	return -ENOMEM;
1378 1379
}

1380 1381 1382
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1383
{
1384
	struct i915_page_directory *pd;
1385 1386
	u64 from = start;
	unsigned int pdpe;
1387 1388
	int ret;

1389
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1390
		if (pd == vm->scratch_pd) {
1391 1392
			pdp->used_pdpes++;

1393
			pd = alloc_pd(vm);
1394 1395
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1396
				goto unwind;
1397
			}
1398

1399
			gen8_initialize_pd(vm, pd);
1400
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1401
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1402 1403

			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1404 1405 1406
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1407 1408
		if (unlikely(ret))
			goto unwind_pd;
1409
	}
1410

B
Ben Widawsky 已提交
1411
	return 0;
1412

1413 1414 1415 1416 1417 1418 1419
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1420 1421 1422
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1423 1424
}

1425 1426
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1427
{
1428 1429 1430
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1431

1432 1433 1434 1435 1436 1437 1438 1439 1440
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1441

1442
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1443 1444 1445 1446
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1447

1448 1449 1450
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1451

1452
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1453 1454
		if (unlikely(ret))
			goto unwind_pdp;
1455 1456 1457 1458
	}

	return 0;

1459 1460 1461 1462 1463
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1464 1465 1466
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1467 1468
}

1469 1470
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1471
			  u64 start, u64 length,
1472 1473 1474
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1475
	struct i915_address_space *vm = &ppgtt->vm;
1476
	struct i915_page_directory *pd;
1477
	u32 pdpe;
1478

1479
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1480
		struct i915_page_table *pt;
1481 1482 1483
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1484

1485
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1486 1487 1488
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1489
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1490
			u32 pte;
1491 1492
			gen8_pte_t *pt_vaddr;

1493
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1494 1495
				continue;

1496
			pt_vaddr = kmap_atomic_px(pt);
1497
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1498 1499 1500
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1526
	struct i915_address_space *vm = &ppgtt->vm;
1527
	const gen8_pte_t scratch_pte =
1528
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1529
	u64 start = 0, length = ppgtt->vm.total;
1530

1531
	if (use_4lvl(vm)) {
1532
		u64 pml4e;
1533 1534 1535
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1536
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1537
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1538 1539 1540
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1541
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1542
		}
1543 1544
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1545 1546 1547
	}
}

1548
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1549
{
1550
	struct i915_address_space *vm = &ppgtt->vm;
1551 1552
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1553
	u64 start = 0, length = ppgtt->vm.total;
1554 1555
	u64 from = start;
	unsigned int pdpe;
1556

1557 1558 1559 1560
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1561

1562 1563 1564 1565
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1566

1567 1568
	pdp->used_pdpes++; /* never remove */
	return 0;
1569

1570 1571 1572 1573 1574 1575 1576 1577
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1578 1579
}

1580
/*
1581 1582 1583 1584
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1585
 *
1586
 */
1587
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1588
{
1589 1590 1591 1592 1593 1594 1595
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1596 1597
	kref_init(&ppgtt->ref);

1598 1599
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1600

1601
	ppgtt->vm.total = HAS_FULL_48BIT_PPGTT(i915) ?
1602 1603 1604
		1ULL << 48 :
		1ULL << 32;

1605 1606 1607 1608 1609 1610
	/*
	 * From bdw, there is support for read-only pages in the PPGTT.
	 *
	 * XXX GVT is not honouring the lack of RW in the PTE bits.
	 */
	ppgtt->vm.has_read_only = !intel_vgpu_active(i915);
1611

1612 1613
	i915_address_space_init(&ppgtt->vm, i915);

1614 1615 1616
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1617
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1618
		ppgtt->vm.pt_kmap_wc = true;
1619

1620 1621 1622
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1623

1624 1625 1626 1627
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1628

1629
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1630

1631 1632 1633
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1634
	} else {
1635 1636 1637
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1638

1639 1640 1641
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1642
				__pdp_fini(&ppgtt->pdp);
1643
				goto err_scratch;
1644
			}
1645
		}
1646

1647 1648 1649
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1650
	}
1651

1652
	if (intel_vgpu_active(i915))
1653 1654
		gen8_ppgtt_notify_vgt(ppgtt, true);

1655
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1656 1657
	ppgtt->debug_dump = gen8_dump_ppgtt;

1658
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1659 1660 1661 1662
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1663
	return ppgtt;
1664

1665
err_scratch:
1666
	gen8_free_scratch(&ppgtt->vm);
1667 1668 1669
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1670 1671
}

1672
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1673
{
1674
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1675
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
	struct i915_page_table *pt;
	u32 pte, pde;

	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);

			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1703
			int i;
1704

B
Ben Widawsky 已提交
1705
			for (i = 0; i < 4; i++)
1706 1707 1708
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1709 1710
				continue;

C
Chris Wilson 已提交
1711
			seq_printf(m, "\t\t(%03d, %04d) %08llx: ",
1712
				   pde, pte,
1713
				   (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE);
B
Ben Widawsky 已提交
1714
			for (i = 0; i < 4; i++) {
1715 1716
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1717
				else
1718
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1719 1720 1721
			}
			seq_puts(m, "\n");
		}
1722
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1723 1724 1725
	}
}

1726
/* Write pde (index) from the page directory @pd to the page table @pt */
1727
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1728 1729
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1730
{
1731
	/* Caller needs to make sure the write completes if necessary */
1732 1733
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1734
}
B
Ben Widawsky 已提交
1735

1736
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1737
{
1738
	struct intel_engine_cs *engine;
1739
	u32 ecochk, ecobits;
1740
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1741

1742 1743
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1744

1745
	ecochk = I915_READ(GAM_ECOCHK);
1746
	if (IS_HASWELL(dev_priv)) {
1747 1748 1749 1750 1751 1752
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1753

1754
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1755
		/* GFX_MODE is per-ring on gen7+ */
1756
		I915_WRITE(RING_MODE_GEN7(engine),
1757
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1758
	}
1759
}
B
Ben Widawsky 已提交
1760

1761
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1762
{
1763
	u32 ecochk, gab_ctl, ecobits;
1764

1765 1766 1767
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1768

1769 1770 1771 1772 1773 1774
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1775 1776
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1777 1778
}

1779
/* PPGTT support for Sandybdrige/Gen6 and later */
1780
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1781
				   u64 start, u64 length)
1782
{
1783
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1784
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1785 1786
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1787
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1788
	const gen6_pte_t scratch_pte = ppgtt->scratch_pte;
1789

1790
	while (num_entries) {
1791 1792 1793
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1794
		gen6_pte_t *vaddr;
1795

1796 1797 1798 1799 1800 1801 1802 1803
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1804

1805 1806
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1807 1808 1809 1810
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1811

1812 1813 1814 1815 1816
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1817

1818
		pte = 0;
1819
	}
1820 1821
}

1822
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1823
				      struct i915_vma *vma,
1824 1825
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1826
{
1827
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1828
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1829 1830
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1831
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1832
	struct sgt_dma iter = sgt_dma(vma);
1833 1834
	gen6_pte_t *vaddr;

1835 1836
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1837
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1838 1839
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1840

1841
		iter.dma += I915_GTT_PAGE_SIZE;
1842 1843 1844 1845
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1846

1847 1848 1849
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1850

1851
		if (++act_pte == GEN6_PTES) {
1852 1853
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1854
			act_pte = 0;
D
Daniel Vetter 已提交
1855
		}
1856
	} while (1);
1857
	kunmap_atomic(vaddr);
1858 1859

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1860 1861
}

1862
static int gen6_alloc_va_range(struct i915_address_space *vm,
1863
			       u64 start, u64 length)
1864
{
1865
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1866
	struct i915_page_table *pt;
1867 1868 1869
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1870

1871
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1872 1873
		const unsigned int count = gen6_pte_count(start, length);

1874 1875 1876 1877
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1878

1879
			gen6_initialize_pt(ppgtt, pt);
1880
			ppgtt->base.pd.page_table[pde] = pt;
1881 1882 1883 1884 1885 1886

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1887 1888

			GEM_BUG_ON(pt->used_ptes);
1889
		}
1890 1891

		pt->used_ptes += count;
1892 1893
	}

1894
	if (flush) {
1895 1896
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1897 1898 1899
	}

	return 0;
1900 1901

unwind_out:
1902
	gen6_ppgtt_clear_range(vm, from, start - from);
1903
	return -ENOMEM;
1904 1905
}

1906
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1907
{
1908 1909 1910
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1911
	int ret;
1912

1913
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1914 1915
	if (ret)
		return ret;
1916

1917 1918 1919 1920
	ppgtt->scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr,
			       I915_CACHE_NONE, PTE_READ_ONLY);

1921
	vm->scratch_pt = alloc_pt(vm);
1922
	if (IS_ERR(vm->scratch_pt)) {
1923
		cleanup_scratch_page(vm);
1924 1925 1926
		return PTR_ERR(vm->scratch_pt);
	}

1927
	gen6_initialize_pt(ppgtt, vm->scratch_pt);
1928 1929
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1930 1931 1932 1933

	return 0;
}

1934
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1935
{
1936 1937
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1938 1939
}

1940
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1941
{
1942
	struct i915_page_table *pt;
1943
	u32 pde;
1944

1945
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1946 1947 1948 1949 1950 1951 1952
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1953

1954
	i915_vma_destroy(ppgtt->vma);
1955 1956 1957

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1958 1959
}

1960
static int pd_vma_set_pages(struct i915_vma *vma)
1961
{
1962 1963 1964
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1965

1966 1967 1968
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1969

1970 1971 1972 1973 1974 1975 1976 1977 1978
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1979
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1980 1981
	struct i915_page_table *pt;
	unsigned int pde;
1982

1983 1984
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1985

1986 1987
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1988

1989 1990
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1991

1992
	return 0;
1993
}
1994

1995
static void pd_vma_unbind(struct i915_vma *vma)
1996
{
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

2043 2044
	vma->active = RB_ROOT;

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
2055

2056
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2057 2058 2059
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

2060 2061 2062 2063 2064 2065 2066 2067 2068
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2069 2070 2071 2072 2073 2074 2075 2076
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	return i915_vma_pin(ppgtt->vma,
			    0, GEN6_PD_ALIGN,
			    PIN_GLOBAL | PIN_HIGH);
2077 2078
}

2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2090
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2091
{
2092
	struct i915_ggtt * const ggtt = &i915->ggtt;
2093
	struct gen6_hw_ppgtt *ppgtt;
2094 2095 2096 2097 2098 2099
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2100 2101
	kref_init(&ppgtt->base.ref);

2102 2103
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2104

2105
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
2106

2107 2108
	i915_address_space_init(&ppgtt->base.vm, i915);

2109
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2110 2111 2112 2113
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2114

2115
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2116 2117 2118
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2119

2120 2121
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2122
	err = gen6_ppgtt_init_scratch(ppgtt);
2123 2124 2125
	if (err)
		goto err_free;

2126 2127 2128
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2129
		goto err_scratch;
2130
	}
2131

2132
	return &ppgtt->base;
2133

2134 2135
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2136 2137 2138
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2139
}
2140

2141
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2142 2143 2144 2145 2146
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2147
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2148
	if (IS_BROADWELL(dev_priv))
2149
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2150
	else if (IS_CHERRYVIEW(dev_priv))
2151
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2152
	else if (IS_GEN9_LP(dev_priv))
2153
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2154 2155
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2173 2174
}

2175
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2176
{
2177
	gtt_write_workarounds(dev_priv);
2178

2179
	if (IS_GEN6(dev_priv))
2180
		gen6_ppgtt_enable(dev_priv);
2181
	else if (IS_GEN7(dev_priv))
2182
		gen7_ppgtt_enable(dev_priv);
2183

2184 2185
	return 0;
}
2186

2187 2188 2189 2190 2191 2192 2193 2194 2195
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2196
struct i915_hw_ppgtt *
2197
i915_ppgtt_create(struct drm_i915_private *i915,
2198
		  struct drm_i915_file_private *fpriv)
2199 2200 2201
{
	struct i915_hw_ppgtt *ppgtt;

2202 2203 2204
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2205

2206
	ppgtt->vm.file = fpriv;
2207

2208
	trace_i915_ppgtt_create(&ppgtt->vm);
2209

2210 2211 2212
	return ppgtt;
}

2213
void i915_ppgtt_close(struct i915_address_space *vm)
2214 2215 2216 2217 2218 2219
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2233
			i915_vma_destroy(vma);
2234 2235 2236
	}
}

2237
void i915_ppgtt_release(struct kref *kref)
2238 2239 2240 2241
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2242
	trace_i915_ppgtt_release(&ppgtt->vm);
2243

2244
	ppgtt_destroy_vma(&ppgtt->vm);
2245

2246 2247 2248
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2249

2250 2251
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2252 2253
	kfree(ppgtt);
}
2254

2255 2256 2257
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2258
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2259 2260 2261 2262
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2263
	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2264 2265
}

2266
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2267
{
2268
	struct intel_engine_cs *engine;
2269
	enum intel_engine_id id;
2270
	u32 fault;
2271

2272
	for_each_engine(engine, dev_priv, id) {
2273 2274
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2275
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2276
					 "\tAddr: 0x%08lx\n"
2277 2278 2279
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2280 2281 2282 2283
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2284 2285
		}
	}
2286 2287
}

2288
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2289 2290 2291 2292
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2293 2294 2295 2296 2297 2298 2299 2300
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2301
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2302 2303
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2304 2305 2306
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2307 2308 2309
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2320
		gen8_check_faults(dev_priv);
2321
	else if (INTEL_GEN(dev_priv) >= 6)
2322
		gen6_check_faults(dev_priv);
2323 2324
	else
		return;
2325 2326

	i915_clear_error_registers(dev_priv);
2327 2328
}

2329
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2330
{
2331
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2332 2333 2334 2335

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2336
	if (INTEL_GEN(dev_priv) < 6)
2337 2338
		return;

2339
	i915_check_and_clear_faults(dev_priv);
2340

2341
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2342

2343
	i915_ggtt_invalidate(dev_priv);
2344 2345
}

2346 2347
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2348
{
2349
	do {
2350 2351 2352 2353
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2364
				 obj->base.size >> PAGE_SHIFT, NULL,
2365 2366 2367
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2368

2369
	return -ENOSPC;
2370 2371
}

2372
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2373 2374 2375 2376
{
	writeq(pte, addr);
}

2377 2378
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2379
				  u64 offset,
2380 2381 2382
				  enum i915_cache_level level,
				  u32 unused)
{
2383
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2384
	gen8_pte_t __iomem *pte =
2385
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2386

2387
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2388

2389
	ggtt->invalidate(vm->i915);
2390 2391
}

B
Ben Widawsky 已提交
2392
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2393
				     struct i915_vma *vma,
2394
				     enum i915_cache_level level,
2395
				     u32 flags)
B
Ben Widawsky 已提交
2396
{
2397
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2398 2399
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2400
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2401
	dma_addr_t addr;
2402

2403 2404 2405 2406
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2407

2408
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2409
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2410
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2411
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2412

2413 2414 2415
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2416
	 */
2417
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2418 2419
}

2420 2421
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2422
				  u64 offset,
2423 2424 2425
				  enum i915_cache_level level,
				  u32 flags)
{
2426
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2427
	gen6_pte_t __iomem *pte =
2428
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2429

2430
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2431

2432
	ggtt->invalidate(vm->i915);
2433 2434
}

2435 2436 2437 2438 2439 2440
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2441
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2442
				     struct i915_vma *vma,
2443 2444
				     enum i915_cache_level level,
				     u32 flags)
2445
{
2446
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2447
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2448
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2449
	struct sgt_iter iter;
2450
	dma_addr_t addr;
2451
	for_each_sgt_dma(addr, iter, vma->pages)
2452
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2453

2454 2455 2456
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2457
	 */
2458
	ggtt->invalidate(vm->i915);
2459 2460
}

2461
static void nop_clear_range(struct i915_address_space *vm,
2462
			    u64 start, u64 length)
2463 2464 2465
{
}

B
Ben Widawsky 已提交
2466
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2467
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2468
{
2469
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2470 2471
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2472
	const gen8_pte_t scratch_pte =
2473
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
2474
	gen8_pte_t __iomem *gtt_base =
2475 2476
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2532
	struct i915_vma *vma;
2533
	enum i915_cache_level level;
2534
	u32 flags;
2535 2536 2537 2538 2539 2540
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2541
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2542 2543 2544 2545 2546 2547
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2548
					     struct i915_vma *vma,
2549
					     enum i915_cache_level level,
2550
					     u32 flags)
2551
{
2552
	struct insert_entries arg = { vm, vma, level, flags };
2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2582
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2583
				  u64 start, u64 length)
2584
{
2585
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2586 2587
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2588
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2589 2590
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2591 2592 2593 2594 2595 2596 2597
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2598
	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2599
				     I915_CACHE_LLC, 0);
2600

2601 2602 2603 2604
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2605 2606
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2607
				  u64 offset,
2608 2609 2610 2611 2612 2613 2614 2615 2616
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2617
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2618
				     struct i915_vma *vma,
2619 2620
				     enum i915_cache_level cache_level,
				     u32 unused)
2621 2622 2623 2624
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2625 2626
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2627 2628
}

2629
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2630
				  u64 start, u64 length)
2631
{
2632
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2633 2634
}

2635 2636 2637
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2638
{
2639
	struct drm_i915_private *i915 = vma->vm->i915;
2640
	struct drm_i915_gem_object *obj = vma->obj;
2641
	u32 pte_flags;
2642

2643
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2644
	pte_flags = 0;
2645
	if (i915_gem_object_is_readonly(obj))
2646 2647
		pte_flags |= PTE_READ_ONLY;

2648
	intel_runtime_pm_get(i915);
2649
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2650
	intel_runtime_pm_put(i915);
2651

2652 2653
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2654 2655 2656 2657 2658
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2659
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2660 2661 2662 2663

	return 0;
}

2664 2665 2666 2667 2668 2669 2670 2671 2672
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2673 2674 2675
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2676
{
2677
	struct drm_i915_private *i915 = vma->vm->i915;
2678
	u32 pte_flags;
2679
	int ret;
2680

2681
	/* Currently applicable only to VLV */
2682
	pte_flags = 0;
2683
	if (i915_gem_object_is_readonly(vma->obj))
2684
		pte_flags |= PTE_READ_ONLY;
2685

2686 2687 2688
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2689
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2690 2691 2692
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2693
			if (ret)
2694
				return ret;
2695 2696
		}

2697 2698
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2699 2700
	}

2701
	if (flags & I915_VMA_GLOBAL_BIND) {
2702
		intel_runtime_pm_get(i915);
2703
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2704
		intel_runtime_pm_put(i915);
2705
	}
2706

2707
	return 0;
2708 2709
}

2710
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2711
{
2712
	struct drm_i915_private *i915 = vma->vm->i915;
2713

2714 2715
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2716
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2717 2718
		intel_runtime_pm_put(i915);
	}
2719

2720
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2721
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2722 2723 2724

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2725 2726
}

2727 2728
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2729
{
D
David Weinehall 已提交
2730 2731
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2732
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2733

2734
	if (unlikely(ggtt->do_idle_maps)) {
2735
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2736 2737 2738 2739 2740
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2741

2742
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2743
}
2744

2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2755 2756
	vma->page_sizes = vma->obj->mm.page_sizes;

2757 2758 2759
	return 0;
}

C
Chris Wilson 已提交
2760
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2761
				  unsigned long color,
2762 2763
				  u64 *start,
				  u64 *end)
2764
{
2765
	if (node->allocated && node->color != color)
2766
		*start += I915_GTT_PAGE_SIZE;
2767

2768 2769 2770 2771 2772
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2773
	node = list_next_entry(node, node_list);
2774
	if (node->color != color)
2775
		*end -= I915_GTT_PAGE_SIZE;
2776
}
B
Ben Widawsky 已提交
2777

2778 2779 2780 2781 2782 2783
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2784
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2785 2786
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2787

2788
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2789 2790 2791 2792
		err = -ENODEV;
		goto err_ppgtt;
	}

2793 2794 2795 2796 2797 2798 2799 2800 2801
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2802 2803

	i915->mm.aliasing_ppgtt = ppgtt;
2804

2805 2806
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2807

2808 2809
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2810

2811 2812 2813
	return 0;

err_ppgtt:
2814
	i915_ppgtt_put(ppgtt);
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2827
	i915_ppgtt_put(ppgtt);
2828

2829 2830
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2831 2832
}

2833
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2834
{
2835 2836 2837 2838 2839 2840 2841 2842 2843
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2844
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2845
	unsigned long hole_start, hole_end;
2846
	struct drm_mm_node *entry;
2847
	int ret;
2848

2849 2850 2851 2852 2853 2854 2855 2856 2857
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2858 2859 2860
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2861

2862
	/* Reserve a mappable slot for our lockless error capture */
2863
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2864 2865 2866
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2867 2868 2869
	if (ret)
		return ret;

2870
	/* Clear any non-preallocated blocks */
2871
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2872 2873
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2874 2875
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2876 2877 2878
	}

	/* And finally clear the reserved guard page */
2879
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2880

2881
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2882
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2883
		if (ret)
2884
			goto err;
2885 2886
	}

2887
	return 0;
2888 2889 2890 2891

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2892 2893
}

2894 2895
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2896
 * @dev_priv: i915 device
2897
 */
2898
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2899
{
2900
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2901
	struct i915_vma *vma, *vn;
2902
	struct pagevec *pvec;
2903

2904
	ggtt->vm.closed = true;
2905 2906

	mutex_lock(&dev_priv->drm.struct_mutex);
2907 2908
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2909 2910
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2911
		WARN_ON(i915_vma_unbind(vma));
2912

2913 2914 2915
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2916
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2917
		intel_vgt_deballoon(dev_priv);
2918
		i915_address_space_fini(&ggtt->vm);
2919 2920
	}

2921
	ggtt->vm.cleanup(&ggtt->vm);
2922

2923
	pvec = &dev_priv->mm.wc_stash.pvec;
2924 2925 2926 2927 2928
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2929
	mutex_unlock(&dev_priv->drm.struct_mutex);
2930 2931

	arch_phys_wc_del(ggtt->mtrr);
2932
	io_mapping_fini(&ggtt->iomap);
2933

2934
	i915_gem_cleanup_stolen(dev_priv);
2935
}
2936

2937
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2938 2939 2940 2941 2942 2943
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2944
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2945 2946 2947 2948 2949
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2950 2951

#ifdef CONFIG_X86_32
2952
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2953 2954 2955 2956
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2957 2958 2959
	return bdw_gmch_ctl << 20;
}

2960
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2971
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2972
{
2973
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2974
	struct pci_dev *pdev = dev_priv->drm.pdev;
2975
	phys_addr_t phys_addr;
2976
	int ret;
B
Ben Widawsky 已提交
2977 2978

	/* For Modern GENs the PTEs and register space are split in the BAR */
2979
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2980

I
Imre Deak 已提交
2981
	/*
2982 2983 2984
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2985 2986 2987
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2988
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2989
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2990
	else
2991
		ggtt->gsm = ioremap_wc(phys_addr, size);
2992
	if (!ggtt->gsm) {
2993
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2994 2995 2996
		return -ENOMEM;
	}

2997
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2998
	if (ret) {
B
Ben Widawsky 已提交
2999 3000
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3001
		iounmap(ggtt->gsm);
3002
		return ret;
B
Ben Widawsky 已提交
3003 3004
	}

3005
	return 0;
B
Ben Widawsky 已提交
3006 3007
}

3008 3009
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3010
{
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3054
	struct intel_ppat_entry *entry = NULL;
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3077
		if (!entry)
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3154
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3192 3193
}

B
Ben Widawsky 已提交
3194 3195 3196
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3197
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3198
{
3199 3200 3201 3202
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3203

3204
	if (!HAS_PPGTT(ppat->i915)) {
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3218 3219 3220
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3221

3222 3223 3224 3225 3226 3227 3228 3229
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3230 3231
}

3232
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3233
{
3234 3235 3236 3237
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3238 3239 3240 3241 3242 3243 3244

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3256 3257
	 */

3258 3259 3260 3261 3262 3263 3264 3265
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3266 3267
}

3268 3269 3270 3271 3272
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3273
	cleanup_scratch_page(vm);
3274 3275
}

3276 3277
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3278 3279 3280 3281 3282
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3283
	if (INTEL_GEN(dev_priv) >= 10)
3284
		cnl_setup_private_ppat(ppat);
3285
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3286
		chv_setup_private_ppat(ppat);
3287
	else
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3299 3300
}

3301
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3302
{
3303
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3304
	struct pci_dev *pdev = dev_priv->drm.pdev;
3305
	unsigned int size;
B
Ben Widawsky 已提交
3306
	u16 snb_gmch_ctl;
3307
	int err;
B
Ben Widawsky 已提交
3308 3309

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3310 3311 3312 3313
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3314

3315 3316 3317 3318 3319
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3320

3321
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3322
	if (IS_CHERRYVIEW(dev_priv))
3323
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3324
	else
3325
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3326

3327
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3328 3329 3330
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3331
	if (intel_scanout_needs_vtd_wa(dev_priv))
3332
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3333

3334
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3335

3336 3337
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3338 3339 3340 3341
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3342 3343
	}

3344 3345
	ggtt->invalidate = gen6_ggtt_invalidate;

3346 3347 3348 3349 3350
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3351 3352
	setup_private_pat(dev_priv);

3353
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3354 3355
}

3356
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3357
{
3358
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3359
	struct pci_dev *pdev = dev_priv->drm.pdev;
3360
	unsigned int size;
3361
	u16 snb_gmch_ctl;
3362
	int err;
3363

3364 3365 3366 3367
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3368

3369 3370
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3371
	 */
3372
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3373
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3374
		return -ENXIO;
3375 3376
	}

3377 3378 3379 3380 3381
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3382
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3383

3384
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3385
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3386

3387 3388 3389 3390
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3391

3392 3393
	ggtt->invalidate = gen6_ggtt_invalidate;

3394
	if (HAS_EDRAM(dev_priv))
3395
		ggtt->vm.pte_encode = iris_pte_encode;
3396
	else if (IS_HASWELL(dev_priv))
3397
		ggtt->vm.pte_encode = hsw_pte_encode;
3398
	else if (IS_VALLEYVIEW(dev_priv))
3399
		ggtt->vm.pte_encode = byt_pte_encode;
3400
	else if (INTEL_GEN(dev_priv) >= 7)
3401
		ggtt->vm.pte_encode = ivb_pte_encode;
3402
	else
3403
		ggtt->vm.pte_encode = snb_pte_encode;
3404

3405 3406 3407 3408 3409
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3410
	return ggtt_probe_common(ggtt, size);
3411 3412
}

3413
static void i915_gmch_remove(struct i915_address_space *vm)
3414
{
3415
	intel_gmch_remove();
3416
}
3417

3418
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3419
{
3420
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3421
	phys_addr_t gmadr_base;
3422 3423
	int ret;

3424
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3425 3426 3427 3428 3429
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3430
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3431

3432 3433 3434 3435
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3436
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3437 3438 3439 3440
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3441

3442 3443
	ggtt->invalidate = gmch_ggtt_invalidate;

3444 3445 3446 3447 3448
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3449
	if (unlikely(ggtt->do_idle_maps))
3450 3451
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3452 3453 3454
	return 0;
}

3455
/**
3456
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3457
 * @dev_priv: i915 device
3458
 */
3459
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3460
{
3461
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3462 3463
	int ret;

3464 3465
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3466

3467 3468 3469 3470 3471 3472
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3473
	if (ret)
3474 3475
		return ret;

3476 3477 3478 3479 3480
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3481
	if (USES_GUC(dev_priv)) {
3482 3483 3484
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3485 3486
	}

3487
	if ((ggtt->vm.total - 1) >> 32) {
3488
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3489
			  " of address space! Found %lldM!\n",
3490 3491 3492 3493
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3494 3495
	}

3496
	if (ggtt->mappable_end > ggtt->vm.total) {
3497
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3498
			  " aperture=%pa, total=%llx\n",
3499 3500
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3501 3502
	}

3503
	/* GMADR is the PCI mmio aperture into the global GTT. */
3504
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3505
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3506
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3507
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3508
	if (intel_vtd_active())
3509
		DRM_INFO("VT-d active for gfx access\n");
3510 3511

	return 0;
3512 3513 3514 3515
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3516
 * @dev_priv: i915 device
3517
 */
3518
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3519 3520 3521 3522
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3523 3524
	stash_init(&dev_priv->mm.wc_stash);

3525 3526 3527 3528
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3529
	 */
C
Chris Wilson 已提交
3530
	mutex_lock(&dev_priv->drm.struct_mutex);
3531
	i915_address_space_init(&ggtt->vm, dev_priv);
3532

3533 3534
	ggtt->vm.is_ggtt = true;

3535 3536 3537
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3538
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3539
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3540
	mutex_unlock(&dev_priv->drm.struct_mutex);
3541

3542 3543
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3544
				dev_priv->ggtt.mappable_end)) {
3545 3546 3547 3548
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3549
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3550

3551 3552 3553 3554
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3555
	ret = i915_gem_init_stolen(dev_priv);
3556 3557 3558 3559
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3560 3561

out_gtt_cleanup:
3562
	ggtt->vm.cleanup(&ggtt->vm);
3563
	return ret;
3564
}
3565

3566
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3567
{
3568
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3569 3570 3571 3572 3573
		return -EIO;

	return 0;
}

3574 3575
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3576 3577
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3578
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3579 3580

	i915_ggtt_invalidate(i915);
3581 3582 3583 3584
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3585 3586 3587 3588
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3589 3590 3591 3592
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3593 3594

	i915_ggtt_invalidate(i915);
3595 3596
}

3597
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3598
{
3599
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3600
	struct i915_vma *vma, *vn;
3601

3602
	i915_check_and_clear_faults(dev_priv);
3603 3604

	/* First fill our portion of the GTT with scratch pages */
3605
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3606

3607
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3608 3609

	/* clflush objects bound into the GGTT and rebind them. */
3610 3611
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3612
		struct drm_i915_gem_object *obj = vma->obj;
3613

3614 3615
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3616

3617 3618
		if (!i915_vma_unbind(vma))
			continue;
3619

3620 3621 3622 3623 3624
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3625
	}
3626

3627
	ggtt->vm.closed = false;
3628
	i915_ggtt_invalidate(dev_priv);
3629

3630
	if (INTEL_GEN(dev_priv) >= 8) {
3631
		struct intel_ppat *ppat = &dev_priv->ppat;
3632

3633 3634
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3635 3636 3637 3638
		return;
	}
}

3639
static struct scatterlist *
3640
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3641
	     unsigned int width, unsigned int height,
3642
	     unsigned int stride,
3643
	     struct sg_table *st, struct scatterlist *sg)
3644 3645 3646 3647 3648
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3649
		src_idx = stride * (height - 1) + column + offset;
3650 3651 3652 3653 3654 3655
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3656
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3657 3658
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3659
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3660
			sg = sg_next(sg);
3661
			src_idx -= stride;
3662 3663
		}
	}
3664 3665

	return sg;
3666 3667
}

3668 3669 3670
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3671
{
3672
	unsigned int size = intel_rotation_info_size(rot_info);
3673
	struct sg_table *st;
3674
	struct scatterlist *sg;
3675
	int ret = -ENOMEM;
3676
	int i;
3677 3678 3679 3680 3681 3682

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3683
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3684 3685 3686
	if (ret)
		goto err_sg_alloc;

3687 3688 3689
	st->nents = 0;
	sg = st->sgl;

3690
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3691
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3692 3693
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3694 3695
	}

3696 3697 3698 3699 3700 3701
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3702 3703
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3704

3705 3706
	return ERR_PTR(ret);
}
3707

3708
static noinline struct sg_table *
3709 3710 3711 3712
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3713
	struct scatterlist *sg, *iter;
3714
	unsigned int count = view->partial.size;
3715
	unsigned int offset;
3716 3717 3718 3719 3720 3721
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3722
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3723 3724 3725
	if (ret)
		goto err_sg_alloc;

3726
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3727 3728
	GEM_BUG_ON(!iter);

3729 3730
	sg = st->sgl;
	st->nents = 0;
3731 3732
	do {
		unsigned int len;
3733

3734 3735 3736 3737 3738 3739
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3740 3741

		st->nents++;
3742 3743 3744
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3745 3746
			i915_sg_trim(st); /* Drop any unused tail entries. */

3747 3748
			return st;
		}
3749

3750 3751 3752 3753
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3754 3755 3756 3757 3758 3759 3760

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3761
static int
3762
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3763
{
3764
	int ret;
3765

3766 3767 3768 3769 3770 3771 3772
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3773
	switch (vma->ggtt_view.type) {
3774 3775 3776
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3777 3778
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3779 3780
		return 0;

3781
	case I915_GGTT_VIEW_ROTATED:
3782
		vma->pages =
3783 3784 3785 3786
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3787
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3788 3789
		break;
	}
3790

3791 3792
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3793 3794
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3795 3796
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3797
	}
3798
	return ret;
3799 3800
}

3801 3802
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3837
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3838
	GEM_BUG_ON(drm_mm_node_allocated(node));
3839 3840 3841 3842 3843 3844 3845 3846 3847

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3848 3849 3850
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3851 3852 3853 3854 3855 3856 3857
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3883 3884
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3885 3886 3887 3888 3889 3890 3891 3892 3893
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3894
 *         must be #I915_GTT_PAGE_SIZE aligned
3895 3896 3897
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3898 3899 3900 3901 3902 3903
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3904 3905
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3922
	enum drm_mm_insert_mode mode;
3923
	u64 offset;
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3934
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3935
	GEM_BUG_ON(drm_mm_node_allocated(node));
3936 3937 3938 3939 3940 3941 3942

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3943 3944
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
3945
		mode = DRM_MM_INSERT_HIGHEST;
3946 3947
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3959 3960 3961
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3962 3963 3964
	if (err != -ENOSPC)
		return err;

3965 3966 3967 3968 3969 3970 3971 3972 3973
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

3974 3975 3976
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4006 4007 4008 4009 4010
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4011 4012 4013
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4014
}
4015 4016 4017

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4018
#include "selftests/i915_gem_gtt.c"
4019
#endif