i915_gem_gtt.c 105.8 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38 39
#include "display/intel_frontbuffer.h"

40
#include "i915_drv.h"
41
#include "i915_scatterlist.h"
42
#include "i915_trace.h"
43
#include "i915_vgpu.h"
44 45
#include "intel_drv.h"

46
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
84 85 86
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

109 110 111
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

112
static void gen6_ggtt_invalidate(struct drm_i915_private *i915)
113
{
114 115
	struct intel_uncore *uncore = &i915->uncore;

116 117
	/*
	 * Note that as an uncached mmio write, this will flush the
118 119
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
120
	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
121 122
}

123
static void guc_ggtt_invalidate(struct drm_i915_private *i915)
124
{
125 126 127 128
	struct intel_uncore *uncore = &i915->uncore;

	gen6_ggtt_invalidate(i915);
	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
129 130
}

131
static void gmch_ggtt_invalidate(struct drm_i915_private *i915)
132 133 134 135 136 137 138 139 140
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

141 142 143
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
144
{
145
	u32 pte_flags;
146 147 148 149 150 151 152 153
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
154

155
	/* Applicable to VLV, and gen8+ */
156
	pte_flags = 0;
157
	if (i915_gem_object_is_readonly(vma->obj))
158 159
		pte_flags |= PTE_READ_ONLY;

160
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
161 162

	return 0;
163 164 165 166
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
167
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
168
}
169

170 171 172 173 174 175
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

176 177
	vma->page_sizes = vma->obj->mm.page_sizes;

178 179 180 181 182 183 184 185 186 187 188 189
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
190 191

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
192 193
}

194 195 196
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
197
{
198 199 200 201
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
202 203 204

	switch (level) {
	case I915_CACHE_NONE:
205
		pte |= PPAT_UNCACHED;
206 207
		break;
	case I915_CACHE_WT:
208
		pte |= PPAT_DISPLAY_ELLC;
209 210
		break;
	default:
211
		pte |= PPAT_CACHED;
212 213 214
		break;
	}

B
Ben Widawsky 已提交
215 216 217
	return pte;
}

218 219
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
220
{
221
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
222 223
	pde |= addr;
	if (level != I915_CACHE_NONE)
224
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
225
	else
226
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
227 228 229
	return pde;
}

230 231 232
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

233 234 235
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
236
{
237
	gen6_pte_t pte = GEN6_PTE_VALID;
238
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
239 240

	switch (level) {
241 242 243 244 245 246 247 248
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
249
		MISSING_CASE(level);
250 251 252 253 254
	}

	return pte;
}

255 256 257
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
258
{
259
	gen6_pte_t pte = GEN6_PTE_VALID;
260 261 262 263 264
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
265 266 267 268 269
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
270
		pte |= GEN6_PTE_UNCACHED;
271 272
		break;
	default:
273
		MISSING_CASE(level);
274 275
	}

276 277 278
	return pte;
}

279 280 281
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
282
{
283
	gen6_pte_t pte = GEN6_PTE_VALID;
284 285
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

286 287
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
288 289 290 291 292 293 294

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

295 296 297
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
298
{
299
	gen6_pte_t pte = GEN6_PTE_VALID;
300
	pte |= HSW_PTE_ADDR_ENCODE(addr);
301 302

	if (level != I915_CACHE_NONE)
303
		pte |= HSW_WB_LLC_AGE3;
304 305 306 307

	return pte;
}

308 309 310
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
311
{
312
	gen6_pte_t pte = GEN6_PTE_VALID;
313 314
	pte |= HSW_PTE_ADDR_ENCODE(addr);

315 316 317 318
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
319
		pte |= HSW_WT_ELLC_LLC_AGE3;
320 321
		break;
	default:
322
		pte |= HSW_WB_ELLC_LLC_AGE3;
323 324
		break;
	}
325 326 327 328

	return pte;
}

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
349
	unsigned int nr;
350 351 352

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

353
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
354 355 356 357 358 359 360 361 362 363
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

364
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
365
{
366 367
	struct pagevec stack;
	struct page *page;
368

369 370
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
371

372 373 374
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
375 376 377 378 379

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
380 381 382
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
383

384
	/*
385
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
386 387 388 389 390 391
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
392
	pagevec_init(&stack);
393 394
	do {
		struct page *page;
395

396 397 398 399
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

400 401
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
402

403 404
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
405

406
		/* Merge spare WC pages to the global stash */
407 408
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
409

410 411 412
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
413
	}
414

415 416 417 418 419 420 421
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
422 423
}

424 425
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
426
{
427 428
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
429

430
	lockdep_assert_held(&vm->free_pages.lock);
431
	GEM_BUG_ON(!pagevec_count(pvec));
432

433
	if (vm->pt_kmap_wc) {
434 435
		/*
		 * When we use WC, first fill up the global stash and then
436 437
		 * only if full immediately free the overflow.
		 */
438
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
439

440 441 442 443 444 445 446 447
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
448

449 450 451 452 453 454 455 456 457 458
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
459
		set_pages_array_wb(pvec->pages, pvec->nr);
460 461

		spin_lock(&vm->free_pages.lock);
462 463 464
	}

	__pagevec_release(pvec);
465 466 467 468
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
469 470 471 472 473 474 475 476
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
477
	spin_lock(&vm->free_pages.lock);
478
	while (!pagevec_space(&vm->free_pages.pvec))
479
		vm_free_pages_release(vm, false);
480 481
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
482 483 484
	spin_unlock(&vm->free_pages.lock);
}

485
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
486
{
487 488
	kref_init(&vm->ref);

489 490 491 492 493 494
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
495
	lockdep_set_subclass(&vm->mutex, subclass);
496
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
497

498 499 500 501 502 503 504
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
505
	INIT_LIST_HEAD(&vm->bound_list);
506 507 508 509 510 511 512 513 514 515 516
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
517 518

	mutex_destroy(&vm->mutex);
519
}
520

521 522 523 524
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
525
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
526 527
	if (unlikely(!p->page))
		return -ENOMEM;
528

529 530 531
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
532
				      DMA_ATTR_SKIP_CPU_SYNC |
533
				      DMA_ATTR_NO_WARN);
534 535 536
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
537
	}
538 539

	return 0;
540 541
}

542
static int setup_page_dma(struct i915_address_space *vm,
543
			  struct i915_page_dma *p)
544
{
545
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
546 547
}

548
static void cleanup_page_dma(struct i915_address_space *vm,
549
			     struct i915_page_dma *p)
550
{
551 552
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
553 554
}

555
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
556

557 558
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
559 560
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
561

562 563 564
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
565
{
566
	u64 * const vaddr = kmap_atomic(p->page);
567

568
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
569

570
	kunmap_atomic(vaddr);
571 572
}

573 574 575
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
576
{
577
	fill_page_dma(vm, p, (u64)v << 32 | v);
578 579
}

580
static int
581
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
582
{
583
	unsigned long size;
584

585 586 587 588 589 590 591
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
592 593 594
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
595
	 */
596
	size = I915_GTT_PAGE_SIZE_4K;
597
	if (i915_vm_is_4lvl(vm) &&
598
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
599 600
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
601
	}
602 603 604 605 606 607
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
608

609
		page = alloc_pages(gfp, order);
610
		if (unlikely(!page))
611
			goto skip;
612

613 614 615
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
616
					  DMA_ATTR_SKIP_CPU_SYNC |
617
					  DMA_ATTR_NO_WARN);
618 619
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
620

621 622
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
623

624 625
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
626
		vm->scratch_order = order;
627 628 629 630 631 632 633 634 635 636 637 638 639
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
640 641
}

642
static void cleanup_scratch_page(struct i915_address_space *vm)
643
{
644
	struct i915_page_dma *p = &vm->scratch_page;
645
	int order = vm->scratch_order;
646

647
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
648
		       PCI_DMA_BIDIRECTIONAL);
649
	__free_pages(p->page, order);
650 651
}

652
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
653
{
654
	struct i915_page_table *pt;
655

656
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
657
	if (unlikely(!pt))
658 659
		return ERR_PTR(-ENOMEM);

660 661 662 663
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
664

665 666
	atomic_set(&pt->used, 0);

667 668 669
	return pt;
}

670
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
671
{
672
	cleanup_px(vm, pt);
673 674 675 676 677 678
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
679
	fill_px(vm, pt, vm->scratch_pte);
680 681
}

682
static void gen6_initialize_pt(struct i915_address_space *vm,
683 684
			       struct i915_page_table *pt)
{
685
	fill32_px(vm, pt, vm->scratch_pte);
686 687
}

688
static struct i915_page_directory *__alloc_pd(void)
689
{
690
	struct i915_page_directory *pd;
691

692
	pd = kmalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

	if (unlikely(!pd))
		return NULL;

	memset(&pd->base, 0, sizeof(pd->base));
	atomic_set(&pd->used, 0);
	spin_lock_init(&pd->lock);

	/* for safety */
	pd->entry[0] = NULL;

	return pd;
}

static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
{
	struct i915_page_directory *pd;

	pd = __alloc_pd();
712
	if (unlikely(!pd))
713 714
		return ERR_PTR(-ENOMEM);

715 716 717 718
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
719

720 721 722
	return pd;
}

723 724 725 726 727
static inline bool pd_has_phys_page(const struct i915_page_directory * const pd)
{
	return pd->base.page;
}

728
static void free_pd(struct i915_address_space *vm,
729
		    struct i915_page_directory *pd)
730
{
731 732 733
	if (likely(pd_has_phys_page(pd)))
		cleanup_px(vm, pd);

734
	kfree(pd);
735 736
}

737 738 739
static void init_pd_with_page(struct i915_address_space *vm,
			      struct i915_page_directory * const pd,
			      struct i915_page_table *pt)
740
{
741 742
	fill_px(vm, pd, gen8_pde_encode(px_dma(pt), I915_CACHE_LLC));
	memset_p(pd->entry, pt, 512);
743 744
}

M
Mika Kuoppala 已提交
745 746 747
static void init_pd(struct i915_address_space *vm,
		    struct i915_page_directory * const pd,
		    struct i915_page_directory * const to)
748
{
749 750
	GEM_DEBUG_BUG_ON(!pd_has_phys_page(pd));

M
Mika Kuoppala 已提交
751 752
	fill_px(vm, pd, gen8_pdpe_encode(px_dma(to), I915_CACHE_LLC));
	memset_p(pd->entry, to, 512);
753 754
}

755 756
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
757 758 759 760
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
761
static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
762
{
763
	ppgtt->pd_dirty_engines = ALL_ENGINES;
764 765
}

766 767 768
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
769
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
770
				struct i915_page_table *pt,
771
				u64 start, u64 length)
772
{
773
	unsigned int num_entries = gen8_pte_count(start, length);
774
	gen8_pte_t *vaddr;
775

776
	vaddr = kmap_atomic_px(pt);
777
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
778
	kunmap_atomic(vaddr);
779

780 781
	GEM_BUG_ON(num_entries > atomic_read(&pt->used));
	return !atomic_sub_return(num_entries, &pt->used);
782
}
783

784 785 786 787 788 789 790 791 792 793 794 795
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

796
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
797
				struct i915_page_directory *pd,
798
				u64 start, u64 length)
799 800
{
	struct i915_page_table *pt;
801
	u32 pde;
802 803

	gen8_for_each_pde(pt, pd, start, length, pde) {
804 805
		bool free = false;

806 807
		GEM_BUG_ON(pt == vm->scratch_pt);

808 809
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
810

811
		spin_lock(&pd->lock);
812
		if (!atomic_read(&pt->used)) {
813
			gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
814
			pd->entry[pde] = vm->scratch_pt;
815

816 817
			GEM_BUG_ON(!atomic_read(&pd->used));
			atomic_dec(&pd->used);
818 819 820 821 822
			free = true;
		}
		spin_unlock(&pd->lock);
		if (free)
			free_pt(vm, pt);
823 824
	}

825
	return !atomic_read(&pd->used);
826
}
827

828
static void gen8_ppgtt_set_pdpe(struct i915_page_directory *pdp,
829 830 831 832 833
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

834
	if (!pd_has_phys_page(pdp))
835 836 837 838 839
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
840
}
841

842 843 844 845
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
846
				 struct i915_page_directory * const pdp,
847
				 u64 start, u64 length)
848 849
{
	struct i915_page_directory *pd;
850
	unsigned int pdpe;
851

852
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
853 854
		bool free = false;

855 856
		GEM_BUG_ON(pd == vm->scratch_pd);

857 858
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
859

860
		spin_lock(&pdp->lock);
861
		if (!atomic_read(&pd->used)) {
862
			gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
863
			pdp->entry[pdpe] = vm->scratch_pd;
864

865 866
			GEM_BUG_ON(!atomic_read(&pdp->used));
			atomic_dec(&pdp->used);
867 868 869 870 871
			free = true;
		}
		spin_unlock(&pdp->lock);
		if (free)
			free_pd(vm, pd);
872
	}
873

874
	return !atomic_read(&pdp->used);
875
}
876

877 878 879
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
880
	gen8_ppgtt_clear_pdp(vm, i915_vm_to_ppgtt(vm)->pd, start, length);
881 882
}

883 884
static void gen8_ppgtt_set_pml4e(struct i915_page_directory *pml4,
				 struct i915_page_directory *pdp,
885 886 887 888 889 890 891 892 893
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

894 895 896 897
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
898 899
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
900
{
901
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
902 903
	struct i915_page_directory * const pml4 = ppgtt->pd;
	struct i915_page_directory *pdp;
904
	unsigned int pml4e;
905

906
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
907

908
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
909
		bool free = false;
910 911
		GEM_BUG_ON(pdp == vm->scratch_pdp);

912 913
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
914

915
		spin_lock(&pml4->lock);
916
		if (!atomic_read(&pdp->used)) {
917
			gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
918
			pml4->entry[pml4e] = vm->scratch_pdp;
919 920 921 922
			free = true;
		}
		spin_unlock(&pml4->lock);
		if (free)
923
			free_pd(vm, pdp);
924 925 926
	}
}

927
static inline struct sgt_dma {
928 929
	struct scatterlist *sg;
	dma_addr_t dma, max;
930 931 932 933 934
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
935

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

953
static __always_inline bool
954
gen8_ppgtt_insert_pte_entries(struct i915_ppgtt *ppgtt,
955
			      struct i915_page_directory *pdp,
956
			      struct sgt_dma *iter,
957
			      struct gen8_insert_pte *idx,
958 959
			      enum i915_cache_level cache_level,
			      u32 flags)
960
{
961
	struct i915_page_directory *pd;
962
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
963 964
	gen8_pte_t *vaddr;
	bool ret;
965

966
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
967 968
	pd = i915_pd_entry(pdp, idx->pdpe);
	vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
969
	do {
970 971
		vaddr[idx->pte] = pte_encode | iter->dma;

972
		iter->dma += I915_GTT_PAGE_SIZE;
973 974 975 976 977 978
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
979

980 981
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
982
		}
983

984 985 986 987 988 989
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

990
				/* Limited by sg length for 3lvl */
991 992
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
993
					ret = true;
994
					break;
995 996
				}

997
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
998
				pd = pdp->entry[idx->pdpe];
999
			}
1000

1001
			kunmap_atomic(vaddr);
1002
			vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
1003
		}
1004
	} while (1);
1005
	kunmap_atomic(vaddr);
1006

1007
	return ret;
1008 1009
}

1010
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1011
				   struct i915_vma *vma,
1012
				   enum i915_cache_level cache_level,
1013
				   u32 flags)
1014
{
1015
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1016
	struct sgt_dma iter = sgt_dma(vma);
1017
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1018

1019
	gen8_ppgtt_insert_pte_entries(ppgtt, ppgtt->pd, &iter, &idx,
1020
				      cache_level, flags);
1021 1022

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1023
}
1024

1025
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1026
					   struct i915_page_directory *pml4,
1027
					   struct sgt_dma *iter,
1028 1029
					   enum i915_cache_level cache_level,
					   u32 flags)
1030
{
1031
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1032 1033 1034 1035 1036
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
1037 1038 1039
		struct i915_page_directory *pdp =
			i915_pdp_entry(pml4, idx.pml4e);
		struct i915_page_directory *pd = i915_pd_entry(pdp, idx.pdpe);
1040
		unsigned int page_size;
1041
		bool maybe_64K = false;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
1057
			struct i915_page_table *pt = i915_pt_entry(pd, idx.pde);
1058 1059 1060 1061 1062

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1063 1064 1065 1066
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1067
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1068 1069
				maybe_64K = true;

1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1089 1090 1091
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1092
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1093 1094
					maybe_64K = false;

1095 1096 1097 1098 1099 1100
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1117
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1131
				encode = vma->vm->scratch_pte;
1132 1133
				vaddr = kmap_atomic_px(i915_pt_entry(pd,
								     idx.pde));
M
Matthew Auld 已提交
1134 1135 1136 1137 1138 1139

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1140
		}
1141 1142

		vma->page_sizes.gtt |= page_size;
1143 1144 1145
	} while (iter->sg);
}

1146
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1147
				   struct i915_vma *vma,
1148
				   enum i915_cache_level cache_level,
1149
				   u32 flags)
1150
{
1151
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1152
	struct sgt_dma iter = sgt_dma(vma);
1153
	struct i915_page_directory * const pml4 = ppgtt->pd;
1154

1155
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1156
		gen8_ppgtt_insert_huge_entries(vma, pml4, &iter, cache_level,
1157
					       flags);
1158 1159 1160
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

1161 1162
		while (gen8_ppgtt_insert_pte_entries(ppgtt,
						     i915_pdp_entry(pml4, idx.pml4e++),
1163 1164
						     &iter, &idx, cache_level,
						     flags))
1165
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1166 1167

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1168
	}
1169 1170
}

1171
static void gen8_free_page_tables(struct i915_address_space *vm,
1172
				  struct i915_page_directory *pd)
1173 1174 1175
{
	int i;

1176
	for (i = 0; i < I915_PDES; i++) {
1177 1178
		if (pd->entry[i] != vm->scratch_pt)
			free_pt(vm, pd->entry[i]);
1179
	}
B
Ben Widawsky 已提交
1180 1181
}

1182 1183
static int gen8_init_scratch(struct i915_address_space *vm)
{
1184
	int ret;
1185

1186 1187 1188 1189 1190 1191
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
1192 1193
	    vm->i915->kernel_context->vm) {
		struct i915_address_space *clone = vm->i915->kernel_context->vm;
1194 1195 1196

		GEM_BUG_ON(!clone->has_read_only);

1197
		vm->scratch_order = clone->scratch_order;
1198 1199 1200 1201 1202 1203 1204
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1205
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1206 1207
	if (ret)
		return ret;
1208

1209 1210 1211
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1212
				vm->has_read_only);
1213

1214
	vm->scratch_pt = alloc_pt(vm);
1215
	if (IS_ERR(vm->scratch_pt)) {
1216 1217
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1218 1219
	}

1220
	vm->scratch_pd = alloc_pd(vm);
1221
	if (IS_ERR(vm->scratch_pd)) {
1222 1223
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1224 1225
	}

1226
	if (i915_vm_is_4lvl(vm)) {
1227
		vm->scratch_pdp = alloc_pd(vm);
1228
		if (IS_ERR(vm->scratch_pdp)) {
1229 1230
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1231 1232 1233
		}
	}

1234
	gen8_initialize_pt(vm, vm->scratch_pt);
1235
	init_pd_with_page(vm, vm->scratch_pd, vm->scratch_pt);
1236
	if (i915_vm_is_4lvl(vm))
M
Mika Kuoppala 已提交
1237
		init_pd(vm, vm->scratch_pdp, vm->scratch_pd);
1238 1239

	return 0;
1240 1241

free_pd:
1242
	free_pd(vm, vm->scratch_pd);
1243
free_pt:
1244
	free_pt(vm, vm->scratch_pt);
1245
free_scratch_page:
1246
	cleanup_scratch_page(vm);
1247 1248

	return ret;
1249 1250
}

1251
static int gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
1252
{
1253
	struct i915_address_space *vm = &ppgtt->vm;
1254
	struct drm_i915_private *dev_priv = vm->i915;
1255 1256 1257
	enum vgt_g2v_type msg;
	int i;

1258
	if (i915_vm_is_4lvl(vm)) {
1259
		const u64 daddr = px_dma(ppgtt->pd);
1260

1261 1262
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1263 1264 1265 1266

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1267
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1268
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1269

1270 1271
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1283 1284
static void gen8_free_scratch(struct i915_address_space *vm)
{
1285 1286 1287
	if (!vm->scratch_page.daddr)
		return;

1288
	if (i915_vm_is_4lvl(vm))
1289
		free_pd(vm, vm->scratch_pdp);
1290 1291 1292
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1293 1294
}

1295
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1296
				    struct i915_page_directory *pdp)
1297
{
1298
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1299 1300
	int i;

1301
	for (i = 0; i < pdpes; i++) {
1302
		if (pdp->entry[i] == vm->scratch_pd)
1303 1304
			continue;

1305 1306
		gen8_free_page_tables(vm, pdp->entry[i]);
		free_pd(vm, pdp->entry[i]);
1307
	}
1308

1309
	free_pd(vm, pdp);
1310 1311
}

1312
static void gen8_ppgtt_cleanup_4lvl(struct i915_ppgtt *ppgtt)
1313
{
1314
	struct i915_page_directory * const pml4 = ppgtt->pd;
1315 1316
	int i;

1317
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1318 1319 1320
		struct i915_page_directory *pdp = i915_pdp_entry(pml4, i);

		if (pdp == ppgtt->vm.scratch_pdp)
1321 1322
			continue;

1323
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, pdp);
1324 1325
	}

1326
	free_pd(&ppgtt->vm, pml4);
1327 1328 1329 1330
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1331
	struct drm_i915_private *i915 = vm->i915;
1332
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1333

1334
	if (intel_vgpu_active(i915))
1335 1336
		gen8_ppgtt_notify_vgt(ppgtt, false);

1337
	if (i915_vm_is_4lvl(vm))
1338
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1339
	else
1340
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pd);
1341

1342
	gen8_free_scratch(vm);
1343 1344
}

1345 1346 1347
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1348
{
1349
	struct i915_page_table *pt;
1350
	u64 from = start;
1351
	unsigned int pde;
1352

1353
	spin_lock(&pd->lock);
1354
	gen8_for_each_pde(pt, pd, start, length, pde) {
1355
		const int count = gen8_pte_count(start, length);
1356

1357
		if (pt == vm->scratch_pt) {
1358 1359 1360
			struct i915_page_table *old;

			spin_unlock(&pd->lock);
1361

1362
			pt = alloc_pt(vm);
1363
			if (IS_ERR(pt))
1364
				goto unwind;
1365

1366
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1367
				gen8_initialize_pt(vm, pt);
1368

1369
			old = cmpxchg(&pd->entry[pde], vm->scratch_pt, pt);
1370 1371
			if (old == vm->scratch_pt) {
				gen8_ppgtt_set_pde(vm, pd, pt, pde);
1372
				atomic_inc(&pd->used);
1373 1374 1375 1376 1377 1378
			} else {
				free_pt(vm, pt);
				pt = old;
			}

			spin_lock(&pd->lock);
1379
		}
1380

1381
		atomic_add(count, &pt->used);
1382
	}
1383 1384
	spin_unlock(&pd->lock);

1385
	return 0;
1386

1387 1388
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1389
	return -ENOMEM;
1390 1391
}

1392
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1393
				struct i915_page_directory *pdp,
1394
				u64 start, u64 length)
1395
{
1396
	struct i915_page_directory *pd;
1397 1398
	u64 from = start;
	unsigned int pdpe;
1399 1400
	int ret;

1401
	spin_lock(&pdp->lock);
1402
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1403
		if (pd == vm->scratch_pd) {
1404 1405 1406
			struct i915_page_directory *old;

			spin_unlock(&pdp->lock);
1407

1408
			pd = alloc_pd(vm);
1409
			if (IS_ERR(pd))
1410
				goto unwind;
1411

1412
			init_pd_with_page(vm, pd, vm->scratch_pt);
1413

1414
			old = cmpxchg(&pdp->entry[pdpe], vm->scratch_pd, pd);
1415
			if (old == vm->scratch_pd) {
1416
				gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1417
				atomic_inc(&pdp->used);
1418 1419 1420 1421 1422 1423
			} else {
				free_pd(vm, pd);
				pd = old;
			}

			spin_lock(&pdp->lock);
1424
		}
1425
		atomic_inc(&pd->used);
1426
		spin_unlock(&pdp->lock);
1427 1428

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1429 1430
		if (unlikely(ret))
			goto unwind_pd;
1431 1432

		spin_lock(&pdp->lock);
1433
		atomic_dec(&pd->used);
1434
	}
1435
	spin_unlock(&pdp->lock);
1436

B
Ben Widawsky 已提交
1437
	return 0;
1438

1439
unwind_pd:
1440
	spin_lock(&pdp->lock);
1441
	if (atomic_dec_and_test(&pd->used)) {
1442
		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1443 1444
		GEM_BUG_ON(!atomic_read(&pdp->used));
		atomic_dec(&pdp->used);
1445 1446
		free_pd(vm, pd);
	}
1447
	spin_unlock(&pdp->lock);
1448 1449 1450
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1451 1452
}

1453 1454
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1455
{
1456
	return gen8_ppgtt_alloc_pdp(vm,
1457
				    i915_vm_to_ppgtt(vm)->pd, start, length);
1458
}
1459

1460 1461 1462
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
1463
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1464 1465
	struct i915_page_directory * const pml4 = ppgtt->pd;
	struct i915_page_directory *pdp;
1466 1467 1468
	u64 from = start;
	u32 pml4e;
	int ret;
1469

1470
	spin_lock(&pml4->lock);
1471
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1472
		if (pdp == vm->scratch_pdp) {
1473
			struct i915_page_directory *old;
1474 1475 1476

			spin_unlock(&pml4->lock);

1477
			pdp = alloc_pd(vm);
1478 1479
			if (IS_ERR(pdp))
				goto unwind;
1480

M
Mika Kuoppala 已提交
1481
			init_pd(vm, pdp, vm->scratch_pd);
1482

1483
			old = cmpxchg(&pml4->entry[pml4e], vm->scratch_pdp, pdp);
1484 1485 1486
			if (old == vm->scratch_pdp) {
				gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
			} else {
1487
				free_pd(vm, pdp);
1488 1489 1490 1491
				pdp = old;
			}

			spin_lock(&pml4->lock);
1492
		}
1493
		atomic_inc(&pdp->used);
1494
		spin_unlock(&pml4->lock);
1495

1496
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1497 1498
		if (unlikely(ret))
			goto unwind_pdp;
1499 1500

		spin_lock(&pml4->lock);
1501
		atomic_dec(&pdp->used);
1502
	}
1503
	spin_unlock(&pml4->lock);
1504 1505 1506

	return 0;

1507
unwind_pdp:
1508
	spin_lock(&pml4->lock);
1509
	if (atomic_dec_and_test(&pdp->used)) {
1510
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1511
		free_pd(vm, pdp);
1512
	}
1513
	spin_unlock(&pml4->lock);
1514 1515 1516
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1517 1518
}

1519
static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1520
{
1521
	struct i915_address_space *vm = &ppgtt->vm;
1522
	struct i915_page_directory *pdp = ppgtt->pd;
1523
	struct i915_page_directory *pd;
1524
	u64 start = 0, length = ppgtt->vm.total;
1525 1526
	u64 from = start;
	unsigned int pdpe;
1527

1528 1529 1530 1531
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1532

1533
		init_pd_with_page(vm, pd, vm->scratch_pt);
1534
		gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1535 1536

		atomic_inc(&pdp->used);
1537
	}
1538

1539 1540
	atomic_inc(&pdp->used); /* never remove */

1541
	return 0;
1542

1543 1544 1545
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1546
		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1547 1548
		free_pd(vm, pd);
	}
1549
	atomic_set(&pdp->used, 0);
1550
	return -ENOMEM;
1551 1552
}

1553
static void ppgtt_init(struct drm_i915_private *i915,
1554
		       struct i915_ppgtt *ppgtt)
1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
{
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1568
/*
1569 1570 1571 1572
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1573
 *
1574
 */
1575
static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1576
{
1577
	struct i915_ppgtt *ppgtt;
1578 1579 1580 1581 1582 1583
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1584
	ppgtt_init(i915, ppgtt);
1585

1586 1587 1588 1589 1590 1591 1592
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1593

1594 1595 1596
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1597
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1598
		ppgtt->vm.pt_kmap_wc = true;
1599

1600 1601 1602
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1603

1604 1605 1606 1607
	ppgtt->pd = __alloc_pd();
	if (!ppgtt->pd) {
		err = -ENOMEM;
		goto err_free_scratch;
1608
	}
1609

1610
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1611 1612 1613 1614
		err = setup_px(&ppgtt->vm, ppgtt->pd);
		if (err)
			goto err_free_pdp;

M
Mika Kuoppala 已提交
1615
		init_pd(&ppgtt->vm, ppgtt->pd, ppgtt->vm.scratch_pdp);
1616

1617 1618 1619
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1620
	} else {
M
Mika Kuoppala 已提交
1621 1622 1623 1624 1625 1626
		/*
		 * We don't need to setup dma for top level pdp, only
		 * for entries. So point entries to scratch.
		 */
		memset_p(ppgtt->pd->entry, ppgtt->vm.scratch_pd,
			 GEN8_3LVL_PDPES);
1627

1628 1629
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
1630
			if (err)
1631
				goto err_free_pdp;
1632
		}
1633

1634 1635 1636
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1637
	}
1638

1639
	if (intel_vgpu_active(i915))
1640 1641
		gen8_ppgtt_notify_vgt(ppgtt, true);

1642
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1643

1644
	return ppgtt;
1645

1646 1647 1648
err_free_pdp:
	free_pd(&ppgtt->vm, ppgtt->pd);
err_free_scratch:
1649
	gen8_free_scratch(&ppgtt->vm);
1650 1651 1652
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1653 1654
}

1655
/* Write pde (index) from the page directory @pd to the page table @pt */
1656
static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
C
Chris Wilson 已提交
1657 1658
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1659
{
1660
	/* Caller needs to make sure the write completes if necessary */
1661 1662
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1663
}
B
Ben Widawsky 已提交
1664

1665
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1666
{
1667
	struct intel_engine_cs *engine;
1668
	u32 ecochk, ecobits;
1669
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1670

1671 1672
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1673

1674
	ecochk = I915_READ(GAM_ECOCHK);
1675
	if (IS_HASWELL(dev_priv)) {
1676 1677 1678 1679 1680 1681
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1682

1683
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1684
		/* GFX_MODE is per-ring on gen7+ */
1685 1686 1687
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1688
	}
1689
}
B
Ben Widawsky 已提交
1690

1691
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1692
{
1693
	u32 ecochk, gab_ctl, ecobits;
1694

1695 1696 1697
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1698

1699 1700 1701 1702 1703 1704
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1705 1706
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1707 1708
}

1709
/* PPGTT support for Sandybdrige/Gen6 and later */
1710
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1711
				   u64 start, u64 length)
1712
{
1713 1714 1715
	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1716 1717
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1718
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1719

1720
	while (num_entries) {
1721 1722
		struct i915_page_table * const pt =
			i915_pt_entry(ppgtt->base.pd, pde++);
1723
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1724
		gen6_pte_t *vaddr;
1725

1726 1727 1728 1729
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

1730 1731
		GEM_BUG_ON(count > atomic_read(&pt->used));
		if (!atomic_sub_return(count, &pt->used))
1732
			ppgtt->scan_for_unused_pt = true;
1733

1734 1735
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1736 1737 1738 1739
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1740

1741
		vaddr = kmap_atomic_px(pt);
1742
		memset32(vaddr + pte, scratch_pte, count);
1743
		kunmap_atomic(vaddr);
1744

1745
		pte = 0;
1746
	}
1747 1748
}

1749
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1750
				      struct i915_vma *vma,
1751 1752
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1753
{
1754
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1755
	struct i915_page_directory * const pd = ppgtt->pd;
1756
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1757 1758
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1759
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1760
	struct sgt_dma iter = sgt_dma(vma);
1761 1762
	gen6_pte_t *vaddr;

1763
	GEM_BUG_ON(i915_pt_entry(pd, act_pt) == vm->scratch_pt);
1764

1765
	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1766 1767
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1768

1769
		iter.dma += I915_GTT_PAGE_SIZE;
1770 1771 1772 1773
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1774

1775 1776 1777
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1778

1779
		if (++act_pte == GEN6_PTES) {
1780
			kunmap_atomic(vaddr);
1781
			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1782
			act_pte = 0;
D
Daniel Vetter 已提交
1783
		}
1784
	} while (1);
1785
	kunmap_atomic(vaddr);
1786 1787

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1788 1789
}

1790
static int gen6_alloc_va_range(struct i915_address_space *vm,
1791
			       u64 start, u64 length)
1792
{
1793
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1794
	struct i915_page_directory * const pd = ppgtt->base.pd;
1795
	struct i915_page_table *pt;
1796
	intel_wakeref_t wakeref;
1797 1798 1799
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1800

1801
	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1802

1803 1804
	spin_lock(&pd->lock);
	gen6_for_each_pde(pt, pd, start, length, pde) {
1805 1806
		const unsigned int count = gen6_pte_count(start, length);

1807
		if (pt == vm->scratch_pt) {
1808 1809
			struct i915_page_table *old;

1810
			spin_unlock(&pd->lock);
1811

1812 1813 1814
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1815

1816
			gen6_initialize_pt(vm, pt);
1817

1818
			old = cmpxchg(&pd->entry[pde], vm->scratch_pt, pt);
1819 1820 1821 1822 1823 1824 1825 1826 1827
			if (old == vm->scratch_pt) {
				if (i915_vma_is_bound(ppgtt->vma,
						      I915_VMA_GLOBAL_BIND)) {
					gen6_write_pde(ppgtt, pde, pt);
					flush = true;
				}
			} else {
				free_pt(vm, pt);
				pt = old;
1828
			}
1829

1830
			spin_lock(&pd->lock);
1831
		}
1832

1833
		atomic_add(count, &pt->used);
1834
	}
1835
	spin_unlock(&pd->lock);
1836

1837
	if (flush) {
1838
		mark_tlbs_dirty(&ppgtt->base);
1839
		gen6_ggtt_invalidate(vm->i915);
1840 1841
	}

1842
	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1843

1844
	return 0;
1845 1846

unwind_out:
1847
	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
1848
	gen6_ppgtt_clear_range(vm, from, start - from);
1849
	return -ENOMEM;
1850 1851
}

1852
static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1853
{
1854
	struct i915_address_space * const vm = &ppgtt->base.vm;
1855
	struct i915_page_directory * const pd = ppgtt->base.pd;
1856 1857
	struct i915_page_table *unused;
	u32 pde;
1858
	int ret;
1859

1860
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1861 1862
	if (ret)
		return ret;
1863

1864 1865 1866
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1867

1868
	vm->scratch_pt = alloc_pt(vm);
1869
	if (IS_ERR(vm->scratch_pt)) {
1870
		cleanup_scratch_page(vm);
1871 1872 1873
		return PTR_ERR(vm->scratch_pt);
	}

1874
	gen6_initialize_pt(vm, vm->scratch_pt);
1875 1876 1877

	gen6_for_all_pdes(unused, pd, pde)
		pd->entry[pde] = vm->scratch_pt;
1878 1879 1880 1881

	return 0;
}

1882
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1883
{
1884 1885
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1886 1887
}

1888
static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1889
{
1890
	struct i915_page_directory * const pd = ppgtt->base.pd;
1891
	struct i915_page_table *pt;
1892
	u32 pde;
1893

1894
	gen6_for_all_pdes(pt, pd, pde)
1895 1896 1897 1898
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917
struct gen6_ppgtt_cleanup_work {
	struct work_struct base;
	struct i915_vma *vma;
};

static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
{
	struct gen6_ppgtt_cleanup_work *work =
		container_of(wrk, typeof(*work), base);
	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
	struct drm_i915_private *i915 = work->vma->vm->i915;

	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(work->vma);
	mutex_unlock(&i915->drm.struct_mutex);

	kfree(work);
}

1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
static int nop_set_pages(struct i915_vma *vma)
{
	return -ENODEV;
}

static void nop_clear_pages(struct i915_vma *vma)
{
}

static int nop_bind(struct i915_vma *vma,
		    enum i915_cache_level cache_level,
		    u32 unused)
{
	return -ENODEV;
}

static void nop_unbind(struct i915_vma *vma)
{
}

static const struct i915_vma_ops nop_vma_ops = {
	.set_pages = nop_set_pages,
	.clear_pages = nop_clear_pages,
	.bind_vma = nop_bind,
	.unbind_vma = nop_unbind,
};

1945 1946
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
1947
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1948
	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1949

1950 1951 1952
	/* FIXME remove the struct_mutex to bring the locking under control */
	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
	work->vma = ppgtt->vma;
1953
	work->vma->ops = &nop_vma_ops;
1954
	schedule_work(&work->base);
1955 1956 1957

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1958
	kfree(ppgtt->base.pd);
1959 1960
}

1961
static int pd_vma_set_pages(struct i915_vma *vma)
1962
{
1963 1964 1965
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1966

1967 1968 1969
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1970

1971 1972 1973 1974 1975 1976 1977 1978
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
1979
	struct gen6_ppgtt *ppgtt = vma->private;
1980
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1981 1982
	struct i915_page_table *pt;
	unsigned int pde;
1983

1984
	ppgtt->base.pd->base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
1985
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1986

1987
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
1988
		gen6_write_pde(ppgtt, pde, pt);
1989

1990 1991
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1992

1993
	return 0;
1994
}
1995

1996
static void pd_vma_unbind(struct i915_vma *vma)
1997
{
1998
	struct gen6_ppgtt *ppgtt = vma->private;
1999
	struct i915_page_directory * const pd = ppgtt->base.pd;
2000 2001 2002 2003 2004 2005 2006 2007
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
2008 2009
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
		if (atomic_read(&pt->used) || pt == scratch_pt)
2010 2011 2012
			continue;

		free_pt(&ppgtt->base.vm, pt);
2013
		pd->entry[pde] = scratch_pt;
2014 2015 2016
	}

	ppgtt->scan_for_unused_pt = false;
2017 2018 2019 2020 2021 2022 2023 2024 2025
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

2026
static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
2027 2028 2029 2030 2031 2032 2033 2034
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

2035
	vma = i915_vma_alloc();
2036 2037 2038
	if (!vma)
		return ERR_PTR(-ENOMEM);

2039
	i915_active_init(i915, &vma->active, NULL);
2040
	INIT_ACTIVE_REQUEST(&vma->last_fence);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
2052
	INIT_LIST_HEAD(&vma->closed_link);
2053 2054

	mutex_lock(&vma->vm->mutex);
2055
	list_add(&vma->vm_link, &vma->vm->unbound_list);
2056
	mutex_unlock(&vma->vm->mutex);
2057 2058 2059

	return vma;
}
2060

2061
int gen6_ppgtt_pin(struct i915_ppgtt *base)
2062
{
2063
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2064
	int err;
2065

2066 2067
	GEM_BUG_ON(ppgtt->base.vm.closed);

2068 2069 2070 2071 2072 2073 2074 2075 2076
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2077 2078 2079 2080 2081
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2093 2094
}

2095
void gen6_ppgtt_unpin(struct i915_ppgtt *base)
2096
{
2097
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2098 2099 2100 2101 2102 2103 2104 2105

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2106
void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
2107
{
2108
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2109 2110 2111 2112 2113 2114 2115 2116

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2117
static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2118
{
2119
	struct i915_ggtt * const ggtt = &i915->ggtt;
2120
	struct gen6_ppgtt *ppgtt;
2121 2122 2123 2124 2125 2126
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2127
	ppgtt_init(i915, &ppgtt->base);
2128

2129
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2130 2131 2132
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2133

2134 2135
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2136
	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2137 2138
	if (!ppgtt->work) {
		err = -ENOMEM;
2139
		goto err_free;
2140
	}
2141

2142 2143 2144 2145 2146 2147
	ppgtt->base.pd = __alloc_pd();
	if (!ppgtt->base.pd) {
		err = -ENOMEM;
		goto err_work;
	}

2148
	err = gen6_ppgtt_init_scratch(ppgtt);
2149
	if (err)
2150
		goto err_pd;
2151

2152 2153 2154
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2155
		goto err_scratch;
2156
	}
2157

2158
	return &ppgtt->base;
2159

2160 2161
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2162 2163
err_pd:
	kfree(ppgtt->base.pd);
2164 2165
err_work:
	kfree(ppgtt->work);
2166 2167 2168
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2169
}
2170

2171
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2172 2173 2174 2175 2176
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2177
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2178
	if (IS_BROADWELL(dev_priv))
2179
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2180
	else if (IS_CHERRYVIEW(dev_priv))
2181
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2182
	else if (IS_GEN9_LP(dev_priv))
2183
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2184 2185
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2203 2204
}

2205
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2206
{
2207
	gtt_write_workarounds(dev_priv);
2208

2209
	if (IS_GEN(dev_priv, 6))
2210
		gen6_ppgtt_enable(dev_priv);
2211
	else if (IS_GEN(dev_priv, 7))
2212
		gen7_ppgtt_enable(dev_priv);
2213

2214 2215
	return 0;
}
2216

2217 2218
static struct i915_ppgtt *
__ppgtt_create(struct drm_i915_private *i915)
2219 2220 2221 2222 2223 2224 2225
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2226
struct i915_ppgtt *
2227
i915_ppgtt_create(struct drm_i915_private *i915)
2228
{
2229
	struct i915_ppgtt *ppgtt;
2230

2231
	ppgtt = __ppgtt_create(i915);
2232 2233
	if (IS_ERR(ppgtt))
		return ppgtt;
2234

2235
	trace_i915_ppgtt_create(&ppgtt->vm);
2236

2237 2238 2239
	return ppgtt;
}

2240
static void ppgtt_destroy_vma(struct i915_address_space *vm)
2241 2242
{
	struct list_head *phases[] = {
2243
		&vm->bound_list,
2244 2245 2246 2247 2248 2249 2250 2251 2252
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2253
			i915_vma_destroy(vma);
2254 2255 2256
	}
}

2257
void i915_vm_release(struct kref *kref)
2258
{
2259 2260
	struct i915_address_space *vm =
		container_of(kref, struct i915_address_space, ref);
2261

2262 2263
	GEM_BUG_ON(i915_is_ggtt(vm));
	trace_i915_ppgtt_release(vm);
2264

2265
	ppgtt_destroy_vma(vm);
2266

2267 2268
	GEM_BUG_ON(!list_empty(&vm->bound_list));
	GEM_BUG_ON(!list_empty(&vm->unbound_list));
2269

2270 2271 2272 2273
	vm->cleanup(vm);
	i915_address_space_fini(vm);

	kfree(vm);
2274
}
2275

2276 2277 2278
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2279
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2280 2281 2282 2283
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2284
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2285 2286
}

2287
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2288
{
2289
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2290 2291 2292 2293

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2294
	if (INTEL_GEN(dev_priv) < 6)
2295 2296
		return;

2297
	i915_check_and_clear_faults(dev_priv);
2298

2299
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2300

2301
	i915_ggtt_invalidate(dev_priv);
2302 2303
}

2304 2305
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2306
{
2307
	do {
2308 2309 2310 2311
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2312 2313
			return 0;

2314 2315
		/*
		 * If the DMA remap fails, one cause can be that we have
2316 2317 2318 2319 2320 2321 2322
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2323
				 obj->base.size >> PAGE_SHIFT, NULL,
2324
				 I915_SHRINK_BOUND |
2325
				 I915_SHRINK_UNBOUND));
2326

2327
	return -ENOSPC;
2328 2329
}

2330
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2331 2332 2333 2334
{
	writeq(pte, addr);
}

2335 2336
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2337
				  u64 offset,
2338 2339 2340
				  enum i915_cache_level level,
				  u32 unused)
{
2341
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2342
	gen8_pte_t __iomem *pte =
2343
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2344

2345
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2346

2347
	ggtt->invalidate(vm->i915);
2348 2349
}

B
Ben Widawsky 已提交
2350
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2351
				     struct i915_vma *vma,
2352
				     enum i915_cache_level level,
2353
				     u32 flags)
B
Ben Widawsky 已提交
2354
{
2355
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2356 2357
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2358
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2359
	dma_addr_t addr;
2360

2361 2362 2363 2364
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2365

2366
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2367
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2368
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2369
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2370

2371 2372 2373
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2374
	 */
2375
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2376 2377
}

2378 2379
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2380
				  u64 offset,
2381 2382 2383
				  enum i915_cache_level level,
				  u32 flags)
{
2384
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2385
	gen6_pte_t __iomem *pte =
2386
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2387

2388
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2389

2390
	ggtt->invalidate(vm->i915);
2391 2392
}

2393 2394 2395 2396 2397 2398
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2399
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2400
				     struct i915_vma *vma,
2401 2402
				     enum i915_cache_level level,
				     u32 flags)
2403
{
2404
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2405
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2406
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2407
	struct sgt_iter iter;
2408
	dma_addr_t addr;
2409
	for_each_sgt_dma(addr, iter, vma->pages)
2410
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2411

2412 2413 2414
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2415
	 */
2416
	ggtt->invalidate(vm->i915);
2417 2418
}

2419
static void nop_clear_range(struct i915_address_space *vm,
2420
			    u64 start, u64 length)
2421 2422 2423
{
}

B
Ben Widawsky 已提交
2424
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2425
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2426
{
2427
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2428 2429
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2430
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2431
	gen8_pte_t __iomem *gtt_base =
2432 2433
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2489
	struct i915_vma *vma;
2490
	enum i915_cache_level level;
2491
	u32 flags;
2492 2493 2494 2495 2496 2497
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2498
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2499 2500 2501 2502 2503 2504
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2505
					     struct i915_vma *vma,
2506
					     enum i915_cache_level level,
2507
					     u32 flags)
2508
{
2509
	struct insert_entries arg = { vm, vma, level, flags };
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2539
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2540
				  u64 start, u64 length)
2541
{
2542
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2543 2544
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2545
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2546 2547
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2548 2549 2550 2551 2552 2553 2554
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2555
	scratch_pte = vm->scratch_pte;
2556

2557 2558 2559 2560
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2561 2562
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2563
				  u64 offset,
2564 2565 2566 2567 2568 2569 2570 2571 2572
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2573
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2574
				     struct i915_vma *vma,
2575 2576
				     enum i915_cache_level cache_level,
				     u32 unused)
2577 2578 2579 2580
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2581 2582
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2583 2584
}

2585
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2586
				  u64 start, u64 length)
2587
{
2588
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2589 2590
}

2591 2592 2593
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2594
{
2595
	struct drm_i915_private *i915 = vma->vm->i915;
2596
	struct drm_i915_gem_object *obj = vma->obj;
2597
	intel_wakeref_t wakeref;
2598
	u32 pte_flags;
2599

2600
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2601
	pte_flags = 0;
2602
	if (i915_gem_object_is_readonly(obj))
2603 2604
		pte_flags |= PTE_READ_ONLY;

2605
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2606
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2607

2608 2609
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2610 2611 2612 2613 2614
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2615
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2616 2617 2618 2619

	return 0;
}

2620 2621 2622
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2623
	intel_wakeref_t wakeref;
2624

2625
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2626
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2627 2628
}

2629 2630 2631
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2632
{
2633
	struct drm_i915_private *i915 = vma->vm->i915;
2634
	u32 pte_flags;
2635
	int ret;
2636

2637
	/* Currently applicable only to VLV */
2638
	pte_flags = 0;
2639
	if (i915_gem_object_is_readonly(vma->obj))
2640
		pte_flags |= PTE_READ_ONLY;
2641

2642
	if (flags & I915_VMA_LOCAL_BIND) {
2643
		struct i915_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2644

2645
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2646 2647 2648
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2649
			if (ret)
2650
				return ret;
2651 2652
		}

2653 2654
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2655 2656
	}

2657
	if (flags & I915_VMA_GLOBAL_BIND) {
2658 2659
		intel_wakeref_t wakeref;

2660
		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2661 2662 2663
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2664
	}
2665

2666
	return 0;
2667 2668
}

2669
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2670
{
2671
	struct drm_i915_private *i915 = vma->vm->i915;
2672

2673
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2674
		struct i915_address_space *vm = vma->vm;
2675 2676
		intel_wakeref_t wakeref;

2677
		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2678
			vm->clear_range(vm, vma->node.start, vma->size);
2679
	}
2680

2681
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2682
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2683 2684 2685

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2686 2687
}

2688 2689
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2690
{
D
David Weinehall 已提交
2691 2692
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2693
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2694

2695
	if (unlikely(ggtt->do_idle_maps)) {
2696
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2697 2698 2699 2700 2701
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2702

2703
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2704
}
2705

2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2716 2717
	vma->page_sizes = vma->obj->mm.page_sizes;

2718 2719 2720
	return 0;
}

C
Chris Wilson 已提交
2721
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2722
				  unsigned long color,
2723 2724
				  u64 *start,
				  u64 *end)
2725
{
2726
	if (node->allocated && node->color != color)
2727
		*start += I915_GTT_PAGE_SIZE;
2728

2729 2730 2731 2732 2733
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2734
	node = list_next_entry(node, node_list);
2735
	if (node->color != color)
2736
		*end -= I915_GTT_PAGE_SIZE;
2737
}
B
Ben Widawsky 已提交
2738

2739
static int init_aliasing_ppgtt(struct drm_i915_private *i915)
2740 2741
{
	struct i915_ggtt *ggtt = &i915->ggtt;
2742
	struct i915_ppgtt *ppgtt;
2743 2744
	int err;

2745
	ppgtt = i915_ppgtt_create(i915);
2746 2747
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2748

2749
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2750 2751 2752 2753
		err = -ENODEV;
		goto err_ppgtt;
	}

2754 2755 2756 2757 2758 2759 2760 2761 2762
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2763 2764

	i915->mm.aliasing_ppgtt = ppgtt;
2765

2766 2767
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2768

2769 2770
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2771

2772 2773 2774
	return 0;

err_ppgtt:
2775
	i915_vm_put(&ppgtt->vm);
2776 2777 2778
	return err;
}

2779
static void fini_aliasing_ppgtt(struct drm_i915_private *i915)
2780 2781
{
	struct i915_ggtt *ggtt = &i915->ggtt;
2782
	struct i915_ppgtt *ppgtt;
2783 2784 2785 2786 2787

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2788
	i915_vm_put(&ppgtt->vm);
2789

2790 2791
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2792 2793
}

2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
{
	u64 size;
	int ret;

	if (!USES_GUC(ggtt->vm.i915))
		return 0;

	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
	size = ggtt->vm.total - GUC_GGTT_TOP;

	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
				   PIN_NOEVICT);
	if (ret)
		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");

	return ret;
}

static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
{
	if (drm_mm_node_allocated(&ggtt->uc_fw))
		drm_mm_remove_node(&ggtt->uc_fw);
}

2820
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2821
{
2822 2823 2824 2825 2826 2827 2828 2829 2830
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2831
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2832
	unsigned long hole_start, hole_end;
2833
	struct drm_mm_node *entry;
2834
	int ret;
2835

2836 2837 2838 2839 2840 2841 2842
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2843
			       intel_wopcm_guc_size(&dev_priv->wopcm));
2844

2845 2846 2847
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2848

2849
	/* Reserve a mappable slot for our lockless error capture */
2850
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2851 2852 2853
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2854 2855 2856
	if (ret)
		return ret;

2857 2858 2859 2860 2861 2862 2863 2864
	/*
	 * The upper portion of the GuC address space has a sizeable hole
	 * (several MB) that is inaccessible by GuC. Reserve this range within
	 * GGTT as it can comfortably hold GuC/HuC firmware images.
	 */
	ret = ggtt_reserve_guc_top(ggtt);
	if (ret)
		goto err_reserve;
2865

2866
	/* Clear any non-preallocated blocks */
2867
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2868 2869
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2870 2871
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2872 2873 2874
	}

	/* And finally clear the reserved guard page */
2875
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2876

2877
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2878
		ret = init_aliasing_ppgtt(dev_priv);
2879
		if (ret)
2880
			goto err_appgtt;
2881 2882
	}

2883
	return 0;
2884

2885
err_appgtt:
2886
	ggtt_release_guc_top(ggtt);
2887
err_reserve:
2888 2889
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2890 2891
}

2892 2893
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2894
 * @dev_priv: i915 device
2895
 */
2896
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2897
{
2898
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2899
	struct i915_vma *vma, *vn;
2900
	struct pagevec *pvec;
2901

2902
	ggtt->vm.closed = true;
2903 2904

	mutex_lock(&dev_priv->drm.struct_mutex);
2905
	fini_aliasing_ppgtt(dev_priv);
2906

2907
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2908
		WARN_ON(i915_vma_unbind(vma));
2909

2910 2911 2912
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2913
	ggtt_release_guc_top(ggtt);
2914

2915
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2916
		intel_vgt_deballoon(dev_priv);
2917
		i915_address_space_fini(&ggtt->vm);
2918 2919
	}

2920
	ggtt->vm.cleanup(&ggtt->vm);
2921

2922
	pvec = &dev_priv->mm.wc_stash.pvec;
2923 2924 2925 2926 2927
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2928
	mutex_unlock(&dev_priv->drm.struct_mutex);
2929 2930

	arch_phys_wc_del(ggtt->mtrr);
2931
	io_mapping_fini(&ggtt->iomap);
2932

2933
	i915_gem_cleanup_stolen(dev_priv);
2934
}
2935

2936
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2937 2938 2939 2940 2941 2942
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2943
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2944 2945 2946 2947 2948
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2949 2950

#ifdef CONFIG_X86_32
2951
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2952 2953 2954 2955
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2956 2957 2958
	return bdw_gmch_ctl << 20;
}

2959
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2970
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2971
{
2972
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2973
	struct pci_dev *pdev = dev_priv->drm.pdev;
2974
	phys_addr_t phys_addr;
2975
	int ret;
B
Ben Widawsky 已提交
2976 2977

	/* For Modern GENs the PTEs and register space are split in the BAR */
2978
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2979

I
Imre Deak 已提交
2980
	/*
2981 2982 2983
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2984 2985 2986
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2987
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2988
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2989
	else
2990
		ggtt->gsm = ioremap_wc(phys_addr, size);
2991
	if (!ggtt->gsm) {
2992
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2993 2994 2995
		return -ENOMEM;
	}

2996
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2997
	if (ret) {
B
Ben Widawsky 已提交
2998 2999
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
3000
		iounmap(ggtt->gsm);
3001
		return ret;
B
Ben Widawsky 已提交
3002 3003
	}

3004 3005 3006 3007
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

3008
	return 0;
B
Ben Widawsky 已提交
3009 3010
}

3011 3012
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3013
{
3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3057
	struct intel_ppat_entry *entry = NULL;
3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3080
		if (!entry)
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3157
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3195 3196
}

B
Ben Widawsky 已提交
3197 3198 3199
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3200
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3201
{
3202 3203 3204 3205
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3206

3207
	if (!HAS_PPGTT(ppat->i915)) {
3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3221 3222 3223
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3224

3225 3226 3227 3228 3229 3230 3231 3232
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3233 3234
}

3235
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3236
{
3237 3238 3239 3240
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3241 3242 3243 3244 3245 3246 3247

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3259 3260
	 */

3261 3262 3263 3264 3265 3266 3267 3268
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3269 3270
}

3271 3272 3273 3274 3275
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3276
	cleanup_scratch_page(vm);
3277 3278
}

3279 3280
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3281 3282 3283 3284 3285
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3286
	if (INTEL_GEN(dev_priv) >= 10)
3287
		cnl_setup_private_ppat(ppat);
3288
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3289
		chv_setup_private_ppat(ppat);
3290
	else
3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3302 3303
}

3304
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3305
{
3306
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3307
	struct pci_dev *pdev = dev_priv->drm.pdev;
3308
	unsigned int size;
B
Ben Widawsky 已提交
3309
	u16 snb_gmch_ctl;
3310
	int err;
B
Ben Widawsky 已提交
3311 3312

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3313 3314 3315 3316
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3317

3318 3319 3320 3321 3322
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3323

3324
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3325
	if (IS_CHERRYVIEW(dev_priv))
3326
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3327
	else
3328
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3329

3330
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3331 3332 3333
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3334
	if (intel_scanout_needs_vtd_wa(dev_priv))
3335
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3336

3337
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3338

3339
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3340 3341
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3342 3343 3344 3345
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3346 3347 3348 3349 3350

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3351 3352
	}

3353 3354
	ggtt->invalidate = gen6_ggtt_invalidate;

3355 3356 3357 3358 3359
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3360 3361
	ggtt->vm.pte_encode = gen8_pte_encode;

3362 3363
	setup_private_pat(dev_priv);

3364
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3365 3366
}

3367
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3368
{
3369
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3370
	struct pci_dev *pdev = dev_priv->drm.pdev;
3371
	unsigned int size;
3372
	u16 snb_gmch_ctl;
3373
	int err;
3374

3375 3376 3377 3378
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3379

3380 3381
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3382
	 */
3383
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3384
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3385
		return -ENXIO;
3386 3387
	}

3388 3389 3390 3391 3392
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3393
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3394

3395
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3396
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3397

3398 3399 3400
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3401 3402 3403
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3404

3405 3406
	ggtt->invalidate = gen6_ggtt_invalidate;

3407
	if (HAS_EDRAM(dev_priv))
3408
		ggtt->vm.pte_encode = iris_pte_encode;
3409
	else if (IS_HASWELL(dev_priv))
3410
		ggtt->vm.pte_encode = hsw_pte_encode;
3411
	else if (IS_VALLEYVIEW(dev_priv))
3412
		ggtt->vm.pte_encode = byt_pte_encode;
3413
	else if (INTEL_GEN(dev_priv) >= 7)
3414
		ggtt->vm.pte_encode = ivb_pte_encode;
3415
	else
3416
		ggtt->vm.pte_encode = snb_pte_encode;
3417

3418 3419 3420 3421 3422
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3423
	return ggtt_probe_common(ggtt, size);
3424 3425
}

3426
static void i915_gmch_remove(struct i915_address_space *vm)
3427
{
3428
	intel_gmch_remove();
3429
}
3430

3431
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3432
{
3433
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3434
	phys_addr_t gmadr_base;
3435 3436
	int ret;

3437
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3438 3439 3440 3441 3442
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3443
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3444

3445 3446 3447 3448
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3449
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3450 3451 3452 3453
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3454

3455 3456
	ggtt->invalidate = gmch_ggtt_invalidate;

3457 3458 3459 3460 3461
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3462
	if (unlikely(ggtt->do_idle_maps))
3463 3464
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3465 3466 3467
	return 0;
}

3468
/**
3469
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3470
 * @dev_priv: i915 device
3471
 */
3472
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3473
{
3474
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3475 3476
	int ret;

3477 3478
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3479

3480 3481 3482 3483 3484 3485
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3486
	if (ret)
3487 3488
		return ret;

3489
	if ((ggtt->vm.total - 1) >> 32) {
3490
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3491
			  " of address space! Found %lldM!\n",
3492 3493 3494 3495
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3496 3497
	}

3498
	if (ggtt->mappable_end > ggtt->vm.total) {
3499
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3500
			  " aperture=%pa, total=%llx\n",
3501 3502
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3503 3504
	}

3505
	/* GMADR is the PCI mmio aperture into the global GTT. */
3506
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3507
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3508
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3509
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3510
	if (intel_vtd_active())
3511
		DRM_INFO("VT-d active for gfx access\n");
3512 3513

	return 0;
3514 3515 3516 3517
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3518
 * @dev_priv: i915 device
3519
 */
3520
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3521 3522 3523 3524
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3525 3526
	stash_init(&dev_priv->mm.wc_stash);

3527 3528 3529 3530
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3531
	 */
C
Chris Wilson 已提交
3532
	mutex_lock(&dev_priv->drm.struct_mutex);
3533
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3534

3535 3536
	ggtt->vm.is_ggtt = true;

3537 3538 3539
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3540
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3541
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3542
	mutex_unlock(&dev_priv->drm.struct_mutex);
3543

3544 3545
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3546
				dev_priv->ggtt.mappable_end)) {
3547 3548 3549 3550
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3551
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3552

3553 3554
	i915_ggtt_init_fences(ggtt);

3555 3556 3557 3558
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3559
	ret = i915_gem_init_stolen(dev_priv);
3560 3561 3562 3563
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3564 3565

out_gtt_cleanup:
3566
	ggtt->vm.cleanup(&ggtt->vm);
3567
	return ret;
3568
}
3569

3570
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3571
{
3572
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3573 3574 3575 3576 3577
		return -EIO;

	return 0;
}

3578 3579
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3580 3581
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3582
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3583 3584

	i915_ggtt_invalidate(i915);
3585 3586 3587 3588
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3589 3590 3591 3592
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3593 3594 3595 3596
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3597 3598

	i915_ggtt_invalidate(i915);
3599 3600
}

3601
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3602
{
3603
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3604
	struct i915_vma *vma, *vn;
3605

3606
	i915_check_and_clear_faults(dev_priv);
3607

3608 3609
	mutex_lock(&ggtt->vm.mutex);

3610
	/* First fill our portion of the GTT with scratch pages */
3611 3612
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3613 3614

	/* clflush objects bound into the GGTT and rebind them. */
3615
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3616
		struct drm_i915_gem_object *obj = vma->obj;
3617

3618 3619
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3620

3621 3622
		mutex_unlock(&ggtt->vm.mutex);

3623
		if (!i915_vma_unbind(vma))
3624
			goto lock;
3625

3626 3627 3628
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3629 3630
		if (obj) {
			i915_gem_object_lock(obj);
3631
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3632 3633
			i915_gem_object_unlock(obj);
		}
3634 3635 3636

lock:
		mutex_lock(&ggtt->vm.mutex);
3637
	}
3638

3639
	ggtt->vm.closed = false;
3640
	i915_ggtt_invalidate(dev_priv);
3641

3642 3643
	mutex_unlock(&ggtt->vm.mutex);

3644
	if (INTEL_GEN(dev_priv) >= 8) {
3645
		struct intel_ppat *ppat = &dev_priv->ppat;
3646

3647 3648
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3649 3650 3651 3652
		return;
	}
}

3653
static struct scatterlist *
3654
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3655
	     unsigned int width, unsigned int height,
3656
	     unsigned int stride,
3657
	     struct sg_table *st, struct scatterlist *sg)
3658 3659 3660 3661 3662
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3663
		src_idx = stride * (height - 1) + column + offset;
3664 3665 3666 3667 3668 3669
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3670
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3671 3672
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3673
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3674
			sg = sg_next(sg);
3675
			src_idx -= stride;
3676 3677
		}
	}
3678 3679

	return sg;
3680 3681
}

3682 3683 3684
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3685
{
3686
	unsigned int size = intel_rotation_info_size(rot_info);
3687
	struct sg_table *st;
3688
	struct scatterlist *sg;
3689
	int ret = -ENOMEM;
3690
	int i;
3691 3692 3693 3694 3695 3696

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3697
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3698 3699 3700
	if (ret)
		goto err_sg_alloc;

3701 3702 3703
	st->nents = 0;
	sg = st->sgl;

3704
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3705
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3706 3707
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3708 3709
	}

3710 3711 3712 3713 3714 3715
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3716 3717
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3718

3719 3720
	return ERR_PTR(ret);
}
3721

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3805
static noinline struct sg_table *
3806 3807 3808 3809
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3810
	struct scatterlist *sg, *iter;
3811
	unsigned int count = view->partial.size;
3812
	unsigned int offset;
3813 3814 3815 3816 3817 3818
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3819
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3820 3821 3822
	if (ret)
		goto err_sg_alloc;

3823
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3824 3825
	GEM_BUG_ON(!iter);

3826 3827
	sg = st->sgl;
	st->nents = 0;
3828 3829
	do {
		unsigned int len;
3830

3831 3832 3833 3834 3835 3836
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3837 3838

		st->nents++;
3839 3840 3841
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3842 3843
			i915_sg_trim(st); /* Drop any unused tail entries. */

3844 3845
			return st;
		}
3846

3847 3848 3849 3850
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3851 3852 3853 3854 3855 3856 3857

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3858
static int
3859
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3860
{
3861
	int ret;
3862

3863 3864 3865 3866 3867 3868 3869
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3870
	switch (vma->ggtt_view.type) {
3871 3872 3873
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3874 3875
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3876 3877
		return 0;

3878
	case I915_GGTT_VIEW_ROTATED:
3879
		vma->pages =
3880 3881 3882
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3883 3884 3885 3886 3887
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3888
	case I915_GGTT_VIEW_PARTIAL:
3889
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3890 3891
		break;
	}
3892

3893
	ret = 0;
3894
	if (IS_ERR(vma->pages)) {
3895 3896
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3897 3898
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3899
	}
3900
	return ret;
3901 3902
}

3903 3904
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3939
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3940
	GEM_BUG_ON(drm_mm_node_allocated(node));
3941 3942 3943 3944 3945 3946 3947 3948 3949

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3950 3951 3952
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3953 3954 3955 3956 3957 3958 3959
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3985 3986
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3987 3988 3989 3990 3991 3992 3993 3994 3995
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3996
 *         must be #I915_GTT_PAGE_SIZE aligned
3997 3998 3999
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
4000 4001 4002 4003 4004 4005
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
4006 4007
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
4024
	enum drm_mm_insert_mode mode;
4025
	u64 offset;
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4036
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4037
	GEM_BUG_ON(drm_mm_node_allocated(node));
4038 4039 4040 4041 4042 4043 4044

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4045 4046
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4047
		mode = DRM_MM_INSERT_HIGHEST;
4048 4049
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4061 4062 4063
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4064 4065 4066
	if (err != -ENOSPC)
		return err;

4067 4068 4069 4070 4071 4072 4073 4074 4075
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4076 4077 4078
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4108 4109 4110 4111 4112
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4113 4114 4115
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4116
}
4117 4118 4119

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4120
#include "selftests/i915_gem_gtt.c"
4121
#endif