i915_gem_gtt.c 105.9 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "display/intel_frontbuffer.h"
39
#include "gt/intel_gt.h"
40

41
#include "i915_drv.h"
42
#include "i915_scatterlist.h"
43
#include "i915_trace.h"
44
#include "i915_vgpu.h"
45 46
#include "intel_drv.h"

47
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
85 86 87
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

110 111 112
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

113
static void gen6_ggtt_invalidate(struct drm_i915_private *i915)
114
{
115 116
	struct intel_uncore *uncore = &i915->uncore;

117 118
	/*
	 * Note that as an uncached mmio write, this will flush the
119 120
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
121
	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
122 123
}

124
static void guc_ggtt_invalidate(struct drm_i915_private *i915)
125
{
126 127 128 129
	struct intel_uncore *uncore = &i915->uncore;

	gen6_ggtt_invalidate(i915);
	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
130 131
}

132
static void gmch_ggtt_invalidate(struct drm_i915_private *i915)
133 134 135 136 137 138 139 140 141
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

142 143 144
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
145
{
146
	u32 pte_flags;
147 148 149 150 151 152 153 154
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
155

156
	/* Applicable to VLV, and gen8+ */
157
	pte_flags = 0;
158
	if (i915_gem_object_is_readonly(vma->obj))
159 160
		pte_flags |= PTE_READ_ONLY;

161
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
162 163

	return 0;
164 165 166 167
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
168
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
169
}
170

171 172 173 174 175 176
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

177 178
	vma->page_sizes = vma->obj->mm.page_sizes;

179 180 181 182 183 184 185 186 187 188 189 190
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
191 192

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
193 194
}

195 196 197
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
198
{
199 200 201 202
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
203 204 205

	switch (level) {
	case I915_CACHE_NONE:
206
		pte |= PPAT_UNCACHED;
207 208
		break;
	case I915_CACHE_WT:
209
		pte |= PPAT_DISPLAY_ELLC;
210 211
		break;
	default:
212
		pte |= PPAT_CACHED;
213 214 215
		break;
	}

B
Ben Widawsky 已提交
216 217 218
	return pte;
}

219 220
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
221
{
222
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
223 224
	pde |= addr;
	if (level != I915_CACHE_NONE)
225
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
226
	else
227
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
228 229 230
	return pde;
}

231 232 233
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

234 235 236
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
237
{
238
	gen6_pte_t pte = GEN6_PTE_VALID;
239
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
240 241

	switch (level) {
242 243 244 245 246 247 248 249
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
250
		MISSING_CASE(level);
251 252 253 254 255
	}

	return pte;
}

256 257 258
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
259
{
260
	gen6_pte_t pte = GEN6_PTE_VALID;
261 262 263 264 265
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
266 267 268 269 270
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
271
		pte |= GEN6_PTE_UNCACHED;
272 273
		break;
	default:
274
		MISSING_CASE(level);
275 276
	}

277 278 279
	return pte;
}

280 281 282
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
283
{
284
	gen6_pte_t pte = GEN6_PTE_VALID;
285 286
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

287 288
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
289 290 291 292 293 294 295

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

296 297 298
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
299
{
300
	gen6_pte_t pte = GEN6_PTE_VALID;
301
	pte |= HSW_PTE_ADDR_ENCODE(addr);
302 303

	if (level != I915_CACHE_NONE)
304
		pte |= HSW_WB_LLC_AGE3;
305 306 307 308

	return pte;
}

309 310 311
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
312
{
313
	gen6_pte_t pte = GEN6_PTE_VALID;
314 315
	pte |= HSW_PTE_ADDR_ENCODE(addr);

316 317 318 319
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
320
		pte |= HSW_WT_ELLC_LLC_AGE3;
321 322
		break;
	default:
323
		pte |= HSW_WB_ELLC_LLC_AGE3;
324 325
		break;
	}
326 327 328 329

	return pte;
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
350
	unsigned int nr;
351 352 353

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

354
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
355 356 357 358 359 360 361 362 363 364
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

365
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
366
{
367 368
	struct pagevec stack;
	struct page *page;
369

370 371
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
372

373 374 375
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
376 377 378 379 380

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
381 382 383
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
384

385
	/*
386
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
387 388 389 390 391 392
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
393
	pagevec_init(&stack);
394 395
	do {
		struct page *page;
396

397 398 399 400
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

401 402
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
403

404 405
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
406

407
		/* Merge spare WC pages to the global stash */
408 409
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
410

411 412 413
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
414
	}
415

416 417 418 419 420 421 422
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
423 424
}

425 426
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
427
{
428 429
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
430

431
	lockdep_assert_held(&vm->free_pages.lock);
432
	GEM_BUG_ON(!pagevec_count(pvec));
433

434
	if (vm->pt_kmap_wc) {
435 436
		/*
		 * When we use WC, first fill up the global stash and then
437 438
		 * only if full immediately free the overflow.
		 */
439
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
440

441 442 443 444 445 446 447 448
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
449

450 451 452 453 454 455 456 457 458 459
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
460
		set_pages_array_wb(pvec->pages, pvec->nr);
461 462

		spin_lock(&vm->free_pages.lock);
463 464 465
	}

	__pagevec_release(pvec);
466 467 468 469
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
470 471 472 473 474 475 476 477
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
478
	spin_lock(&vm->free_pages.lock);
479
	while (!pagevec_space(&vm->free_pages.pvec))
480
		vm_free_pages_release(vm, false);
481 482
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
483 484 485
	spin_unlock(&vm->free_pages.lock);
}

486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);

	mutex_destroy(&vm->mutex);
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
{
	struct list_head *phases[] = {
		&vm->bound_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	mutex_lock(&vm->i915->drm.struct_mutex);
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
			i915_vma_destroy(vma);
	}
	mutex_unlock(&vm->i915->drm.struct_mutex);
}

static void __i915_vm_release(struct work_struct *work)
{
	struct i915_address_space *vm =
		container_of(work, struct i915_address_space, rcu.work);

	ppgtt_destroy_vma(vm);

	GEM_BUG_ON(!list_empty(&vm->bound_list));
	GEM_BUG_ON(!list_empty(&vm->unbound_list));

	vm->cleanup(vm);
	i915_address_space_fini(vm);

	kfree(vm);
}

void i915_vm_release(struct kref *kref)
{
	struct i915_address_space *vm =
		container_of(kref, struct i915_address_space, ref);

	GEM_BUG_ON(i915_is_ggtt(vm));
	trace_i915_ppgtt_release(vm);

	vm->closed = true;
	queue_rcu_work(vm->i915->wq, &vm->rcu);
}

545
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
546
{
547
	kref_init(&vm->ref);
548
	INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
549

550 551 552 553 554 555
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
556
	lockdep_set_subclass(&vm->mutex, subclass);
557
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
558

559 560 561 562 563 564 565
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
566
	INIT_LIST_HEAD(&vm->bound_list);
567 568
}

569 570 571 572
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
573
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
574 575
	if (unlikely(!p->page))
		return -ENOMEM;
576

577 578 579
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
580
				      DMA_ATTR_SKIP_CPU_SYNC |
581
				      DMA_ATTR_NO_WARN);
582 583 584
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
585
	}
586 587

	return 0;
588 589
}

590
static int setup_page_dma(struct i915_address_space *vm,
591
			  struct i915_page_dma *p)
592
{
593
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
594 595
}

596
static void cleanup_page_dma(struct i915_address_space *vm,
597
			     struct i915_page_dma *p)
598
{
599 600
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
601 602
}

603
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
604

605 606
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
607 608
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
609

610 611 612
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
613
{
614
	u64 * const vaddr = kmap_atomic(p->page);
615

616
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
617

618
	kunmap_atomic(vaddr);
619 620
}

621 622 623
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
624
{
625
	fill_page_dma(vm, p, (u64)v << 32 | v);
626 627
}

628
static int
629
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
630
{
631
	unsigned long size;
632

633 634 635 636 637 638 639
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
640 641 642
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
643
	 */
644
	size = I915_GTT_PAGE_SIZE_4K;
645
	if (i915_vm_is_4lvl(vm) &&
646
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
647 648
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
649
	}
650 651 652 653 654 655
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
656

657
		page = alloc_pages(gfp, order);
658
		if (unlikely(!page))
659
			goto skip;
660

661 662 663
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
664
					  DMA_ATTR_SKIP_CPU_SYNC |
665
					  DMA_ATTR_NO_WARN);
666 667
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
668

669 670
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
671

672 673
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
674
		vm->scratch_order = order;
675 676 677 678 679 680 681 682 683 684 685 686 687
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
688 689
}

690
static void cleanup_scratch_page(struct i915_address_space *vm)
691
{
692
	struct i915_page_dma *p = &vm->scratch_page;
693
	int order = vm->scratch_order;
694

695
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
696
		       PCI_DMA_BIDIRECTIONAL);
697
	__free_pages(p->page, order);
698 699
}

700
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
701
{
702
	struct i915_page_table *pt;
703

704
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
705
	if (unlikely(!pt))
706 707
		return ERR_PTR(-ENOMEM);

708 709 710 711
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
712

713 714
	atomic_set(&pt->used, 0);

715 716 717
	return pt;
}

718
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
719
{
720
	cleanup_px(vm, pt);
721 722 723 724 725 726
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
727
	fill_px(vm, pt, vm->scratch_pte);
728 729
}

730
static void gen6_initialize_pt(struct i915_address_space *vm,
731 732
			       struct i915_page_table *pt)
{
733
	fill32_px(vm, pt, vm->scratch_pte);
734 735
}

736
static struct i915_page_directory *__alloc_pd(void)
737
{
738
	struct i915_page_directory *pd;
739

740
	pd = kmalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759

	if (unlikely(!pd))
		return NULL;

	memset(&pd->base, 0, sizeof(pd->base));
	atomic_set(&pd->used, 0);
	spin_lock_init(&pd->lock);

	/* for safety */
	pd->entry[0] = NULL;

	return pd;
}

static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
{
	struct i915_page_directory *pd;

	pd = __alloc_pd();
760
	if (unlikely(!pd))
761 762
		return ERR_PTR(-ENOMEM);

763 764 765 766
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
767

768 769 770
	return pd;
}

771 772 773 774 775
static inline bool pd_has_phys_page(const struct i915_page_directory * const pd)
{
	return pd->base.page;
}

776
static void free_pd(struct i915_address_space *vm,
777
		    struct i915_page_directory *pd)
778
{
779 780 781
	if (likely(pd_has_phys_page(pd)))
		cleanup_px(vm, pd);

782
	kfree(pd);
783 784
}

785 786 787
static void init_pd_with_page(struct i915_address_space *vm,
			      struct i915_page_directory * const pd,
			      struct i915_page_table *pt)
788
{
789 790
	fill_px(vm, pd, gen8_pde_encode(px_dma(pt), I915_CACHE_LLC));
	memset_p(pd->entry, pt, 512);
791 792
}

M
Mika Kuoppala 已提交
793 794 795
static void init_pd(struct i915_address_space *vm,
		    struct i915_page_directory * const pd,
		    struct i915_page_directory * const to)
796
{
797 798
	GEM_DEBUG_BUG_ON(!pd_has_phys_page(pd));

M
Mika Kuoppala 已提交
799 800
	fill_px(vm, pd, gen8_pdpe_encode(px_dma(to), I915_CACHE_LLC));
	memset_p(pd->entry, to, 512);
801 802
}

803 804
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
805 806 807 808
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
809
static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
810
{
811
	ppgtt->pd_dirty_engines = ALL_ENGINES;
812 813
}

814 815 816
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
817
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
818
				struct i915_page_table *pt,
819
				u64 start, u64 length)
820
{
821
	unsigned int num_entries = gen8_pte_count(start, length);
822
	gen8_pte_t *vaddr;
823

824
	vaddr = kmap_atomic_px(pt);
825
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
826
	kunmap_atomic(vaddr);
827

828 829
	GEM_BUG_ON(num_entries > atomic_read(&pt->used));
	return !atomic_sub_return(num_entries, &pt->used);
830
}
831

832 833 834 835 836 837 838 839 840 841 842 843
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

844
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
845
				struct i915_page_directory *pd,
846
				u64 start, u64 length)
847 848
{
	struct i915_page_table *pt;
849
	u32 pde;
850 851

	gen8_for_each_pde(pt, pd, start, length, pde) {
852 853
		bool free = false;

854 855
		GEM_BUG_ON(pt == vm->scratch_pt);

856 857
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
858

859
		spin_lock(&pd->lock);
860
		if (!atomic_read(&pt->used)) {
861
			gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
862
			pd->entry[pde] = vm->scratch_pt;
863

864 865
			GEM_BUG_ON(!atomic_read(&pd->used));
			atomic_dec(&pd->used);
866 867 868 869 870
			free = true;
		}
		spin_unlock(&pd->lock);
		if (free)
			free_pt(vm, pt);
871 872
	}

873
	return !atomic_read(&pd->used);
874
}
875

876
static void gen8_ppgtt_set_pdpe(struct i915_page_directory *pdp,
877 878 879 880 881
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

882
	if (!pd_has_phys_page(pdp))
883 884 885 886 887
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
888
}
889

890 891 892 893
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
894
				 struct i915_page_directory * const pdp,
895
				 u64 start, u64 length)
896 897
{
	struct i915_page_directory *pd;
898
	unsigned int pdpe;
899

900
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
901 902
		bool free = false;

903 904
		GEM_BUG_ON(pd == vm->scratch_pd);

905 906
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
907

908
		spin_lock(&pdp->lock);
909
		if (!atomic_read(&pd->used)) {
910
			gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
911
			pdp->entry[pdpe] = vm->scratch_pd;
912

913 914
			GEM_BUG_ON(!atomic_read(&pdp->used));
			atomic_dec(&pdp->used);
915 916 917 918 919
			free = true;
		}
		spin_unlock(&pdp->lock);
		if (free)
			free_pd(vm, pd);
920
	}
921

922
	return !atomic_read(&pdp->used);
923
}
924

925 926 927
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
928
	gen8_ppgtt_clear_pdp(vm, i915_vm_to_ppgtt(vm)->pd, start, length);
929 930
}

931 932
static void gen8_ppgtt_set_pml4e(struct i915_page_directory *pml4,
				 struct i915_page_directory *pdp,
933 934 935 936 937 938 939 940 941
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

942 943 944 945
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
946 947
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
948
{
949
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
950 951
	struct i915_page_directory * const pml4 = ppgtt->pd;
	struct i915_page_directory *pdp;
952
	unsigned int pml4e;
953

954
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
955

956
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
957
		bool free = false;
958 959
		GEM_BUG_ON(pdp == vm->scratch_pdp);

960 961
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
962

963
		spin_lock(&pml4->lock);
964
		if (!atomic_read(&pdp->used)) {
965
			gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
966
			pml4->entry[pml4e] = vm->scratch_pdp;
967 968 969 970
			free = true;
		}
		spin_unlock(&pml4->lock);
		if (free)
971
			free_pd(vm, pdp);
972 973 974
	}
}

975
static inline struct sgt_dma {
976 977
	struct scatterlist *sg;
	dma_addr_t dma, max;
978 979 980 981 982
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
983

984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

1001
static __always_inline bool
1002
gen8_ppgtt_insert_pte_entries(struct i915_ppgtt *ppgtt,
1003
			      struct i915_page_directory *pdp,
1004
			      struct sgt_dma *iter,
1005
			      struct gen8_insert_pte *idx,
1006 1007
			      enum i915_cache_level cache_level,
			      u32 flags)
1008
{
1009
	struct i915_page_directory *pd;
1010
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1011 1012
	gen8_pte_t *vaddr;
	bool ret;
1013

1014
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1015 1016
	pd = i915_pd_entry(pdp, idx->pdpe);
	vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
1017
	do {
1018 1019
		vaddr[idx->pte] = pte_encode | iter->dma;

1020
		iter->dma += I915_GTT_PAGE_SIZE;
1021 1022 1023 1024 1025 1026
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1027

1028 1029
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1030
		}
1031

1032 1033 1034 1035 1036 1037
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1038
				/* Limited by sg length for 3lvl */
1039 1040
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1041
					ret = true;
1042
					break;
1043 1044
				}

1045
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1046
				pd = pdp->entry[idx->pdpe];
1047
			}
1048

1049
			kunmap_atomic(vaddr);
1050
			vaddr = kmap_atomic_px(i915_pt_entry(pd, idx->pde));
1051
		}
1052
	} while (1);
1053
	kunmap_atomic(vaddr);
1054

1055
	return ret;
1056 1057
}

1058
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1059
				   struct i915_vma *vma,
1060
				   enum i915_cache_level cache_level,
1061
				   u32 flags)
1062
{
1063
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1064
	struct sgt_dma iter = sgt_dma(vma);
1065
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1066

1067
	gen8_ppgtt_insert_pte_entries(ppgtt, ppgtt->pd, &iter, &idx,
1068
				      cache_level, flags);
1069 1070

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1071
}
1072

1073
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1074
					   struct i915_page_directory *pml4,
1075
					   struct sgt_dma *iter,
1076 1077
					   enum i915_cache_level cache_level,
					   u32 flags)
1078
{
1079
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1080 1081 1082 1083 1084
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
1085 1086 1087
		struct i915_page_directory *pdp =
			i915_pdp_entry(pml4, idx.pml4e);
		struct i915_page_directory *pd = i915_pd_entry(pdp, idx.pdpe);
1088
		unsigned int page_size;
1089
		bool maybe_64K = false;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
1105
			struct i915_page_table *pt = i915_pt_entry(pd, idx.pde);
1106 1107 1108 1109 1110

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1111 1112 1113 1114
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1115
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1116 1117
				maybe_64K = true;

1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1137 1138 1139
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1140
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1141 1142
					maybe_64K = false;

1143 1144 1145 1146 1147 1148
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1165
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1179
				encode = vma->vm->scratch_pte;
1180 1181
				vaddr = kmap_atomic_px(i915_pt_entry(pd,
								     idx.pde));
M
Matthew Auld 已提交
1182 1183 1184 1185 1186 1187

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1188
		}
1189 1190

		vma->page_sizes.gtt |= page_size;
1191 1192 1193
	} while (iter->sg);
}

1194
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1195
				   struct i915_vma *vma,
1196
				   enum i915_cache_level cache_level,
1197
				   u32 flags)
1198
{
1199
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1200
	struct sgt_dma iter = sgt_dma(vma);
1201
	struct i915_page_directory * const pml4 = ppgtt->pd;
1202

1203
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1204
		gen8_ppgtt_insert_huge_entries(vma, pml4, &iter, cache_level,
1205
					       flags);
1206 1207 1208
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

1209 1210
		while (gen8_ppgtt_insert_pte_entries(ppgtt,
						     i915_pdp_entry(pml4, idx.pml4e++),
1211 1212
						     &iter, &idx, cache_level,
						     flags))
1213
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1214 1215

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1216
	}
1217 1218
}

1219
static void gen8_free_page_tables(struct i915_address_space *vm,
1220
				  struct i915_page_directory *pd)
1221 1222 1223
{
	int i;

1224
	for (i = 0; i < I915_PDES; i++) {
1225 1226
		if (pd->entry[i] != vm->scratch_pt)
			free_pt(vm, pd->entry[i]);
1227
	}
B
Ben Widawsky 已提交
1228 1229
}

1230 1231
static int gen8_init_scratch(struct i915_address_space *vm)
{
1232
	int ret;
1233

1234 1235 1236 1237 1238 1239
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
1240 1241
	    vm->i915->kernel_context->vm) {
		struct i915_address_space *clone = vm->i915->kernel_context->vm;
1242 1243 1244

		GEM_BUG_ON(!clone->has_read_only);

1245
		vm->scratch_order = clone->scratch_order;
1246 1247 1248 1249 1250 1251 1252
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1253
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1254 1255
	if (ret)
		return ret;
1256

1257 1258 1259
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1260
				vm->has_read_only);
1261

1262
	vm->scratch_pt = alloc_pt(vm);
1263
	if (IS_ERR(vm->scratch_pt)) {
1264 1265
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1266 1267
	}

1268
	vm->scratch_pd = alloc_pd(vm);
1269
	if (IS_ERR(vm->scratch_pd)) {
1270 1271
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1272 1273
	}

1274
	if (i915_vm_is_4lvl(vm)) {
1275
		vm->scratch_pdp = alloc_pd(vm);
1276
		if (IS_ERR(vm->scratch_pdp)) {
1277 1278
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1279 1280 1281
		}
	}

1282
	gen8_initialize_pt(vm, vm->scratch_pt);
1283
	init_pd_with_page(vm, vm->scratch_pd, vm->scratch_pt);
1284
	if (i915_vm_is_4lvl(vm))
M
Mika Kuoppala 已提交
1285
		init_pd(vm, vm->scratch_pdp, vm->scratch_pd);
1286 1287

	return 0;
1288 1289

free_pd:
1290
	free_pd(vm, vm->scratch_pd);
1291
free_pt:
1292
	free_pt(vm, vm->scratch_pt);
1293
free_scratch_page:
1294
	cleanup_scratch_page(vm);
1295 1296

	return ret;
1297 1298
}

1299
static int gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
1300
{
1301
	struct i915_address_space *vm = &ppgtt->vm;
1302
	struct drm_i915_private *dev_priv = vm->i915;
1303 1304 1305
	enum vgt_g2v_type msg;
	int i;

1306
	if (i915_vm_is_4lvl(vm)) {
1307
		const u64 daddr = px_dma(ppgtt->pd);
1308

1309 1310
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1311 1312 1313 1314

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1315
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1316
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1317

1318 1319
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1331 1332
static void gen8_free_scratch(struct i915_address_space *vm)
{
1333 1334 1335
	if (!vm->scratch_page.daddr)
		return;

1336
	if (i915_vm_is_4lvl(vm))
1337
		free_pd(vm, vm->scratch_pdp);
1338 1339 1340
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1341 1342
}

1343
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1344
				    struct i915_page_directory *pdp)
1345
{
1346
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1347 1348
	int i;

1349
	for (i = 0; i < pdpes; i++) {
1350
		if (pdp->entry[i] == vm->scratch_pd)
1351 1352
			continue;

1353 1354
		gen8_free_page_tables(vm, pdp->entry[i]);
		free_pd(vm, pdp->entry[i]);
1355
	}
1356

1357
	free_pd(vm, pdp);
1358 1359
}

1360
static void gen8_ppgtt_cleanup_4lvl(struct i915_ppgtt *ppgtt)
1361
{
1362
	struct i915_page_directory * const pml4 = ppgtt->pd;
1363 1364
	int i;

1365
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1366 1367 1368
		struct i915_page_directory *pdp = i915_pdp_entry(pml4, i);

		if (pdp == ppgtt->vm.scratch_pdp)
1369 1370
			continue;

1371
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, pdp);
1372 1373
	}

1374
	free_pd(&ppgtt->vm, pml4);
1375 1376 1377 1378
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1379
	struct drm_i915_private *i915 = vm->i915;
1380
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1381

1382
	if (intel_vgpu_active(i915))
1383 1384
		gen8_ppgtt_notify_vgt(ppgtt, false);

1385
	if (i915_vm_is_4lvl(vm))
1386
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1387
	else
1388
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pd);
1389

1390
	gen8_free_scratch(vm);
1391 1392
}

1393 1394 1395
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1396
{
1397
	struct i915_page_table *pt, *alloc = NULL;
1398
	u64 from = start;
1399
	unsigned int pde;
1400
	int ret = 0;
1401

1402
	spin_lock(&pd->lock);
1403
	gen8_for_each_pde(pt, pd, start, length, pde) {
1404
		const int count = gen8_pte_count(start, length);
1405

1406
		if (pt == vm->scratch_pt) {
1407
			spin_unlock(&pd->lock);
1408

1409 1410 1411 1412 1413
			pt = fetch_and_zero(&alloc);
			if (!pt)
				pt = alloc_pt(vm);
			if (IS_ERR(pt)) {
				ret = PTR_ERR(pt);
1414
				goto unwind;
1415
			}
1416

1417
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1418
				gen8_initialize_pt(vm, pt);
1419

1420 1421
			spin_lock(&pd->lock);
			if (pd->entry[pde] == vm->scratch_pt) {
1422
				gen8_ppgtt_set_pde(vm, pd, pt, pde);
1423
				pd->entry[pde] = pt;
1424
				atomic_inc(&pd->used);
1425
			} else {
1426 1427
				alloc = pt;
				pt = pd->entry[pde];
1428
			}
1429
		}
1430

1431
		atomic_add(count, &pt->used);
1432
	}
1433
	spin_unlock(&pd->lock);
1434
	goto out;
1435

1436 1437
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1438 1439 1440 1441
out:
	if (alloc)
		free_pt(vm, alloc);
	return ret;
1442 1443
}

1444
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1445
				struct i915_page_directory *pdp,
1446
				u64 start, u64 length)
1447
{
1448
	struct i915_page_directory *pd, *alloc = NULL;
1449 1450
	u64 from = start;
	unsigned int pdpe;
1451
	int ret = 0;
1452

1453
	spin_lock(&pdp->lock);
1454
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1455
		if (pd == vm->scratch_pd) {
1456
			spin_unlock(&pdp->lock);
1457

1458 1459 1460 1461 1462
			pd = fetch_and_zero(&alloc);
			if (!pd)
				pd = alloc_pd(vm);
			if (IS_ERR(pd)) {
				ret = PTR_ERR(pd);
1463
				goto unwind;
1464
			}
1465

1466
			init_pd_with_page(vm, pd, vm->scratch_pt);
1467

1468 1469
			spin_lock(&pdp->lock);
			if (pdp->entry[pdpe] == vm->scratch_pd) {
1470
				gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1471
				pdp->entry[pdpe] = pd;
1472
				atomic_inc(&pdp->used);
1473
			} else {
1474 1475
				alloc = pd;
				pd = pdp->entry[pdpe];
1476
			}
1477
		}
1478
		atomic_inc(&pd->used);
1479
		spin_unlock(&pdp->lock);
1480 1481

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1482 1483
		if (unlikely(ret))
			goto unwind_pd;
1484 1485

		spin_lock(&pdp->lock);
1486
		atomic_dec(&pd->used);
1487
	}
1488
	spin_unlock(&pdp->lock);
1489
	goto out;
1490

1491
unwind_pd:
1492
	spin_lock(&pdp->lock);
1493
	if (atomic_dec_and_test(&pd->used)) {
1494
		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1495 1496
		GEM_BUG_ON(!atomic_read(&pdp->used));
		atomic_dec(&pdp->used);
1497 1498
		free_pd(vm, pd);
	}
1499
	spin_unlock(&pdp->lock);
1500 1501
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1502 1503 1504 1505
out:
	if (alloc)
		free_pd(vm, alloc);
	return ret;
1506 1507
}

1508 1509
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1510
{
1511
	return gen8_ppgtt_alloc_pdp(vm,
1512
				    i915_vm_to_ppgtt(vm)->pd, start, length);
1513
}
1514

1515 1516 1517
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
1518
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1519
	struct i915_page_directory * const pml4 = ppgtt->pd;
1520
	struct i915_page_directory *pdp, *alloc = NULL;
1521
	u64 from = start;
1522
	int ret = 0;
1523
	u32 pml4e;
1524

1525
	spin_lock(&pml4->lock);
1526
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1527 1528 1529
		if (pdp == vm->scratch_pdp) {
			spin_unlock(&pml4->lock);

1530 1531 1532 1533 1534
			pdp = fetch_and_zero(&alloc);
			if (!pdp)
				pdp = alloc_pd(vm);
			if (IS_ERR(pdp)) {
				ret = PTR_ERR(pdp);
1535
				goto unwind;
1536
			}
1537

M
Mika Kuoppala 已提交
1538
			init_pd(vm, pdp, vm->scratch_pd);
1539

1540 1541
			spin_lock(&pml4->lock);
			if (pml4->entry[pml4e] == vm->scratch_pdp) {
1542
				gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1543
				pml4->entry[pml4e] = pdp;
1544
			} else {
1545 1546
				alloc = pdp;
				pdp = pml4->entry[pml4e];
1547
			}
1548
		}
1549
		atomic_inc(&pdp->used);
1550
		spin_unlock(&pml4->lock);
1551

1552
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1553 1554
		if (unlikely(ret))
			goto unwind_pdp;
1555 1556

		spin_lock(&pml4->lock);
1557
		atomic_dec(&pdp->used);
1558
	}
1559
	spin_unlock(&pml4->lock);
1560
	goto out;
1561

1562
unwind_pdp:
1563
	spin_lock(&pml4->lock);
1564
	if (atomic_dec_and_test(&pdp->used)) {
1565
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1566
		free_pd(vm, pdp);
1567
	}
1568
	spin_unlock(&pml4->lock);
1569 1570
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
1571 1572 1573 1574
out:
	if (alloc)
		free_pd(vm, alloc);
	return ret;
1575 1576
}

1577
static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1578
{
1579
	struct i915_address_space *vm = &ppgtt->vm;
1580
	struct i915_page_directory *pdp = ppgtt->pd;
1581
	struct i915_page_directory *pd;
1582
	u64 start = 0, length = ppgtt->vm.total;
1583 1584
	u64 from = start;
	unsigned int pdpe;
1585

1586 1587 1588 1589
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1590

1591
		init_pd_with_page(vm, pd, vm->scratch_pt);
1592
		gen8_ppgtt_set_pdpe(pdp, pd, pdpe);
1593 1594

		atomic_inc(&pdp->used);
1595
	}
1596

1597 1598
	atomic_inc(&pdp->used); /* never remove */

1599
	return 0;
1600

1601 1602 1603
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1604
		gen8_ppgtt_set_pdpe(pdp, vm->scratch_pd, pdpe);
1605 1606
		free_pd(vm, pd);
	}
1607
	atomic_set(&pdp->used, 0);
1608
	return -ENOMEM;
1609 1610
}

1611
static void ppgtt_init(struct drm_i915_private *i915,
1612
		       struct i915_ppgtt *ppgtt)
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
{
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1626
/*
1627 1628 1629 1630
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1631
 *
1632
 */
1633
static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1634
{
1635
	struct i915_ppgtt *ppgtt;
1636 1637 1638 1639 1640 1641
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1642
	ppgtt_init(i915, ppgtt);
1643

1644 1645 1646 1647 1648 1649 1650
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1651

1652 1653 1654
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1655
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1656
		ppgtt->vm.pt_kmap_wc = true;
1657

1658 1659 1660
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1661

1662 1663 1664 1665
	ppgtt->pd = __alloc_pd();
	if (!ppgtt->pd) {
		err = -ENOMEM;
		goto err_free_scratch;
1666
	}
1667

1668
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1669 1670 1671 1672
		err = setup_px(&ppgtt->vm, ppgtt->pd);
		if (err)
			goto err_free_pdp;

M
Mika Kuoppala 已提交
1673
		init_pd(&ppgtt->vm, ppgtt->pd, ppgtt->vm.scratch_pdp);
1674

1675 1676 1677
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1678
	} else {
M
Mika Kuoppala 已提交
1679 1680 1681 1682 1683 1684
		/*
		 * We don't need to setup dma for top level pdp, only
		 * for entries. So point entries to scratch.
		 */
		memset_p(ppgtt->pd->entry, ppgtt->vm.scratch_pd,
			 GEN8_3LVL_PDPES);
1685

1686 1687
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
1688
			if (err)
1689
				goto err_free_pdp;
1690
		}
1691

1692 1693 1694
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1695
	}
1696

1697
	if (intel_vgpu_active(i915))
1698 1699
		gen8_ppgtt_notify_vgt(ppgtt, true);

1700
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1701

1702
	return ppgtt;
1703

1704 1705 1706
err_free_pdp:
	free_pd(&ppgtt->vm, ppgtt->pd);
err_free_scratch:
1707
	gen8_free_scratch(&ppgtt->vm);
1708 1709 1710
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1711 1712
}

1713
/* Write pde (index) from the page directory @pd to the page table @pt */
1714
static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
C
Chris Wilson 已提交
1715 1716
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1717
{
1718
	/* Caller needs to make sure the write completes if necessary */
1719 1720
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1721
}
B
Ben Widawsky 已提交
1722

1723
static void gen7_ppgtt_enable(struct intel_gt *gt)
B
Ben Widawsky 已提交
1724
{
1725 1726
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;
1727
	struct intel_engine_cs *engine;
1728
	enum intel_engine_id id;
1729
	u32 ecochk;
B
Ben Widawsky 已提交
1730

1731
	intel_uncore_rmw(uncore, GAC_ECO_BITS, 0, ECOBITS_PPGTT_CACHE64B);
1732

1733 1734
	ecochk = intel_uncore_read(uncore, GAM_ECOCHK);
	if (IS_HASWELL(i915)) {
1735 1736 1737 1738 1739
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
1740
	intel_uncore_write(uncore, GAM_ECOCHK, ecochk);
1741

1742
	for_each_engine(engine, i915, id) {
B
Ben Widawsky 已提交
1743
		/* GFX_MODE is per-ring on gen7+ */
1744 1745 1746
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1747
	}
1748
}
B
Ben Widawsky 已提交
1749

1750
static void gen6_ppgtt_enable(struct intel_gt *gt)
1751
{
1752
	struct intel_uncore *uncore = gt->uncore;
1753

1754 1755 1756 1757
	intel_uncore_rmw(uncore,
			 GAC_ECO_BITS,
			 0,
			 ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1758

1759 1760 1761 1762
	intel_uncore_rmw(uncore,
			 GAB_CTL,
			 0,
			 GAB_CTL_CONT_AFTER_PAGEFAULT);
1763

1764 1765 1766 1767
	intel_uncore_rmw(uncore,
			 GAM_ECOCHK,
			 0,
			 ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1768

1769 1770 1771 1772
	if (HAS_PPGTT(uncore->i915)) /* may be disabled for VT-d */
		intel_uncore_write(uncore,
				   GFX_MODE,
				   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1773 1774
}

1775
/* PPGTT support for Sandybdrige/Gen6 and later */
1776
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1777
				   u64 start, u64 length)
1778
{
1779 1780 1781
	struct gen6_ppgtt * const ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
	const unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1782 1783
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1784
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1785

1786
	while (num_entries) {
1787 1788
		struct i915_page_table * const pt =
			i915_pt_entry(ppgtt->base.pd, pde++);
1789
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1790
		gen6_pte_t *vaddr;
1791

1792 1793 1794 1795
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

1796 1797
		GEM_BUG_ON(count > atomic_read(&pt->used));
		if (!atomic_sub_return(count, &pt->used))
1798
			ppgtt->scan_for_unused_pt = true;
1799

1800 1801
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1802 1803 1804 1805
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1806

1807
		vaddr = kmap_atomic_px(pt);
1808
		memset32(vaddr + pte, scratch_pte, count);
1809
		kunmap_atomic(vaddr);
1810

1811
		pte = 0;
1812
	}
1813 1814
}

1815
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1816
				      struct i915_vma *vma,
1817 1818
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1819
{
1820
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1821
	struct i915_page_directory * const pd = ppgtt->pd;
1822
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1823 1824
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1825
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1826
	struct sgt_dma iter = sgt_dma(vma);
1827 1828
	gen6_pte_t *vaddr;

1829
	GEM_BUG_ON(i915_pt_entry(pd, act_pt) == vm->scratch_pt);
1830

1831
	vaddr = kmap_atomic_px(i915_pt_entry(pd, act_pt));
1832 1833
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1834

1835
		iter.dma += I915_GTT_PAGE_SIZE;
1836 1837 1838 1839
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1840

1841 1842 1843
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1844

1845
		if (++act_pte == GEN6_PTES) {
1846
			kunmap_atomic(vaddr);
1847
			vaddr = kmap_atomic_px(i915_pt_entry(pd, ++act_pt));
1848
			act_pte = 0;
D
Daniel Vetter 已提交
1849
		}
1850
	} while (1);
1851
	kunmap_atomic(vaddr);
1852 1853

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1854 1855
}

1856
static int gen6_alloc_va_range(struct i915_address_space *vm,
1857
			       u64 start, u64 length)
1858
{
1859
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1860
	struct i915_page_directory * const pd = ppgtt->base.pd;
1861
	struct i915_page_table *pt, *alloc = NULL;
1862
	intel_wakeref_t wakeref;
1863 1864 1865
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1866
	int ret = 0;
1867

1868
	wakeref = intel_runtime_pm_get(&vm->i915->runtime_pm);
1869

1870 1871
	spin_lock(&pd->lock);
	gen6_for_each_pde(pt, pd, start, length, pde) {
1872 1873
		const unsigned int count = gen6_pte_count(start, length);

1874
		if (pt == vm->scratch_pt) {
1875
			spin_unlock(&pd->lock);
1876

1877 1878 1879 1880 1881
			pt = fetch_and_zero(&alloc);
			if (!pt)
				pt = alloc_pt(vm);
			if (IS_ERR(pt)) {
				ret = PTR_ERR(pt);
1882
				goto unwind_out;
1883
			}
1884

1885
			gen6_initialize_pt(vm, pt);
1886

1887 1888 1889
			spin_lock(&pd->lock);
			if (pd->entry[pde] == vm->scratch_pt) {
				pd->entry[pde] = pt;
1890 1891 1892 1893 1894 1895
				if (i915_vma_is_bound(ppgtt->vma,
						      I915_VMA_GLOBAL_BIND)) {
					gen6_write_pde(ppgtt, pde, pt);
					flush = true;
				}
			} else {
1896 1897
				alloc = pt;
				pt = pd->entry[pde];
1898
			}
1899
		}
1900

1901
		atomic_add(count, &pt->used);
1902
	}
1903
	spin_unlock(&pd->lock);
1904

1905
	if (flush) {
1906
		mark_tlbs_dirty(&ppgtt->base);
1907
		gen6_ggtt_invalidate(vm->i915);
1908 1909
	}

1910
	goto out;
1911 1912

unwind_out:
1913
	gen6_ppgtt_clear_range(vm, from, start - from);
1914 1915 1916 1917 1918
out:
	if (alloc)
		free_pt(vm, alloc);
	intel_runtime_pm_put(&vm->i915->runtime_pm, wakeref);
	return ret;
1919 1920
}

1921
static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1922
{
1923
	struct i915_address_space * const vm = &ppgtt->base.vm;
1924
	struct i915_page_directory * const pd = ppgtt->base.pd;
1925 1926
	struct i915_page_table *unused;
	u32 pde;
1927
	int ret;
1928

1929
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1930 1931
	if (ret)
		return ret;
1932

1933 1934 1935
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1936

1937
	vm->scratch_pt = alloc_pt(vm);
1938
	if (IS_ERR(vm->scratch_pt)) {
1939
		cleanup_scratch_page(vm);
1940 1941 1942
		return PTR_ERR(vm->scratch_pt);
	}

1943
	gen6_initialize_pt(vm, vm->scratch_pt);
1944 1945 1946

	gen6_for_all_pdes(unused, pd, pde)
		pd->entry[pde] = vm->scratch_pt;
1947 1948 1949 1950

	return 0;
}

1951
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1952
{
1953 1954
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1955 1956
}

1957
static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1958
{
1959
	struct i915_page_directory * const pd = ppgtt->base.pd;
1960
	struct i915_page_table *pt;
1961
	u32 pde;
1962

1963
	gen6_for_all_pdes(pt, pd, pde)
1964 1965 1966 1967 1968 1969
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
1970
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1971
	struct drm_i915_private *i915 = vm->i915;
1972

1973
	/* FIXME remove the struct_mutex to bring the locking under control */
1974 1975 1976
	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(ppgtt->vma);
	mutex_unlock(&i915->drm.struct_mutex);
1977 1978 1979

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1980
	kfree(ppgtt->base.pd);
1981 1982
}

1983
static int pd_vma_set_pages(struct i915_vma *vma)
1984
{
1985 1986 1987
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1988

1989 1990 1991
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1992

1993 1994 1995 1996 1997 1998 1999 2000
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
2001
	struct gen6_ppgtt *ppgtt = vma->private;
2002
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
2003 2004
	struct i915_page_table *pt;
	unsigned int pde;
2005

2006
	ppgtt->base.pd->base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
2007
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2008

2009
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde)
2010
		gen6_write_pde(ppgtt, pde, pt);
2011

2012 2013
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2014

2015
	return 0;
2016
}
2017

2018
static void pd_vma_unbind(struct i915_vma *vma)
2019
{
2020
	struct gen6_ppgtt *ppgtt = vma->private;
2021
	struct i915_page_directory * const pd = ppgtt->base.pd;
2022 2023 2024 2025 2026 2027 2028 2029
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
2030 2031
	gen6_for_all_pdes(pt, ppgtt->base.pd, pde) {
		if (atomic_read(&pt->used) || pt == scratch_pt)
2032 2033 2034
			continue;

		free_pt(&ppgtt->base.vm, pt);
2035
		pd->entry[pde] = scratch_pt;
2036 2037 2038
	}

	ppgtt->scan_for_unused_pt = false;
2039 2040 2041 2042 2043 2044 2045 2046 2047
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

2048
static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
2049 2050 2051 2052 2053 2054 2055 2056
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

2057
	vma = i915_vma_alloc();
2058 2059 2060
	if (!vma)
		return ERR_PTR(-ENOMEM);

2061
	i915_active_init(i915, &vma->active, NULL);
2062
	INIT_ACTIVE_REQUEST(&vma->last_fence);
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
2074
	INIT_LIST_HEAD(&vma->closed_link);
2075 2076

	mutex_lock(&vma->vm->mutex);
2077
	list_add(&vma->vm_link, &vma->vm->unbound_list);
2078
	mutex_unlock(&vma->vm->mutex);
2079 2080 2081

	return vma;
}
2082

2083
int gen6_ppgtt_pin(struct i915_ppgtt *base)
2084
{
2085
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2086
	int err;
2087

2088 2089
	GEM_BUG_ON(ppgtt->base.vm.closed);

2090 2091 2092 2093 2094 2095 2096 2097 2098
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2099 2100 2101 2102 2103
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2115 2116
}

2117
void gen6_ppgtt_unpin(struct i915_ppgtt *base)
2118
{
2119
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2120 2121 2122 2123 2124 2125 2126 2127

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2128
void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
2129
{
2130
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2131 2132 2133 2134 2135 2136 2137 2138

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2139
static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2140
{
2141
	struct i915_ggtt * const ggtt = &i915->ggtt;
2142
	struct gen6_ppgtt *ppgtt;
2143 2144 2145 2146 2147 2148
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2149
	ppgtt_init(i915, &ppgtt->base);
2150

2151
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2152 2153 2154
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2155

2156 2157
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2158 2159 2160
	ppgtt->base.pd = __alloc_pd();
	if (!ppgtt->base.pd) {
		err = -ENOMEM;
2161
		goto err_free;
2162 2163
	}

2164
	err = gen6_ppgtt_init_scratch(ppgtt);
2165
	if (err)
2166
		goto err_pd;
2167

2168 2169 2170
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2171
		goto err_scratch;
2172
	}
2173

2174
	return &ppgtt->base;
2175

2176 2177
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2178 2179
err_pd:
	kfree(ppgtt->base.pd);
2180 2181 2182
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2183
}
2184

2185
static void gtt_write_workarounds(struct intel_gt *gt)
2186
{
2187 2188 2189
	struct drm_i915_private *i915 = gt->i915;
	struct intel_uncore *uncore = gt->uncore;

2190 2191 2192 2193
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2194
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	if (IS_BROADWELL(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
	else if (IS_CHERRYVIEW(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
	else if (IS_GEN9_LP(i915))
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
	else if (INTEL_GEN(i915) >= 9)
		intel_uncore_write(uncore,
				   GEN8_L3_LRA_1_GPGPU,
				   GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
2223 2224
	if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(i915) <= 10)
2225 2226 2227 2228
		intel_uncore_rmw(uncore,
				 GEN8_GAMW_ECO_DEV_RW_IA,
				 0,
				 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2229 2230
}

2231
int i915_ppgtt_init_hw(struct intel_gt *gt)
2232
{
2233 2234 2235
	struct drm_i915_private *i915 = gt->i915;

	gtt_write_workarounds(gt);
2236

2237 2238 2239 2240
	if (IS_GEN(i915, 6))
		gen6_ppgtt_enable(gt);
	else if (IS_GEN(i915, 7))
		gen7_ppgtt_enable(gt);
2241

2242 2243
	return 0;
}
2244

2245 2246
static struct i915_ppgtt *
__ppgtt_create(struct drm_i915_private *i915)
2247 2248 2249 2250 2251 2252 2253
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2254
struct i915_ppgtt *
2255
i915_ppgtt_create(struct drm_i915_private *i915)
2256
{
2257
	struct i915_ppgtt *ppgtt;
2258

2259
	ppgtt = __ppgtt_create(i915);
2260 2261
	if (IS_ERR(ppgtt))
		return ppgtt;
2262

2263
	trace_i915_ppgtt_create(&ppgtt->vm);
2264

2265 2266 2267
	return ppgtt;
}

2268 2269 2270
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2271
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2272 2273 2274 2275
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2276
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2277 2278
}

2279
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2280
{
2281
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2282 2283 2284 2285

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2286
	if (INTEL_GEN(dev_priv) < 6)
2287 2288
		return;

2289
	intel_gt_check_and_clear_faults(&dev_priv->gt);
2290

2291
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2292

2293
	i915_ggtt_invalidate(dev_priv);
2294 2295
}

2296 2297
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2298
{
2299
	do {
2300 2301 2302 2303
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2304 2305
			return 0;

2306 2307
		/*
		 * If the DMA remap fails, one cause can be that we have
2308 2309 2310 2311 2312 2313 2314
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2315
				 obj->base.size >> PAGE_SHIFT, NULL,
2316
				 I915_SHRINK_BOUND |
2317
				 I915_SHRINK_UNBOUND));
2318

2319
	return -ENOSPC;
2320 2321
}

2322
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2323 2324 2325 2326
{
	writeq(pte, addr);
}

2327 2328
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2329
				  u64 offset,
2330 2331 2332
				  enum i915_cache_level level,
				  u32 unused)
{
2333
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2334
	gen8_pte_t __iomem *pte =
2335
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2336

2337
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2338

2339
	ggtt->invalidate(vm->i915);
2340 2341
}

B
Ben Widawsky 已提交
2342
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2343
				     struct i915_vma *vma,
2344
				     enum i915_cache_level level,
2345
				     u32 flags)
B
Ben Widawsky 已提交
2346
{
2347
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2348 2349
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2350
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2351
	dma_addr_t addr;
2352

2353 2354 2355 2356
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2357

2358
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2359
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2360
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2361
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2362

2363 2364 2365
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2366
	 */
2367
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2368 2369
}

2370 2371
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2372
				  u64 offset,
2373 2374 2375
				  enum i915_cache_level level,
				  u32 flags)
{
2376
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2377
	gen6_pte_t __iomem *pte =
2378
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2379

2380
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2381

2382
	ggtt->invalidate(vm->i915);
2383 2384
}

2385 2386 2387 2388 2389 2390
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2391
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2392
				     struct i915_vma *vma,
2393 2394
				     enum i915_cache_level level,
				     u32 flags)
2395
{
2396
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2397
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2398
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2399
	struct sgt_iter iter;
2400
	dma_addr_t addr;
2401
	for_each_sgt_dma(addr, iter, vma->pages)
2402
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2403

2404 2405 2406
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2407
	 */
2408
	ggtt->invalidate(vm->i915);
2409 2410
}

2411
static void nop_clear_range(struct i915_address_space *vm,
2412
			    u64 start, u64 length)
2413 2414 2415
{
}

B
Ben Widawsky 已提交
2416
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2417
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2418
{
2419
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2420 2421
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2422
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2423
	gen8_pte_t __iomem *gtt_base =
2424 2425
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2481
	struct i915_vma *vma;
2482
	enum i915_cache_level level;
2483
	u32 flags;
2484 2485 2486 2487 2488 2489
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2490
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2491 2492 2493 2494 2495 2496
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2497
					     struct i915_vma *vma,
2498
					     enum i915_cache_level level,
2499
					     u32 flags)
2500
{
2501
	struct insert_entries arg = { vm, vma, level, flags };
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2531
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2532
				  u64 start, u64 length)
2533
{
2534
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2535 2536
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2537
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2538 2539
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2540 2541 2542 2543 2544 2545 2546
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2547
	scratch_pte = vm->scratch_pte;
2548

2549 2550 2551 2552
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2553 2554
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2555
				  u64 offset,
2556 2557 2558 2559 2560 2561 2562 2563 2564
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2565
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2566
				     struct i915_vma *vma,
2567 2568
				     enum i915_cache_level cache_level,
				     u32 unused)
2569 2570 2571 2572
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2573 2574
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2575 2576
}

2577
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2578
				  u64 start, u64 length)
2579
{
2580
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2581 2582
}

2583 2584 2585
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2586
{
2587
	struct drm_i915_private *i915 = vma->vm->i915;
2588
	struct drm_i915_gem_object *obj = vma->obj;
2589
	intel_wakeref_t wakeref;
2590
	u32 pte_flags;
2591

2592
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2593
	pte_flags = 0;
2594
	if (i915_gem_object_is_readonly(obj))
2595 2596
		pte_flags |= PTE_READ_ONLY;

2597
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2598
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2599

2600 2601
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2602 2603 2604 2605 2606
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2607
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2608 2609 2610 2611

	return 0;
}

2612 2613 2614
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2615
	intel_wakeref_t wakeref;
2616

2617
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2618
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2619 2620
}

2621 2622 2623
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2624
{
2625
	struct drm_i915_private *i915 = vma->vm->i915;
2626
	u32 pte_flags;
2627
	int ret;
2628

2629
	/* Currently applicable only to VLV */
2630
	pte_flags = 0;
2631
	if (i915_gem_object_is_readonly(vma->obj))
2632
		pte_flags |= PTE_READ_ONLY;
2633

2634
	if (flags & I915_VMA_LOCAL_BIND) {
2635
		struct i915_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2636

2637
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2638 2639 2640
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2641
			if (ret)
2642
				return ret;
2643 2644
		}

2645 2646
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2647 2648
	}

2649
	if (flags & I915_VMA_GLOBAL_BIND) {
2650 2651
		intel_wakeref_t wakeref;

2652
		with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2653 2654 2655
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2656
	}
2657

2658
	return 0;
2659 2660
}

2661
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2662
{
2663
	struct drm_i915_private *i915 = vma->vm->i915;
2664

2665
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2666
		struct i915_address_space *vm = vma->vm;
2667 2668
		intel_wakeref_t wakeref;

2669
		with_intel_runtime_pm(&i915->runtime_pm, wakeref)
2670
			vm->clear_range(vm, vma->node.start, vma->size);
2671
	}
2672

2673
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2674
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2675 2676 2677

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2678 2679
}

2680 2681
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2682
{
D
David Weinehall 已提交
2683 2684
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2685
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2686

2687
	if (unlikely(ggtt->do_idle_maps)) {
2688
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2689 2690 2691 2692 2693
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2694

2695
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2696
}
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2708 2709
	vma->page_sizes = vma->obj->mm.page_sizes;

2710 2711 2712
	return 0;
}

C
Chris Wilson 已提交
2713
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2714
				  unsigned long color,
2715 2716
				  u64 *start,
				  u64 *end)
2717
{
2718
	if (node->allocated && node->color != color)
2719
		*start += I915_GTT_PAGE_SIZE;
2720

2721 2722 2723 2724 2725
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2726
	node = list_next_entry(node, node_list);
2727
	if (node->color != color)
2728
		*end -= I915_GTT_PAGE_SIZE;
2729
}
B
Ben Widawsky 已提交
2730

2731
static int init_aliasing_ppgtt(struct drm_i915_private *i915)
2732 2733
{
	struct i915_ggtt *ggtt = &i915->ggtt;
2734
	struct i915_ppgtt *ppgtt;
2735 2736
	int err;

2737
	ppgtt = i915_ppgtt_create(i915);
2738 2739
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2740

2741
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2742 2743 2744 2745
		err = -ENODEV;
		goto err_ppgtt;
	}

2746 2747 2748 2749 2750 2751 2752 2753 2754
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2755 2756

	i915->mm.aliasing_ppgtt = ppgtt;
2757

2758 2759
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2760

2761 2762
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2763

2764 2765 2766
	return 0;

err_ppgtt:
2767
	i915_vm_put(&ppgtt->vm);
2768 2769 2770
	return err;
}

2771
static void fini_aliasing_ppgtt(struct drm_i915_private *i915)
2772 2773
{
	struct i915_ggtt *ggtt = &i915->ggtt;
2774
	struct i915_ppgtt *ppgtt;
2775 2776 2777 2778 2779

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2780
	i915_vm_put(&ppgtt->vm);
2781

2782 2783
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2784 2785
}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
{
	u64 size;
	int ret;

	if (!USES_GUC(ggtt->vm.i915))
		return 0;

	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
	size = ggtt->vm.total - GUC_GGTT_TOP;

	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
				   PIN_NOEVICT);
	if (ret)
		DRM_DEBUG_DRIVER("Failed to reserve top of GGTT for GuC\n");

	return ret;
}

static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
{
	if (drm_mm_node_allocated(&ggtt->uc_fw))
		drm_mm_remove_node(&ggtt->uc_fw);
}

2812
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2813
{
2814 2815 2816 2817 2818 2819 2820 2821 2822
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2823
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2824
	unsigned long hole_start, hole_end;
2825
	struct drm_mm_node *entry;
2826
	int ret;
2827

2828 2829 2830 2831 2832 2833 2834
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2835
			       intel_wopcm_guc_size(&dev_priv->wopcm));
2836

2837
	ret = intel_vgt_balloon(ggtt);
2838 2839
	if (ret)
		return ret;
2840

2841
	/* Reserve a mappable slot for our lockless error capture */
2842
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2843 2844 2845
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2846 2847 2848
	if (ret)
		return ret;

2849 2850 2851 2852 2853 2854 2855 2856
	/*
	 * The upper portion of the GuC address space has a sizeable hole
	 * (several MB) that is inaccessible by GuC. Reserve this range within
	 * GGTT as it can comfortably hold GuC/HuC firmware images.
	 */
	ret = ggtt_reserve_guc_top(ggtt);
	if (ret)
		goto err_reserve;
2857

2858
	/* Clear any non-preallocated blocks */
2859
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2860 2861
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2862 2863
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2864 2865 2866
	}

	/* And finally clear the reserved guard page */
2867
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2868

2869
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2870
		ret = init_aliasing_ppgtt(dev_priv);
2871
		if (ret)
2872
			goto err_appgtt;
2873 2874
	}

2875
	return 0;
2876

2877
err_appgtt:
2878
	ggtt_release_guc_top(ggtt);
2879
err_reserve:
2880 2881
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2882 2883
}

2884 2885
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2886
 * @dev_priv: i915 device
2887
 */
2888
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2889
{
2890
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2891
	struct i915_vma *vma, *vn;
2892
	struct pagevec *pvec;
2893

2894
	ggtt->vm.closed = true;
2895 2896

	mutex_lock(&dev_priv->drm.struct_mutex);
2897
	fini_aliasing_ppgtt(dev_priv);
2898

2899
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2900
		WARN_ON(i915_vma_unbind(vma));
2901

2902 2903 2904
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2905
	ggtt_release_guc_top(ggtt);
2906

2907
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2908
		intel_vgt_deballoon(ggtt);
2909
		i915_address_space_fini(&ggtt->vm);
2910 2911
	}

2912
	ggtt->vm.cleanup(&ggtt->vm);
2913

2914
	pvec = &dev_priv->mm.wc_stash.pvec;
2915 2916 2917 2918 2919
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2920
	mutex_unlock(&dev_priv->drm.struct_mutex);
2921 2922

	arch_phys_wc_del(ggtt->mtrr);
2923
	io_mapping_fini(&ggtt->iomap);
2924

2925
	i915_gem_cleanup_stolen(dev_priv);
2926
}
2927

2928
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2929 2930 2931 2932 2933 2934
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2935
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2936 2937 2938 2939 2940
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2941 2942

#ifdef CONFIG_X86_32
2943
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2944 2945 2946 2947
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2948 2949 2950
	return bdw_gmch_ctl << 20;
}

2951
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2962
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2963
{
2964
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2965
	struct pci_dev *pdev = dev_priv->drm.pdev;
2966
	phys_addr_t phys_addr;
2967
	int ret;
B
Ben Widawsky 已提交
2968 2969

	/* For Modern GENs the PTEs and register space are split in the BAR */
2970
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2971

I
Imre Deak 已提交
2972
	/*
2973 2974 2975
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2976 2977 2978
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2979
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2980
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2981
	else
2982
		ggtt->gsm = ioremap_wc(phys_addr, size);
2983
	if (!ggtt->gsm) {
2984
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2985 2986 2987
		return -ENOMEM;
	}

2988
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2989
	if (ret) {
B
Ben Widawsky 已提交
2990 2991
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2992
		iounmap(ggtt->gsm);
2993
		return ret;
B
Ben Widawsky 已提交
2994 2995
	}

2996 2997 2998 2999
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

3000
	return 0;
B
Ben Widawsky 已提交
3001 3002
}

3003 3004
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3005
{
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3049
	struct intel_ppat_entry *entry = NULL;
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3072
		if (!entry)
3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3149
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3187 3188
}

B
Ben Widawsky 已提交
3189 3190 3191
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3192
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3193
{
3194 3195 3196 3197
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3198

3199
	if (!HAS_PPGTT(ppat->i915)) {
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3213 3214 3215
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3216

3217 3218 3219 3220 3221 3222 3223 3224
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3225 3226
}

3227
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3228
{
3229 3230 3231 3232
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3233 3234 3235 3236 3237 3238 3239

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3251 3252
	 */

3253 3254 3255 3256 3257 3258 3259 3260
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3261 3262
}

3263 3264 3265 3266 3267
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3268
	cleanup_scratch_page(vm);
3269 3270
}

3271 3272
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3273 3274 3275 3276 3277
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3278
	if (INTEL_GEN(dev_priv) >= 10)
3279
		cnl_setup_private_ppat(ppat);
3280
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3281
		chv_setup_private_ppat(ppat);
3282
	else
3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3294 3295
}

3296
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3297
{
3298
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3299
	struct pci_dev *pdev = dev_priv->drm.pdev;
3300
	unsigned int size;
B
Ben Widawsky 已提交
3301
	u16 snb_gmch_ctl;
3302
	int err;
B
Ben Widawsky 已提交
3303 3304

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3305 3306 3307 3308
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3309

3310 3311 3312 3313 3314
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3315

3316
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3317
	if (IS_CHERRYVIEW(dev_priv))
3318
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3319
	else
3320
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3321

3322
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3323 3324 3325
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3326
	if (intel_scanout_needs_vtd_wa(dev_priv))
3327
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3328

3329
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3330

3331
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3332 3333
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3334 3335 3336 3337
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3338 3339 3340 3341 3342

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3343 3344
	}

3345 3346
	ggtt->invalidate = gen6_ggtt_invalidate;

3347 3348 3349 3350 3351
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3352 3353
	ggtt->vm.pte_encode = gen8_pte_encode;

3354 3355
	setup_private_pat(dev_priv);

3356
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3357 3358
}

3359
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3360
{
3361
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3362
	struct pci_dev *pdev = dev_priv->drm.pdev;
3363
	unsigned int size;
3364
	u16 snb_gmch_ctl;
3365
	int err;
3366

3367 3368 3369 3370
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3371

3372 3373
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3374
	 */
3375
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3376
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3377
		return -ENXIO;
3378 3379
	}

3380 3381 3382 3383 3384
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3385
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3386

3387
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3388
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3389

3390 3391 3392
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3393 3394 3395
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3396

3397 3398
	ggtt->invalidate = gen6_ggtt_invalidate;

3399
	if (HAS_EDRAM(dev_priv))
3400
		ggtt->vm.pte_encode = iris_pte_encode;
3401
	else if (IS_HASWELL(dev_priv))
3402
		ggtt->vm.pte_encode = hsw_pte_encode;
3403
	else if (IS_VALLEYVIEW(dev_priv))
3404
		ggtt->vm.pte_encode = byt_pte_encode;
3405
	else if (INTEL_GEN(dev_priv) >= 7)
3406
		ggtt->vm.pte_encode = ivb_pte_encode;
3407
	else
3408
		ggtt->vm.pte_encode = snb_pte_encode;
3409

3410 3411 3412 3413 3414
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3415
	return ggtt_probe_common(ggtt, size);
3416 3417
}

3418
static void i915_gmch_remove(struct i915_address_space *vm)
3419
{
3420
	intel_gmch_remove();
3421
}
3422

3423
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3424
{
3425
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3426
	phys_addr_t gmadr_base;
3427 3428
	int ret;

3429
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3430 3431 3432 3433 3434
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3435
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3436

3437 3438 3439 3440
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3441
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3442 3443 3444 3445
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3446

3447 3448
	ggtt->invalidate = gmch_ggtt_invalidate;

3449 3450 3451 3452 3453
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3454
	if (unlikely(ggtt->do_idle_maps))
3455 3456
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3457 3458 3459
	return 0;
}

3460
static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct drm_i915_private *i915)
3461 3462 3463
{
	int ret;

3464 3465
	ggtt->vm.i915 = i915;
	ggtt->vm.dma = &i915->drm.pdev->dev;
3466

3467
	if (INTEL_GEN(i915) <= 5)
3468
		ret = i915_gmch_probe(ggtt);
3469
	else if (INTEL_GEN(i915) < 8)
3470 3471 3472
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3473
	if (ret)
3474 3475
		return ret;

3476
	if ((ggtt->vm.total - 1) >> 32) {
3477
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3478
			  " of address space! Found %lldM!\n",
3479 3480 3481 3482
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3483 3484
	}

3485
	if (ggtt->mappable_end > ggtt->vm.total) {
3486
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3487
			  " aperture=%pa, total=%llx\n",
3488 3489
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3490 3491
	}

3492
	/* GMADR is the PCI mmio aperture into the global GTT. */
3493
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3494
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3495
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3496
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512

	return 0;
}

/**
 * i915_ggtt_probe_hw - Probe GGTT hardware location
 * @dev_priv: i915 device
 */
int i915_ggtt_probe_hw(struct drm_i915_private *i915)
{
	int ret;

	ret = ggtt_probe_hw(&i915->ggtt, i915);
	if (ret)
		return ret;

3513
	if (intel_vtd_active())
3514
		DRM_INFO("VT-d active for gfx access\n");
3515 3516

	return 0;
3517 3518
}

3519
static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
3520
{
3521 3522
	ggtt->vm.cleanup(&ggtt->vm);
}
3523

3524 3525 3526 3527 3528 3529
static int ggtt_init_hw(struct i915_ggtt *ggtt)
{
	struct drm_i915_private *i915 = ggtt->vm.i915;
	int ret = 0;

	mutex_lock(&i915->drm.struct_mutex);
3530

3531
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3532

3533 3534
	ggtt->vm.is_ggtt = true;

3535
	/* Only VLV supports read-only GGTT mappings */
3536
	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
3537

3538
	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
3539
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
3540

3541 3542 3543 3544
	if (!io_mapping_init_wc(&ggtt->iomap,
				ggtt->gmadr.start,
				ggtt->mappable_end)) {
		ggtt_cleanup_hw(ggtt);
3545
		ret = -EIO;
3546
		goto out;
3547 3548
	}

3549
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3550

3551 3552
	i915_ggtt_init_fences(ggtt);

3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
out:
	mutex_unlock(&i915->drm.struct_mutex);

	return ret;
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
 * @dev_priv: i915 device
 */
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
{
	int ret;

	stash_init(&dev_priv->mm.wc_stash);

	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
	 */
	ret = ggtt_init_hw(&dev_priv->ggtt);
	if (ret)
		return ret;

3578 3579 3580 3581
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3582
	ret = i915_gem_init_stolen(dev_priv);
3583 3584 3585 3586
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3587 3588

out_gtt_cleanup:
3589
	ggtt_cleanup_hw(&dev_priv->ggtt);
3590
	return ret;
3591
}
3592

3593
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3594
{
3595
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3596 3597 3598 3599 3600
		return -EIO;

	return 0;
}

3601 3602
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3603 3604
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3605
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3606 3607

	i915_ggtt_invalidate(i915);
3608 3609 3610 3611
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3612 3613 3614 3615
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3616 3617 3618 3619
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3620 3621

	i915_ggtt_invalidate(i915);
3622 3623
}

3624
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3625
{
3626
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3627
	struct i915_vma *vma, *vn;
3628

3629
	intel_gt_check_and_clear_faults(&dev_priv->gt);
3630

3631 3632
	mutex_lock(&ggtt->vm.mutex);

3633
	/* First fill our portion of the GTT with scratch pages */
3634 3635
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3636 3637

	/* clflush objects bound into the GGTT and rebind them. */
3638
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3639
		struct drm_i915_gem_object *obj = vma->obj;
3640

3641 3642
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3643

3644 3645
		mutex_unlock(&ggtt->vm.mutex);

3646
		if (!i915_vma_unbind(vma))
3647
			goto lock;
3648

3649 3650 3651
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3652 3653
		if (obj) {
			i915_gem_object_lock(obj);
3654
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3655 3656
			i915_gem_object_unlock(obj);
		}
3657 3658 3659

lock:
		mutex_lock(&ggtt->vm.mutex);
3660
	}
3661

3662
	ggtt->vm.closed = false;
3663
	i915_ggtt_invalidate(dev_priv);
3664

3665 3666
	mutex_unlock(&ggtt->vm.mutex);

3667
	if (INTEL_GEN(dev_priv) >= 8) {
3668
		struct intel_ppat *ppat = &dev_priv->ppat;
3669

3670 3671
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3672 3673 3674 3675
		return;
	}
}

3676
static struct scatterlist *
3677
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3678
	     unsigned int width, unsigned int height,
3679
	     unsigned int stride,
3680
	     struct sg_table *st, struct scatterlist *sg)
3681 3682 3683 3684 3685
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3686
		src_idx = stride * (height - 1) + column + offset;
3687 3688 3689 3690 3691 3692
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3693
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3694 3695
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3696
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3697
			sg = sg_next(sg);
3698
			src_idx -= stride;
3699 3700
		}
	}
3701 3702

	return sg;
3703 3704
}

3705 3706 3707
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3708
{
3709
	unsigned int size = intel_rotation_info_size(rot_info);
3710
	struct sg_table *st;
3711
	struct scatterlist *sg;
3712
	int ret = -ENOMEM;
3713
	int i;
3714 3715 3716 3717 3718 3719

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3720
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3721 3722 3723
	if (ret)
		goto err_sg_alloc;

3724 3725 3726
	st->nents = 0;
	sg = st->sgl;

3727
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3728
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3729 3730
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3731 3732
	}

3733 3734 3735 3736 3737 3738
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3739 3740
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3741

3742 3743
	return ERR_PTR(ret);
}
3744

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3828
static noinline struct sg_table *
3829 3830 3831 3832
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3833
	struct scatterlist *sg, *iter;
3834
	unsigned int count = view->partial.size;
3835
	unsigned int offset;
3836 3837 3838 3839 3840 3841
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3842
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3843 3844 3845
	if (ret)
		goto err_sg_alloc;

3846
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3847 3848
	GEM_BUG_ON(!iter);

3849 3850
	sg = st->sgl;
	st->nents = 0;
3851 3852
	do {
		unsigned int len;
3853

3854 3855 3856 3857 3858 3859
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3860 3861

		st->nents++;
3862 3863 3864
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3865 3866
			i915_sg_trim(st); /* Drop any unused tail entries. */

3867 3868
			return st;
		}
3869

3870 3871 3872 3873
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3874 3875 3876 3877 3878 3879 3880

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3881
static int
3882
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3883
{
3884
	int ret;
3885

3886 3887 3888 3889 3890 3891 3892
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3893
	switch (vma->ggtt_view.type) {
3894 3895 3896
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3897 3898
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3899 3900
		return 0;

3901
	case I915_GGTT_VIEW_ROTATED:
3902
		vma->pages =
3903 3904 3905
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3906 3907 3908 3909 3910
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3911
	case I915_GGTT_VIEW_PARTIAL:
3912
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3913 3914
		break;
	}
3915

3916
	ret = 0;
3917
	if (IS_ERR(vma->pages)) {
3918 3919
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3920 3921
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3922
	}
3923
	return ret;
3924 3925
}

3926 3927
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3962
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3963
	GEM_BUG_ON(drm_mm_node_allocated(node));
3964 3965 3966 3967 3968 3969 3970 3971 3972

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3973 3974 3975
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3976 3977 3978 3979 3980 3981 3982
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

4008 4009
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
4010 4011 4012 4013 4014 4015 4016 4017 4018
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
4019
 *         must be #I915_GTT_PAGE_SIZE aligned
4020 4021 4022
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
4023 4024 4025 4026 4027 4028
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
4029 4030
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
4047
	enum drm_mm_insert_mode mode;
4048
	u64 offset;
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4059
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4060
	GEM_BUG_ON(drm_mm_node_allocated(node));
4061 4062 4063 4064 4065 4066 4067

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4068 4069
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4070
		mode = DRM_MM_INSERT_HIGHEST;
4071 4072
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4084 4085 4086
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4087 4088 4089
	if (err != -ENOSPC)
		return err;

4090 4091 4092 4093 4094 4095 4096 4097 4098
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4099 4100 4101
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4131 4132 4133 4134 4135
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4136 4137 4138
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4139
}
4140 4141 4142

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4143
#include "selftests/i915_gem_gtt.c"
4144
#endif