i915_gem_gtt.c 105.3 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_scatterlist.h"
40
#include "i915_trace.h"
41
#include "i915_vgpu.h"
42
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137 138
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
139
{
140
	u32 pte_flags;
141 142 143 144 145 146 147 148
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
149

150
	/* Applicable to VLV, and gen8+ */
151
	pte_flags = 0;
152
	if (i915_gem_object_is_readonly(vma->obj))
153 154
		pte_flags |= PTE_READ_ONLY;

155
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 157

	return 0;
158 159 160 161
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
162
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163
}
164

165 166 167 168 169 170
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

171 172
	vma->page_sizes = vma->obj->mm.page_sizes;

173 174 175 176 177 178 179 180 181 182 183 184
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
185 186

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 188
}

189 190 191
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
192
{
193 194 195 196
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
197 198 199

	switch (level) {
	case I915_CACHE_NONE:
200
		pte |= PPAT_UNCACHED;
201 202
		break;
	case I915_CACHE_WT:
203
		pte |= PPAT_DISPLAY_ELLC;
204 205
		break;
	default:
206
		pte |= PPAT_CACHED;
207 208 209
		break;
	}

B
Ben Widawsky 已提交
210 211 212
	return pte;
}

213 214
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
215
{
216
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
217 218
	pde |= addr;
	if (level != I915_CACHE_NONE)
219
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
220
	else
221
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
222 223 224
	return pde;
}

225 226 227
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

228 229 230
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
231
{
232
	gen6_pte_t pte = GEN6_PTE_VALID;
233
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 235

	switch (level) {
236 237 238 239 240 241 242 243
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
244
		MISSING_CASE(level);
245 246 247 248 249
	}

	return pte;
}

250 251 252
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
253
{
254
	gen6_pte_t pte = GEN6_PTE_VALID;
255 256 257 258 259
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
260 261 262 263 264
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
265
		pte |= GEN6_PTE_UNCACHED;
266 267
		break;
	default:
268
		MISSING_CASE(level);
269 270
	}

271 272 273
	return pte;
}

274 275 276
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
277
{
278
	gen6_pte_t pte = GEN6_PTE_VALID;
279 280
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

281 282
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
283 284 285 286 287 288 289

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

290 291 292
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
293
{
294
	gen6_pte_t pte = GEN6_PTE_VALID;
295
	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 297

	if (level != I915_CACHE_NONE)
298
		pte |= HSW_WB_LLC_AGE3;
299 300 301 302

	return pte;
}

303 304 305
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
306
{
307
	gen6_pte_t pte = GEN6_PTE_VALID;
308 309
	pte |= HSW_PTE_ADDR_ENCODE(addr);

310 311 312 313
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
314
		pte |= HSW_WT_ELLC_LLC_AGE3;
315 316
		break;
	default:
317
		pte |= HSW_WB_ELLC_LLC_AGE3;
318 319
		break;
	}
320 321 322 323

	return pte;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
344
	unsigned int nr;
345 346 347

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

348
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
349 350 351 352 353 354 355 356 357 358
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

359
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360
{
361 362
	struct pagevec stack;
	struct page *page;
363

364 365
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
366

367 368 369
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
370 371 372 373 374

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
375 376 377
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
378

379
	/*
380
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 382 383 384 385 386
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
387
	pagevec_init(&stack);
388 389
	do {
		struct page *page;
390

391 392 393 394
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

395 396
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
397

398 399
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
400

401
		/* Merge spare WC pages to the global stash */
402 403
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
404

405 406 407
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
408
	}
409

410 411 412 413 414 415 416
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
417 418
}

419 420
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
421
{
422 423
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
424

425
	lockdep_assert_held(&vm->free_pages.lock);
426
	GEM_BUG_ON(!pagevec_count(pvec));
427

428
	if (vm->pt_kmap_wc) {
429 430
		/*
		 * When we use WC, first fill up the global stash and then
431 432
		 * only if full immediately free the overflow.
		 */
433
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
434

435 436 437 438 439 440 441 442
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
443

444 445 446 447 448 449 450 451 452 453
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
454
		set_pages_array_wb(pvec->pages, pvec->nr);
455 456

		spin_lock(&vm->free_pages.lock);
457 458 459
	}

	__pagevec_release(pvec);
460 461 462 463
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
464 465 466 467 468 469 470 471
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
472
	spin_lock(&vm->free_pages.lock);
473
	while (!pagevec_space(&vm->free_pages.pvec))
474
		vm_free_pages_release(vm, false);
475 476
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
477 478 479
	spin_unlock(&vm->free_pages.lock);
}

480
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
481
{
482 483 484 485 486 487
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
488
	lockdep_set_subclass(&vm->mutex, subclass);
489
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
490

491 492 493 494 495 496 497
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
498
	INIT_LIST_HEAD(&vm->bound_list);
499 500 501 502 503 504 505 506 507 508 509
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
510 511

	mutex_destroy(&vm->mutex);
512
}
513

514 515 516 517
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
518
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
519 520
	if (unlikely(!p->page))
		return -ENOMEM;
521

522 523 524
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
525
				      DMA_ATTR_SKIP_CPU_SYNC |
526
				      DMA_ATTR_NO_WARN);
527 528 529
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
530
	}
531 532

	return 0;
533 534
}

535
static int setup_page_dma(struct i915_address_space *vm,
536
			  struct i915_page_dma *p)
537
{
538
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
539 540
}

541
static void cleanup_page_dma(struct i915_address_space *vm,
542
			     struct i915_page_dma *p)
543
{
544 545
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
546 547
}

548
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
549

550 551
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
552 553
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
554

555 556 557
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
558
{
559
	u64 * const vaddr = kmap_atomic(p->page);
560

561
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
562

563
	kunmap_atomic(vaddr);
564 565
}

566 567 568
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
569
{
570
	fill_page_dma(vm, p, (u64)v << 32 | v);
571 572
}

573
static int
574
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
575
{
576
	unsigned long size;
577

578 579 580 581 582 583 584
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
585 586 587
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
588
	 */
589
	size = I915_GTT_PAGE_SIZE_4K;
590
	if (i915_vm_is_4lvl(vm) &&
591
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
592 593
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
594
	}
595 596 597 598 599 600
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
601

602
		page = alloc_pages(gfp, order);
603
		if (unlikely(!page))
604
			goto skip;
605

606 607 608
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
609
					  DMA_ATTR_SKIP_CPU_SYNC |
610
					  DMA_ATTR_NO_WARN);
611 612
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
613

614 615
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
616

617 618
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
619
		vm->scratch_order = order;
620 621 622 623 624 625 626 627 628 629 630 631 632
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
633 634
}

635
static void cleanup_scratch_page(struct i915_address_space *vm)
636
{
637
	struct i915_page_dma *p = &vm->scratch_page;
638
	int order = vm->scratch_order;
639

640
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
641
		       PCI_DMA_BIDIRECTIONAL);
642
	__free_pages(p->page, order);
643 644
}

645
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
646
{
647
	struct i915_page_table *pt;
648

649
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
650
	if (unlikely(!pt))
651 652
		return ERR_PTR(-ENOMEM);

653 654 655 656
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
657

658
	pt->used_ptes = 0;
659 660 661
	return pt;
}

662
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
663
{
664
	cleanup_px(vm, pt);
665 666 667 668 669 670
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
671
	fill_px(vm, pt, vm->scratch_pte);
672 673
}

674
static void gen6_initialize_pt(struct i915_address_space *vm,
675 676
			       struct i915_page_table *pt)
{
677
	fill32_px(vm, pt, vm->scratch_pte);
678 679
}

680
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
681
{
682
	struct i915_page_directory *pd;
683

684
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
685
	if (unlikely(!pd))
686 687
		return ERR_PTR(-ENOMEM);

688 689 690 691
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
692

693
	pd->used_pdes = 0;
694 695 696
	return pd;
}

697
static void free_pd(struct i915_address_space *vm,
698
		    struct i915_page_directory *pd)
699
{
700 701
	cleanup_px(vm, pd);
	kfree(pd);
702 703 704 705 706
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
707 708
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
709
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
710 711
}

712
static int __pdp_init(struct i915_address_space *vm,
713 714
		      struct i915_page_directory_pointer *pdp)
{
715
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
716

717
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
718
					    I915_GFP_ALLOW_FAIL);
719
	if (unlikely(!pdp->page_directory))
720 721
		return -ENOMEM;

722
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
723

724 725 726 727 728 729 730 731 732
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

733 734
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
735 736 737 738
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

739
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
740 741 742 743 744

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

745
	ret = __pdp_init(vm, pdp);
746 747 748
	if (ret)
		goto fail_bitmap;

749
	ret = setup_px(vm, pdp);
750 751 752 753 754 755 756 757 758 759 760 761 762
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

763
static void free_pdp(struct i915_address_space *vm,
764 765 766
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
767

768
	if (!i915_vm_is_4lvl(vm))
769 770 771 772
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
773 774
}

775 776 777 778 779 780 781
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

782
	fill_px(vm, pdp, scratch_pdpe);
783 784 785 786 787
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
788 789
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
790
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
791 792
}

793 794
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
795 796 797 798 799 800
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
801
	ppgtt->pd_dirty_engines = ALL_ENGINES;
802 803
}

804 805 806
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
807
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
808
				struct i915_page_table *pt,
809
				u64 start, u64 length)
810
{
811
	unsigned int num_entries = gen8_pte_count(start, length);
812
	gen8_pte_t *vaddr;
813

814
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
815

816 817 818
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
819

820
	vaddr = kmap_atomic_px(pt);
821
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
822
	kunmap_atomic(vaddr);
823 824

	return false;
825
}
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

841
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
842
				struct i915_page_directory *pd,
843
				u64 start, u64 length)
844 845
{
	struct i915_page_table *pt;
846
	u32 pde;
847 848

	gen8_for_each_pde(pt, pd, start, length, pde) {
849 850
		GEM_BUG_ON(pt == vm->scratch_pt);

851 852
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
853

854
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
855
		GEM_BUG_ON(!pd->used_pdes);
856
		pd->used_pdes--;
857 858

		free_pt(vm, pt);
859 860
	}

861 862
	return !pd->used_pdes;
}
863

864 865 866 867 868 869 870 871
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
872
	if (!i915_vm_is_4lvl(vm))
873 874 875 876 877
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
878
}
879

880 881 882 883
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
884
				 struct i915_page_directory_pointer *pdp,
885
				 u64 start, u64 length)
886 887
{
	struct i915_page_directory *pd;
888
	unsigned int pdpe;
889

890
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
891 892
		GEM_BUG_ON(pd == vm->scratch_pd);

893 894
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
895

896
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
897
		GEM_BUG_ON(!pdp->used_pdpes);
898
		pdp->used_pdpes--;
899

900 901
		free_pd(vm, pd);
	}
902

903
	return !pdp->used_pdpes;
904
}
905

906 907 908 909 910 911
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

912 913 914 915 916 917 918 919 920 921 922 923 924
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

925 926 927 928
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
929 930
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
931
{
932 933
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
934
	struct i915_page_directory_pointer *pdp;
935
	unsigned int pml4e;
936

937
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
938

939
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
940 941
		GEM_BUG_ON(pdp == vm->scratch_pdp);

942 943
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
944

945 946 947
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
948 949 950
	}
}

951
static inline struct sgt_dma {
952 953
	struct scatterlist *sg;
	dma_addr_t dma, max;
954 955 956 957 958
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

977 978
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
979
			      struct i915_page_directory_pointer *pdp,
980
			      struct sgt_dma *iter,
981
			      struct gen8_insert_pte *idx,
982 983
			      enum i915_cache_level cache_level,
			      u32 flags)
984
{
985
	struct i915_page_directory *pd;
986
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
987 988
	gen8_pte_t *vaddr;
	bool ret;
989

990
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
991 992
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
993
	do {
994 995
		vaddr[idx->pte] = pte_encode | iter->dma;

996
		iter->dma += I915_GTT_PAGE_SIZE;
997 998 999 1000 1001 1002
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1003

1004 1005
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1006
		}
1007

1008 1009 1010 1011 1012 1013
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1014
				/* Limited by sg length for 3lvl */
1015 1016
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1017
					ret = true;
1018
					break;
1019 1020
				}

1021
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1022
				pd = pdp->page_directory[idx->pdpe];
1023
			}
1024

1025
			kunmap_atomic(vaddr);
1026
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1027
		}
1028
	} while (1);
1029
	kunmap_atomic(vaddr);
1030

1031
	return ret;
1032 1033
}

1034
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1035
				   struct i915_vma *vma,
1036
				   enum i915_cache_level cache_level,
1037
				   u32 flags)
1038
{
1039
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1040
	struct sgt_dma iter = sgt_dma(vma);
1041
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1042

1043
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1044
				      cache_level, flags);
1045 1046

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1047
}
1048

1049 1050 1051
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1052 1053
					   enum i915_cache_level cache_level,
					   u32 flags)
1054
{
1055
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1056 1057 1058 1059 1060 1061 1062 1063
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1064
		bool maybe_64K = false;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1086 1087 1088 1089
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1090
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1091 1092
				maybe_64K = true;

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1112 1113 1114
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1115
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1116 1117
					maybe_64K = false;

1118 1119 1120 1121 1122 1123
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1140
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1154
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1155 1156 1157 1158 1159 1160 1161
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1162
		}
1163 1164

		vma->page_sizes.gtt |= page_size;
1165 1166 1167
	} while (iter->sg);
}

1168
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1169
				   struct i915_vma *vma,
1170
				   enum i915_cache_level cache_level,
1171
				   u32 flags)
1172 1173
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1174
	struct sgt_dma iter = sgt_dma(vma);
1175
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1176

1177
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1178 1179
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1180 1181 1182 1183
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1184 1185
						     &iter, &idx, cache_level,
						     flags))
1186
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1187 1188

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1189
	}
1190 1191
}

1192
static void gen8_free_page_tables(struct i915_address_space *vm,
1193
				  struct i915_page_directory *pd)
1194 1195 1196
{
	int i;

1197 1198 1199
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1200
	}
B
Ben Widawsky 已提交
1201 1202
}

1203 1204
static int gen8_init_scratch(struct i915_address_space *vm)
{
1205
	int ret;
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

1219
		vm->scratch_order = clone->scratch_order;
1220 1221 1222 1223 1224 1225 1226
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1227
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1228 1229
	if (ret)
		return ret;
1230

1231 1232 1233
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1234
				vm->has_read_only);
1235

1236
	vm->scratch_pt = alloc_pt(vm);
1237
	if (IS_ERR(vm->scratch_pt)) {
1238 1239
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1240 1241
	}

1242
	vm->scratch_pd = alloc_pd(vm);
1243
	if (IS_ERR(vm->scratch_pd)) {
1244 1245
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1246 1247
	}

1248
	if (i915_vm_is_4lvl(vm)) {
1249
		vm->scratch_pdp = alloc_pdp(vm);
1250
		if (IS_ERR(vm->scratch_pdp)) {
1251 1252
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1253 1254 1255
		}
	}

1256 1257
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1258
	if (i915_vm_is_4lvl(vm))
1259
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1260 1261

	return 0;
1262 1263

free_pd:
1264
	free_pd(vm, vm->scratch_pd);
1265
free_pt:
1266
	free_pt(vm, vm->scratch_pt);
1267
free_scratch_page:
1268
	cleanup_scratch_page(vm);
1269 1270

	return ret;
1271 1272
}

1273 1274
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1275
	struct i915_address_space *vm = &ppgtt->vm;
1276
	struct drm_i915_private *dev_priv = vm->i915;
1277 1278 1279
	enum vgt_g2v_type msg;
	int i;

1280
	if (i915_vm_is_4lvl(vm)) {
1281
		const u64 daddr = px_dma(&ppgtt->pml4);
1282

1283 1284
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1285 1286 1287 1288

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1289
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1290
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1291

1292 1293
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1305 1306
static void gen8_free_scratch(struct i915_address_space *vm)
{
1307 1308 1309
	if (!vm->scratch_page.daddr)
		return;

1310
	if (i915_vm_is_4lvl(vm))
1311 1312 1313 1314
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1315 1316
}

1317
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1318
				    struct i915_page_directory_pointer *pdp)
1319
{
1320
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1321 1322
	int i;

1323
	for (i = 0; i < pdpes; i++) {
1324
		if (pdp->page_directory[i] == vm->scratch_pd)
1325 1326
			continue;

1327 1328
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1329
	}
1330

1331
	free_pdp(vm, pdp);
1332 1333 1334 1335 1336 1337
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1338
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1339
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1340 1341
			continue;

1342
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1343 1344
	}

1345
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1346 1347 1348 1349
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1350
	struct drm_i915_private *dev_priv = vm->i915;
1351
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1352

1353
	if (intel_vgpu_active(dev_priv))
1354 1355
		gen8_ppgtt_notify_vgt(ppgtt, false);

1356
	if (i915_vm_is_4lvl(vm))
1357
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1358
	else
1359
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1360

1361
	gen8_free_scratch(vm);
1362 1363
}

1364 1365 1366
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1367
{
1368
	struct i915_page_table *pt;
1369
	u64 from = start;
1370
	unsigned int pde;
1371

1372
	gen8_for_each_pde(pt, pd, start, length, pde) {
1373 1374
		int count = gen8_pte_count(start, length);

1375
		if (pt == vm->scratch_pt) {
1376 1377
			pd->used_pdes++;

1378
			pt = alloc_pt(vm);
1379 1380
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1381
				goto unwind;
1382
			}
1383

1384
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1385
				gen8_initialize_pt(vm, pt);
1386 1387

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1388
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1389
		}
1390

1391
		pt->used_ptes += count;
1392
	}
1393
	return 0;
1394

1395 1396
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1397
	return -ENOMEM;
1398 1399
}

1400 1401 1402
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1403
{
1404
	struct i915_page_directory *pd;
1405 1406
	u64 from = start;
	unsigned int pdpe;
1407 1408
	int ret;

1409
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1410
		if (pd == vm->scratch_pd) {
1411 1412
			pdp->used_pdpes++;

1413
			pd = alloc_pd(vm);
1414 1415
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1416
				goto unwind;
1417
			}
1418

1419
			gen8_initialize_pd(vm, pd);
1420
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1421
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1422 1423 1424
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1425 1426
		if (unlikely(ret))
			goto unwind_pd;
1427
	}
1428

B
Ben Widawsky 已提交
1429
	return 0;
1430

1431 1432 1433 1434 1435 1436 1437
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1438 1439 1440
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1441 1442
}

1443 1444
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1445
{
1446 1447 1448
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1459

1460
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1461 1462 1463 1464
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1465

1466 1467 1468
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1469

1470
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1471 1472
		if (unlikely(ret))
			goto unwind_pdp;
1473 1474 1475 1476
	}

	return 0;

1477 1478 1479 1480 1481
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1482 1483 1484
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1485 1486
}

1487
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1488
{
1489
	struct i915_address_space *vm = &ppgtt->vm;
1490 1491
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1492
	u64 start = 0, length = ppgtt->vm.total;
1493 1494
	u64 from = start;
	unsigned int pdpe;
1495

1496 1497 1498 1499
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1500

1501 1502 1503 1504
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1505

1506 1507
	pdp->used_pdpes++; /* never remove */
	return 0;
1508

1509 1510 1511 1512 1513 1514 1515 1516
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static void ppgtt_init(struct drm_i915_private *i915,
		       struct i915_hw_ppgtt *ppgtt)
{
	kref_init(&ppgtt->ref);

	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1536
/*
1537 1538 1539 1540
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1541
 *
1542
 */
1543
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1544
{
1545 1546 1547 1548 1549 1550 1551
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1552
	ppgtt_init(i915, ppgtt);
1553

1554 1555 1556 1557 1558 1559 1560
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1561

1562 1563 1564
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1565
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1566
		ppgtt->vm.pt_kmap_wc = true;
1567

1568 1569 1570
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1571

1572
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1573 1574 1575
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1576

1577
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1578

1579 1580 1581
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1582
	} else {
1583 1584 1585
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1586

1587 1588 1589
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1590
				__pdp_fini(&ppgtt->pdp);
1591
				goto err_scratch;
1592
			}
1593
		}
1594

1595 1596 1597
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1598
	}
1599

1600
	if (intel_vgpu_active(i915))
1601 1602
		gen8_ppgtt_notify_vgt(ppgtt, true);

1603
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1604

1605
	return ppgtt;
1606

1607
err_scratch:
1608
	gen8_free_scratch(&ppgtt->vm);
1609 1610 1611
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1612 1613
}

1614
/* Write pde (index) from the page directory @pd to the page table @pt */
1615
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1616 1617
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1618
{
1619
	/* Caller needs to make sure the write completes if necessary */
1620 1621
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1622
}
B
Ben Widawsky 已提交
1623

1624
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1625
{
1626
	struct intel_engine_cs *engine;
1627
	u32 ecochk, ecobits;
1628
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1629

1630 1631
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1632

1633
	ecochk = I915_READ(GAM_ECOCHK);
1634
	if (IS_HASWELL(dev_priv)) {
1635 1636 1637 1638 1639 1640
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1641

1642
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1643
		/* GFX_MODE is per-ring on gen7+ */
1644
		I915_WRITE(RING_MODE_GEN7(engine),
1645
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1646
	}
1647
}
B
Ben Widawsky 已提交
1648

1649
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1650
{
1651
	u32 ecochk, gab_ctl, ecobits;
1652

1653 1654 1655
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1656

1657 1658 1659 1660 1661 1662
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1663 1664
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1665 1666
}

1667
/* PPGTT support for Sandybdrige/Gen6 and later */
1668
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1669
				   u64 start, u64 length)
1670
{
1671
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1672
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1673 1674
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1675
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1676
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1677

1678
	while (num_entries) {
1679
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1680
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1681
		gen6_pte_t *vaddr;
1682

1683 1684 1685 1686 1687 1688 1689 1690
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1691

1692 1693
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1694 1695 1696 1697
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1698

1699
		vaddr = kmap_atomic_px(pt);
1700
		memset32(vaddr + pte, scratch_pte, count);
1701
		kunmap_atomic(vaddr);
1702

1703
		pte = 0;
1704
	}
1705 1706
}

1707
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1708
				      struct i915_vma *vma,
1709 1710
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1711
{
1712
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1713
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1714 1715
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1716
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1717
	struct sgt_dma iter = sgt_dma(vma);
1718 1719
	gen6_pte_t *vaddr;

1720 1721
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1722
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1723 1724
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1725

1726
		iter.dma += I915_GTT_PAGE_SIZE;
1727 1728 1729 1730
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1731

1732 1733 1734
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1735

1736
		if (++act_pte == GEN6_PTES) {
1737 1738
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1739
			act_pte = 0;
D
Daniel Vetter 已提交
1740
		}
1741
	} while (1);
1742
	kunmap_atomic(vaddr);
1743 1744

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1745 1746
}

1747
static int gen6_alloc_va_range(struct i915_address_space *vm,
1748
			       u64 start, u64 length)
1749
{
1750
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1751
	struct i915_page_table *pt;
1752
	intel_wakeref_t wakeref;
1753 1754 1755
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1756

1757 1758
	wakeref = intel_runtime_pm_get(vm->i915);

1759
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1760 1761
		const unsigned int count = gen6_pte_count(start, length);

1762 1763 1764 1765
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1766

1767
			gen6_initialize_pt(vm, pt);
1768
			ppgtt->base.pd.page_table[pde] = pt;
1769 1770 1771 1772 1773 1774

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1775 1776

			GEM_BUG_ON(pt->used_ptes);
1777
		}
1778 1779

		pt->used_ptes += count;
1780 1781
	}

1782
	if (flush) {
1783
		mark_tlbs_dirty(&ppgtt->base);
1784
		gen6_ggtt_invalidate(vm->i915);
1785 1786
	}

1787 1788
	intel_runtime_pm_put(vm->i915, wakeref);

1789
	return 0;
1790 1791

unwind_out:
1792
	intel_runtime_pm_put(vm->i915, wakeref);
1793
	gen6_ppgtt_clear_range(vm, from, start - from);
1794
	return -ENOMEM;
1795 1796
}

1797
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1798
{
1799 1800 1801
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1802
	int ret;
1803

1804
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1805 1806
	if (ret)
		return ret;
1807

1808 1809 1810
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1811

1812
	vm->scratch_pt = alloc_pt(vm);
1813
	if (IS_ERR(vm->scratch_pt)) {
1814
		cleanup_scratch_page(vm);
1815 1816 1817
		return PTR_ERR(vm->scratch_pt);
	}

1818
	gen6_initialize_pt(vm, vm->scratch_pt);
1819 1820
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1821 1822 1823 1824

	return 0;
}

1825
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1826
{
1827 1828
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1829 1830
}

1831
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1832
{
1833
	struct i915_page_table *pt;
1834
	u32 pde;
1835

1836
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1837 1838 1839 1840
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
struct gen6_ppgtt_cleanup_work {
	struct work_struct base;
	struct i915_vma *vma;
};

static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
{
	struct gen6_ppgtt_cleanup_work *work =
		container_of(wrk, typeof(*work), base);
	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
	struct drm_i915_private *i915 = work->vma->vm->i915;

	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(work->vma);
	mutex_unlock(&i915->drm.struct_mutex);

	kfree(work);
}

1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static int nop_set_pages(struct i915_vma *vma)
{
	return -ENODEV;
}

static void nop_clear_pages(struct i915_vma *vma)
{
}

static int nop_bind(struct i915_vma *vma,
		    enum i915_cache_level cache_level,
		    u32 unused)
{
	return -ENODEV;
}

static void nop_unbind(struct i915_vma *vma)
{
}

static const struct i915_vma_ops nop_vma_ops = {
	.set_pages = nop_set_pages,
	.clear_pages = nop_clear_pages,
	.bind_vma = nop_bind,
	.unbind_vma = nop_unbind,
};

1887 1888 1889
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1890
	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1891

1892 1893 1894
	/* FIXME remove the struct_mutex to bring the locking under control */
	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
	work->vma = ppgtt->vma;
1895
	work->vma->ops = &nop_vma_ops;
1896
	schedule_work(&work->base);
1897 1898 1899

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1900 1901
}

1902
static int pd_vma_set_pages(struct i915_vma *vma)
1903
{
1904 1905 1906
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1907

1908 1909 1910
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1911

1912 1913 1914 1915 1916 1917 1918 1919 1920
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1921
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1922 1923
	struct i915_page_table *pt;
	unsigned int pde;
1924

1925 1926
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1927

1928 1929
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1930

1931 1932
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1933

1934
	return 0;
1935
}
1936

1937
static void pd_vma_unbind(struct i915_vma *vma)
1938
{
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

1975
	vma = i915_vma_alloc();
1976 1977 1978
	if (!vma)
		return ERR_PTR(-ENOMEM);

1979
	i915_active_init(i915, &vma->active, NULL);
1980
	INIT_ACTIVE_REQUEST(&vma->last_fence);
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
1992 1993

	mutex_lock(&vma->vm->mutex);
1994
	list_add(&vma->vm_link, &vma->vm->unbound_list);
1995
	mutex_unlock(&vma->vm->mutex);
1996 1997 1998

	return vma;
}
1999

2000
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2001 2002
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2003
	int err;
2004

2005 2006
	GEM_BUG_ON(ppgtt->base.vm.closed);

2007 2008 2009 2010 2011 2012 2013 2014 2015
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2016 2017 2018 2019 2020
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2032 2033
}

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2056
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2057
{
2058
	struct i915_ggtt * const ggtt = &i915->ggtt;
2059
	struct gen6_hw_ppgtt *ppgtt;
2060 2061 2062 2063 2064 2065
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2066
	ppgtt_init(i915, &ppgtt->base);
2067

2068
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2069 2070 2071
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2072

2073 2074
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2075
	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2076 2077
	if (!ppgtt->work) {
		err = -ENOMEM;
2078
		goto err_free;
2079
	}
2080

2081
	err = gen6_ppgtt_init_scratch(ppgtt);
2082
	if (err)
2083
		goto err_work;
2084

2085 2086 2087
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2088
		goto err_scratch;
2089
	}
2090

2091
	return &ppgtt->base;
2092

2093 2094
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2095 2096
err_work:
	kfree(ppgtt->work);
2097 2098 2099
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2100
}
2101

2102
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2103 2104 2105 2106 2107
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2108
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2109
	if (IS_BROADWELL(dev_priv))
2110
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2111
	else if (IS_CHERRYVIEW(dev_priv))
2112
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2113
	else if (IS_GEN9_LP(dev_priv))
2114
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2115 2116
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2134 2135
}

2136
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2137
{
2138
	gtt_write_workarounds(dev_priv);
2139

2140
	if (IS_GEN(dev_priv, 6))
2141
		gen6_ppgtt_enable(dev_priv);
2142
	else if (IS_GEN(dev_priv, 7))
2143
		gen7_ppgtt_enable(dev_priv);
2144

2145 2146
	return 0;
}
2147

2148 2149 2150 2151 2152 2153 2154 2155 2156
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2157
struct i915_hw_ppgtt *
2158
i915_ppgtt_create(struct drm_i915_private *i915)
2159 2160 2161
{
	struct i915_hw_ppgtt *ppgtt;

2162 2163 2164
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2165

2166
	trace_i915_ppgtt_create(&ppgtt->vm);
2167

2168 2169 2170
	return ppgtt;
}

2171
static void ppgtt_destroy_vma(struct i915_address_space *vm)
2172 2173
{
	struct list_head *phases[] = {
2174
		&vm->bound_list,
2175 2176 2177 2178 2179 2180 2181 2182 2183
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2184
			i915_vma_destroy(vma);
2185 2186 2187
	}
}

2188
void i915_ppgtt_release(struct kref *kref)
2189 2190 2191 2192
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2193
	trace_i915_ppgtt_release(&ppgtt->vm);
2194

2195
	ppgtt_destroy_vma(&ppgtt->vm);
2196

2197
	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2198
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2199

2200 2201
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2202 2203
	kfree(ppgtt);
}
2204

2205 2206 2207
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2208
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2209 2210 2211 2212
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2213
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2214 2215
}

2216
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2217
{
2218
	struct intel_engine_cs *engine;
2219
	enum intel_engine_id id;
2220
	u32 fault;
2221

2222
	for_each_engine(engine, dev_priv, id) {
2223 2224
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2225
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2226
					 "\tAddr: 0x%08lx\n"
2227 2228 2229
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2230 2231 2232 2233
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2234 2235
		}
	}
2236 2237
}

2238
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2239 2240 2241 2242
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2243 2244 2245 2246 2247 2248 2249 2250
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2251
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2252 2253
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2254 2255 2256
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2257 2258 2259
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2270
		gen8_check_faults(dev_priv);
2271
	else if (INTEL_GEN(dev_priv) >= 6)
2272
		gen6_check_faults(dev_priv);
2273 2274
	else
		return;
2275 2276

	i915_clear_error_registers(dev_priv);
2277 2278
}

2279
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2280
{
2281
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2282 2283 2284 2285

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2286
	if (INTEL_GEN(dev_priv) < 6)
2287 2288
		return;

2289
	i915_check_and_clear_faults(dev_priv);
2290

2291
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2292

2293
	i915_ggtt_invalidate(dev_priv);
2294 2295
}

2296 2297
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2298
{
2299
	do {
2300 2301 2302 2303
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2304 2305
			return 0;

2306 2307
		/*
		 * If the DMA remap fails, one cause can be that we have
2308 2309 2310 2311 2312 2313 2314
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2315
				 obj->base.size >> PAGE_SHIFT, NULL,
2316
				 I915_SHRINK_BOUND |
2317
				 I915_SHRINK_UNBOUND));
2318

2319
	return -ENOSPC;
2320 2321
}

2322
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2323 2324 2325 2326
{
	writeq(pte, addr);
}

2327 2328
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2329
				  u64 offset,
2330 2331 2332
				  enum i915_cache_level level,
				  u32 unused)
{
2333
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2334
	gen8_pte_t __iomem *pte =
2335
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2336

2337
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2338

2339
	ggtt->invalidate(vm->i915);
2340 2341
}

B
Ben Widawsky 已提交
2342
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2343
				     struct i915_vma *vma,
2344
				     enum i915_cache_level level,
2345
				     u32 flags)
B
Ben Widawsky 已提交
2346
{
2347
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2348 2349
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2350
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2351
	dma_addr_t addr;
2352

2353 2354 2355 2356
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2357

2358
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2359
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2360
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2361
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2362

2363 2364 2365
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2366
	 */
2367
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2368 2369
}

2370 2371
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2372
				  u64 offset,
2373 2374 2375
				  enum i915_cache_level level,
				  u32 flags)
{
2376
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2377
	gen6_pte_t __iomem *pte =
2378
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2379

2380
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2381

2382
	ggtt->invalidate(vm->i915);
2383 2384
}

2385 2386 2387 2388 2389 2390
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2391
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2392
				     struct i915_vma *vma,
2393 2394
				     enum i915_cache_level level,
				     u32 flags)
2395
{
2396
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2397
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2398
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2399
	struct sgt_iter iter;
2400
	dma_addr_t addr;
2401
	for_each_sgt_dma(addr, iter, vma->pages)
2402
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2403

2404 2405 2406
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2407
	 */
2408
	ggtt->invalidate(vm->i915);
2409 2410
}

2411
static void nop_clear_range(struct i915_address_space *vm,
2412
			    u64 start, u64 length)
2413 2414 2415
{
}

B
Ben Widawsky 已提交
2416
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2417
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2418
{
2419
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2420 2421
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2422
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2423
	gen8_pte_t __iomem *gtt_base =
2424 2425
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2481
	struct i915_vma *vma;
2482
	enum i915_cache_level level;
2483
	u32 flags;
2484 2485 2486 2487 2488 2489
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2490
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2491 2492 2493 2494 2495 2496
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2497
					     struct i915_vma *vma,
2498
					     enum i915_cache_level level,
2499
					     u32 flags)
2500
{
2501
	struct insert_entries arg = { vm, vma, level, flags };
2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2531
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2532
				  u64 start, u64 length)
2533
{
2534
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2535 2536
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2537
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2538 2539
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2540 2541 2542 2543 2544 2545 2546
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2547
	scratch_pte = vm->scratch_pte;
2548

2549 2550 2551 2552
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2553 2554
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2555
				  u64 offset,
2556 2557 2558 2559 2560 2561 2562 2563 2564
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2565
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2566
				     struct i915_vma *vma,
2567 2568
				     enum i915_cache_level cache_level,
				     u32 unused)
2569 2570 2571 2572
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2573 2574
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2575 2576
}

2577
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2578
				  u64 start, u64 length)
2579
{
2580
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2581 2582
}

2583 2584 2585
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2586
{
2587
	struct drm_i915_private *i915 = vma->vm->i915;
2588
	struct drm_i915_gem_object *obj = vma->obj;
2589
	intel_wakeref_t wakeref;
2590
	u32 pte_flags;
2591

2592
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2593
	pte_flags = 0;
2594
	if (i915_gem_object_is_readonly(obj))
2595 2596
		pte_flags |= PTE_READ_ONLY;

2597 2598
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2599

2600 2601
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2602 2603 2604 2605 2606
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2607
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2608 2609 2610 2611

	return 0;
}

2612 2613 2614
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2615
	intel_wakeref_t wakeref;
2616

2617 2618
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2619 2620
}

2621 2622 2623
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2624
{
2625
	struct drm_i915_private *i915 = vma->vm->i915;
2626
	u32 pte_flags;
2627
	int ret;
2628

2629
	/* Currently applicable only to VLV */
2630
	pte_flags = 0;
2631
	if (i915_gem_object_is_readonly(vma->obj))
2632
		pte_flags |= PTE_READ_ONLY;
2633

2634 2635 2636
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2637
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2638 2639 2640
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2641
			if (ret)
2642
				return ret;
2643 2644
		}

2645 2646
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2647 2648
	}

2649
	if (flags & I915_VMA_GLOBAL_BIND) {
2650 2651
		intel_wakeref_t wakeref;

2652 2653 2654 2655
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2656
	}
2657

2658
	return 0;
2659 2660
}

2661
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2662
{
2663
	struct drm_i915_private *i915 = vma->vm->i915;
2664

2665
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2666
		struct i915_address_space *vm = vma->vm;
2667 2668
		intel_wakeref_t wakeref;

2669 2670
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2671
	}
2672

2673
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2674
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2675 2676 2677

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2678 2679
}

2680 2681
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2682
{
D
David Weinehall 已提交
2683 2684
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2685
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2686

2687
	if (unlikely(ggtt->do_idle_maps)) {
2688
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2689 2690 2691 2692 2693
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2694

2695
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2696
}
2697

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2708 2709
	vma->page_sizes = vma->obj->mm.page_sizes;

2710 2711 2712
	return 0;
}

C
Chris Wilson 已提交
2713
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2714
				  unsigned long color,
2715 2716
				  u64 *start,
				  u64 *end)
2717
{
2718
	if (node->allocated && node->color != color)
2719
		*start += I915_GTT_PAGE_SIZE;
2720

2721 2722 2723 2724 2725
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2726
	node = list_next_entry(node, node_list);
2727
	if (node->color != color)
2728
		*end -= I915_GTT_PAGE_SIZE;
2729
}
B
Ben Widawsky 已提交
2730

2731 2732 2733 2734 2735 2736
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2737
	ppgtt = i915_ppgtt_create(i915);
2738 2739
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2740

2741
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2742 2743 2744 2745
		err = -ENODEV;
		goto err_ppgtt;
	}

2746 2747 2748 2749 2750 2751 2752 2753 2754
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2755 2756

	i915->mm.aliasing_ppgtt = ppgtt;
2757

2758 2759
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2760

2761 2762
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2763

2764 2765 2766
	return 0;

err_ppgtt:
2767
	i915_ppgtt_put(ppgtt);
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2780
	i915_ppgtt_put(ppgtt);
2781

2782 2783
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2784 2785
}

2786
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2787
{
2788 2789 2790 2791 2792 2793 2794 2795 2796
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2797
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2798
	unsigned long hole_start, hole_end;
2799
	struct drm_mm_node *entry;
2800
	int ret;
2801

2802 2803 2804 2805 2806 2807 2808 2809 2810
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2811 2812 2813
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2814

2815
	/* Reserve a mappable slot for our lockless error capture */
2816
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2817 2818 2819
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2820 2821 2822
	if (ret)
		return ret;

2823 2824 2825 2826 2827 2828
	if (USES_GUC(dev_priv)) {
		ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
		if (ret)
			goto err_reserve;
	}

2829
	/* Clear any non-preallocated blocks */
2830
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2831 2832
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2833 2834
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2835 2836 2837
	}

	/* And finally clear the reserved guard page */
2838
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2839

2840
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2841
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2842
		if (ret)
2843
			goto err_appgtt;
2844 2845
	}

2846
	return 0;
2847

2848 2849 2850
err_appgtt:
	intel_guc_release_ggtt_top(&dev_priv->guc);
err_reserve:
2851 2852
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2853 2854
}

2855 2856
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2857
 * @dev_priv: i915 device
2858
 */
2859
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2860
{
2861
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2862
	struct i915_vma *vma, *vn;
2863
	struct pagevec *pvec;
2864

2865
	ggtt->vm.closed = true;
2866 2867

	mutex_lock(&dev_priv->drm.struct_mutex);
2868 2869
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2870
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2871
		WARN_ON(i915_vma_unbind(vma));
2872

2873 2874 2875
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2876 2877
	intel_guc_release_ggtt_top(&dev_priv->guc);

2878
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2879
		intel_vgt_deballoon(dev_priv);
2880
		i915_address_space_fini(&ggtt->vm);
2881 2882
	}

2883
	ggtt->vm.cleanup(&ggtt->vm);
2884

2885
	pvec = &dev_priv->mm.wc_stash.pvec;
2886 2887 2888 2889 2890
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2891
	mutex_unlock(&dev_priv->drm.struct_mutex);
2892 2893

	arch_phys_wc_del(ggtt->mtrr);
2894
	io_mapping_fini(&ggtt->iomap);
2895

2896
	i915_gem_cleanup_stolen(dev_priv);
2897
}
2898

2899
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2900 2901 2902 2903 2904 2905
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2906
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2907 2908 2909 2910 2911
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2912 2913

#ifdef CONFIG_X86_32
2914
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2915 2916 2917 2918
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2919 2920 2921
	return bdw_gmch_ctl << 20;
}

2922
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2933
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2934
{
2935
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2936
	struct pci_dev *pdev = dev_priv->drm.pdev;
2937
	phys_addr_t phys_addr;
2938
	int ret;
B
Ben Widawsky 已提交
2939 2940

	/* For Modern GENs the PTEs and register space are split in the BAR */
2941
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2942

I
Imre Deak 已提交
2943
	/*
2944 2945 2946
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2947 2948 2949
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2950
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2951
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2952
	else
2953
		ggtt->gsm = ioremap_wc(phys_addr, size);
2954
	if (!ggtt->gsm) {
2955
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2956 2957 2958
		return -ENOMEM;
	}

2959
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2960
	if (ret) {
B
Ben Widawsky 已提交
2961 2962
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2963
		iounmap(ggtt->gsm);
2964
		return ret;
B
Ben Widawsky 已提交
2965 2966
	}

2967 2968 2969 2970
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2971
	return 0;
B
Ben Widawsky 已提交
2972 2973
}

2974 2975
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2976
{
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3020
	struct intel_ppat_entry *entry = NULL;
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3043
		if (!entry)
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3120
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3158 3159
}

B
Ben Widawsky 已提交
3160 3161 3162
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3163
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3164
{
3165 3166 3167 3168
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3169

3170
	if (!HAS_PPGTT(ppat->i915)) {
3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3184 3185 3186
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3187

3188 3189 3190 3191 3192 3193 3194 3195
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3196 3197
}

3198
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3199
{
3200 3201 3202 3203
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3204 3205 3206 3207 3208 3209 3210

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3222 3223
	 */

3224 3225 3226 3227 3228 3229 3230 3231
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3232 3233
}

3234 3235 3236 3237 3238
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3239
	cleanup_scratch_page(vm);
3240 3241
}

3242 3243
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3244 3245 3246 3247 3248
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3249
	if (INTEL_GEN(dev_priv) >= 10)
3250
		cnl_setup_private_ppat(ppat);
3251
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3252
		chv_setup_private_ppat(ppat);
3253
	else
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3265 3266
}

3267
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3268
{
3269
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3270
	struct pci_dev *pdev = dev_priv->drm.pdev;
3271
	unsigned int size;
B
Ben Widawsky 已提交
3272
	u16 snb_gmch_ctl;
3273
	int err;
B
Ben Widawsky 已提交
3274 3275

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3276 3277 3278 3279
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3280

3281 3282 3283 3284 3285
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3286

3287
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3288
	if (IS_CHERRYVIEW(dev_priv))
3289
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3290
	else
3291
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3292

3293
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3294 3295 3296
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3297
	if (intel_scanout_needs_vtd_wa(dev_priv))
3298
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3299

3300
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3301

3302
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3303 3304
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3305 3306 3307 3308
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3309 3310 3311 3312 3313

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3314 3315
	}

3316 3317
	ggtt->invalidate = gen6_ggtt_invalidate;

3318 3319 3320 3321 3322
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3323 3324
	ggtt->vm.pte_encode = gen8_pte_encode;

3325 3326
	setup_private_pat(dev_priv);

3327
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3328 3329
}

3330
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3331
{
3332
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3333
	struct pci_dev *pdev = dev_priv->drm.pdev;
3334
	unsigned int size;
3335
	u16 snb_gmch_ctl;
3336
	int err;
3337

3338 3339 3340 3341
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3342

3343 3344
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3345
	 */
3346
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3347
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3348
		return -ENXIO;
3349 3350
	}

3351 3352 3353 3354 3355
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3356
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3357

3358
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3359
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3360

3361 3362 3363
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3364 3365 3366
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3367

3368 3369
	ggtt->invalidate = gen6_ggtt_invalidate;

3370
	if (HAS_EDRAM(dev_priv))
3371
		ggtt->vm.pte_encode = iris_pte_encode;
3372
	else if (IS_HASWELL(dev_priv))
3373
		ggtt->vm.pte_encode = hsw_pte_encode;
3374
	else if (IS_VALLEYVIEW(dev_priv))
3375
		ggtt->vm.pte_encode = byt_pte_encode;
3376
	else if (INTEL_GEN(dev_priv) >= 7)
3377
		ggtt->vm.pte_encode = ivb_pte_encode;
3378
	else
3379
		ggtt->vm.pte_encode = snb_pte_encode;
3380

3381 3382 3383 3384 3385
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3386
	return ggtt_probe_common(ggtt, size);
3387 3388
}

3389
static void i915_gmch_remove(struct i915_address_space *vm)
3390
{
3391
	intel_gmch_remove();
3392
}
3393

3394
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3395
{
3396
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3397
	phys_addr_t gmadr_base;
3398 3399
	int ret;

3400
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3401 3402 3403 3404 3405
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3406
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3407

3408 3409 3410 3411
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3412
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3413 3414 3415 3416
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3417

3418 3419
	ggtt->invalidate = gmch_ggtt_invalidate;

3420 3421 3422 3423 3424
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3425
	if (unlikely(ggtt->do_idle_maps))
3426 3427
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3428 3429 3430
	return 0;
}

3431
/**
3432
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3433
 * @dev_priv: i915 device
3434
 */
3435
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3436
{
3437
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3438 3439
	int ret;

3440 3441
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3442

3443 3444 3445 3446 3447 3448
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3449
	if (ret)
3450 3451
		return ret;

3452
	if ((ggtt->vm.total - 1) >> 32) {
3453
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3454
			  " of address space! Found %lldM!\n",
3455 3456 3457 3458
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3459 3460
	}

3461
	if (ggtt->mappable_end > ggtt->vm.total) {
3462
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3463
			  " aperture=%pa, total=%llx\n",
3464 3465
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3466 3467
	}

3468
	/* GMADR is the PCI mmio aperture into the global GTT. */
3469
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3470
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3471
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3472
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3473
	if (intel_vtd_active())
3474
		DRM_INFO("VT-d active for gfx access\n");
3475 3476

	return 0;
3477 3478 3479 3480
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3481
 * @dev_priv: i915 device
3482
 */
3483
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3484 3485 3486 3487
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3488 3489
	stash_init(&dev_priv->mm.wc_stash);

3490 3491 3492 3493
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3494
	 */
C
Chris Wilson 已提交
3495
	mutex_lock(&dev_priv->drm.struct_mutex);
3496
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3497

3498 3499
	ggtt->vm.is_ggtt = true;

3500 3501 3502
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3503
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3504
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3505
	mutex_unlock(&dev_priv->drm.struct_mutex);
3506

3507 3508
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3509
				dev_priv->ggtt.mappable_end)) {
3510 3511 3512 3513
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3514
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3515

3516 3517 3518 3519
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3520
	ret = i915_gem_init_stolen(dev_priv);
3521 3522 3523 3524
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3525 3526

out_gtt_cleanup:
3527
	ggtt->vm.cleanup(&ggtt->vm);
3528
	return ret;
3529
}
3530

3531
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3532
{
3533
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3534 3535 3536 3537 3538
		return -EIO;

	return 0;
}

3539 3540
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3541 3542
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3543
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3544 3545

	i915_ggtt_invalidate(i915);
3546 3547 3548 3549
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3550 3551 3552 3553
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3554 3555 3556 3557
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3558 3559

	i915_ggtt_invalidate(i915);
3560 3561
}

3562
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3563
{
3564
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3565
	struct i915_vma *vma, *vn;
3566

3567
	i915_check_and_clear_faults(dev_priv);
3568

3569 3570
	mutex_lock(&ggtt->vm.mutex);

3571
	/* First fill our portion of the GTT with scratch pages */
3572 3573
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3574 3575

	/* clflush objects bound into the GGTT and rebind them. */
3576
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3577
		struct drm_i915_gem_object *obj = vma->obj;
3578

3579 3580
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3581

3582 3583
		mutex_unlock(&ggtt->vm.mutex);

3584
		if (!i915_vma_unbind(vma))
3585
			goto lock;
3586

3587 3588 3589
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3590 3591
		if (obj) {
			i915_gem_object_lock(obj);
3592
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3593 3594
			i915_gem_object_unlock(obj);
		}
3595 3596 3597

lock:
		mutex_lock(&ggtt->vm.mutex);
3598
	}
3599

3600
	ggtt->vm.closed = false;
3601
	i915_ggtt_invalidate(dev_priv);
3602

3603 3604
	mutex_unlock(&ggtt->vm.mutex);

3605
	if (INTEL_GEN(dev_priv) >= 8) {
3606
		struct intel_ppat *ppat = &dev_priv->ppat;
3607

3608 3609
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3610 3611 3612 3613
		return;
	}
}

3614
static struct scatterlist *
3615
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3616
	     unsigned int width, unsigned int height,
3617
	     unsigned int stride,
3618
	     struct sg_table *st, struct scatterlist *sg)
3619 3620 3621 3622 3623
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3624
		src_idx = stride * (height - 1) + column + offset;
3625 3626 3627 3628 3629 3630
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3631
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3632 3633
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3634
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3635
			sg = sg_next(sg);
3636
			src_idx -= stride;
3637 3638
		}
	}
3639 3640

	return sg;
3641 3642
}

3643 3644 3645
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3646
{
3647
	unsigned int size = intel_rotation_info_size(rot_info);
3648
	struct sg_table *st;
3649
	struct scatterlist *sg;
3650
	int ret = -ENOMEM;
3651
	int i;
3652 3653 3654 3655 3656 3657

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3658
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3659 3660 3661
	if (ret)
		goto err_sg_alloc;

3662 3663 3664
	st->nents = 0;
	sg = st->sgl;

3665
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3666
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3667 3668
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3669 3670
	}

3671 3672 3673 3674 3675 3676
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3677 3678
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3679

3680 3681
	return ERR_PTR(ret);
}
3682

3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3766
static noinline struct sg_table *
3767 3768 3769 3770
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3771
	struct scatterlist *sg, *iter;
3772
	unsigned int count = view->partial.size;
3773
	unsigned int offset;
3774 3775 3776 3777 3778 3779
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3780
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3781 3782 3783
	if (ret)
		goto err_sg_alloc;

3784
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3785 3786
	GEM_BUG_ON(!iter);

3787 3788
	sg = st->sgl;
	st->nents = 0;
3789 3790
	do {
		unsigned int len;
3791

3792 3793 3794 3795 3796 3797
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3798 3799

		st->nents++;
3800 3801 3802
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3803 3804
			i915_sg_trim(st); /* Drop any unused tail entries. */

3805 3806
			return st;
		}
3807

3808 3809 3810 3811
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3812 3813 3814 3815 3816 3817 3818

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3819
static int
3820
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3821
{
3822
	int ret;
3823

3824 3825 3826 3827 3828 3829 3830
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3831
	switch (vma->ggtt_view.type) {
3832 3833 3834
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3835 3836
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3837 3838
		return 0;

3839
	case I915_GGTT_VIEW_ROTATED:
3840
		vma->pages =
3841 3842 3843
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3844 3845 3846 3847 3848
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3849
	case I915_GGTT_VIEW_PARTIAL:
3850
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3851 3852
		break;
	}
3853

3854
	ret = 0;
3855
	if (IS_ERR(vma->pages)) {
3856 3857
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3858 3859
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3860
	}
3861
	return ret;
3862 3863
}

3864 3865
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3900
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3901
	GEM_BUG_ON(drm_mm_node_allocated(node));
3902 3903 3904 3905 3906 3907 3908 3909 3910

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3911 3912 3913
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3914 3915 3916 3917 3918 3919 3920
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3946 3947
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3948 3949 3950 3951 3952 3953 3954 3955 3956
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3957
 *         must be #I915_GTT_PAGE_SIZE aligned
3958 3959 3960
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3961 3962 3963 3964 3965 3966
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3967 3968
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3985
	enum drm_mm_insert_mode mode;
3986
	u64 offset;
3987 3988 3989 3990 3991 3992 3993 3994 3995 3996
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3997
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3998
	GEM_BUG_ON(drm_mm_node_allocated(node));
3999 4000 4001 4002 4003 4004 4005

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4006 4007
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4008
		mode = DRM_MM_INSERT_HIGHEST;
4009 4010
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4022 4023 4024
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4025 4026 4027
	if (err != -ENOSPC)
		return err;

4028 4029 4030 4031 4032 4033 4034 4035 4036
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4037 4038 4039
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4069 4070 4071 4072 4073
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4074 4075 4076
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4077
}
4078 4079 4080

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4081
#include "selftests/i915_gem_gtt.c"
4082
#endif