i915_gem_gtt.c 103.9 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36 37
#include <drm/drmP.h>
#include <drm/i915_drm.h>
38

39
#include "i915_drv.h"
40
#include "i915_vgpu.h"
41 42
#include "i915_trace.h"
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137
int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
			       	int enable_ppgtt)
138
{
139
	bool has_full_ppgtt;
140
	bool has_full_48bit_ppgtt;
141

142 143 144
	if (!dev_priv->info.has_aliasing_ppgtt)
		return 0;

145 146
	has_full_ppgtt = dev_priv->info.has_full_ppgtt;
	has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
147

148
	if (intel_vgpu_active(dev_priv)) {
149
		/* GVT-g has no support for 32bit ppgtt */
150
		has_full_ppgtt = false;
151
		has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
152
	}
153

154 155 156 157
	/*
	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
	 * execlists, the sole mechanism available to submit work.
	 */
158
	if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
159 160 161 162 163
		return 0;

	if (enable_ppgtt == 1)
		return 1;

164
	if (enable_ppgtt == 2 && has_full_ppgtt)
165 166
		return 2;

167 168 169
	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
		return 3;

170
	/* Disable ppgtt on SNB if VT-d is on. */
171
	if (IS_GEN6(dev_priv) && intel_vtd_active()) {
172
		DRM_INFO("Disabling PPGTT because VT-d is on\n");
173
		return 0;
174 175
	}

176
	/* Early VLV doesn't have this */
177
	if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
178 179 180 181
		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
		return 0;
	}

182
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
183 184 185 186 187 188 189
		if (has_full_48bit_ppgtt)
			return 3;

		if (has_full_ppgtt)
			return 2;
	}

190
	return 1;
191 192
}

193 194 195
static int gen6_ppgtt_bind_vma(struct i915_vma *vma,
			       enum i915_cache_level cache_level,
			       u32 unused)
196
{
197
	u32 pte_flags;
198 199

	/* Currently applicable only to VLV */
200
	pte_flags = 0;
201 202 203
	if (vma->obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

204
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
205 206

	return 0;
207 208
}

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
static int gen8_ppgtt_bind_vma(struct i915_vma *vma,
			       enum i915_cache_level cache_level,
			       u32 unused)
{
	int ret;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		ret = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (ret)
			return ret;
	}

	return gen6_ppgtt_bind_vma(vma, cache_level, unused);
}

225 226
static void ppgtt_unbind_vma(struct i915_vma *vma)
{
227
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
228
}
229

230 231 232 233 234 235
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

236 237
	vma->page_sizes = vma->obj->mm.page_sizes;

238 239 240 241 242 243 244 245 246 247 248 249
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
250 251

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
252 253
}

254
static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
255
				  enum i915_cache_level level)
B
Ben Widawsky 已提交
256
{
257
	gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
258
	pte |= addr;
259 260 261

	switch (level) {
	case I915_CACHE_NONE:
262
		pte |= PPAT_UNCACHED;
263 264
		break;
	case I915_CACHE_WT:
265
		pte |= PPAT_DISPLAY_ELLC;
266 267
		break;
	default:
268
		pte |= PPAT_CACHED;
269 270 271
		break;
	}

B
Ben Widawsky 已提交
272 273 274
	return pte;
}

275 276
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
277
{
278
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
279 280
	pde |= addr;
	if (level != I915_CACHE_NONE)
281
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
282
	else
283
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
284 285 286
	return pde;
}

287 288 289
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

290 291
static gen6_pte_t snb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
292
				 u32 unused)
293
{
294
	gen6_pte_t pte = GEN6_PTE_VALID;
295
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
296 297

	switch (level) {
298 299 300 301 302 303 304 305
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
306
		MISSING_CASE(level);
307 308 309 310 311
	}

	return pte;
}

312 313
static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
314
				 u32 unused)
315
{
316
	gen6_pte_t pte = GEN6_PTE_VALID;
317 318 319 320 321
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
322 323 324 325 326
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
327
		pte |= GEN6_PTE_UNCACHED;
328 329
		break;
	default:
330
		MISSING_CASE(level);
331 332
	}

333 334 335
	return pte;
}

336 337
static gen6_pte_t byt_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
338
				 u32 flags)
339
{
340
	gen6_pte_t pte = GEN6_PTE_VALID;
341 342
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

343 344
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
345 346 347 348 349 350 351

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

352 353
static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
				 enum i915_cache_level level,
354
				 u32 unused)
355
{
356
	gen6_pte_t pte = GEN6_PTE_VALID;
357
	pte |= HSW_PTE_ADDR_ENCODE(addr);
358 359

	if (level != I915_CACHE_NONE)
360
		pte |= HSW_WB_LLC_AGE3;
361 362 363 364

	return pte;
}

365 366
static gen6_pte_t iris_pte_encode(dma_addr_t addr,
				  enum i915_cache_level level,
367
				  u32 unused)
368
{
369
	gen6_pte_t pte = GEN6_PTE_VALID;
370 371
	pte |= HSW_PTE_ADDR_ENCODE(addr);

372 373 374 375
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
376
		pte |= HSW_WT_ELLC_LLC_AGE3;
377 378
		break;
	default:
379
		pte |= HSW_WB_ELLC_LLC_AGE3;
380 381
		break;
	}
382 383 384 385

	return pte;
}

386
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
387
{
388
	struct pagevec *pvec = &vm->free_pages;
389
	struct pagevec stash;
390

391 392
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407
	if (likely(pvec->nr))
		return pvec->pages[--pvec->nr];

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* A placeholder for a specific mutex to guard the WC stash */
	lockdep_assert_held(&vm->i915->drm.struct_mutex);

	/* Look in our global stash of WC pages... */
	pvec = &vm->i915->mm.wc_stash;
	if (likely(pvec->nr))
		return pvec->pages[--pvec->nr];

408 409 410 411 412 413 414 415 416
	/*
	 * Otherwise batch allocate pages to amoritize cost of set_pages_wc.
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
	pagevec_init(&stash);
417 418
	do {
		struct page *page;
419

420 421 422 423
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

424 425
		stash.pages[stash.nr++] = page;
	} while (stash.nr < pagevec_space(pvec));
426

427 428 429
	if (stash.nr) {
		int nr = min_t(int, stash.nr, pagevec_space(pvec));
		struct page **pages = stash.pages + stash.nr - nr;
430

431 432 433 434 435 436 437 438 439
		if (nr && !set_pages_array_wc(pages, nr)) {
			memcpy(pvec->pages + pvec->nr,
			       pages, sizeof(pages[0]) * nr);
			pvec->nr += nr;
			stash.nr -= nr;
		}

		pagevec_release(&stash);
	}
440

441
	return likely(pvec->nr) ? pvec->pages[--pvec->nr] : NULL;
442 443
}

444 445
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
446
{
447 448 449
	struct pagevec *pvec = &vm->free_pages;

	GEM_BUG_ON(!pagevec_count(pvec));
450

451 452 453 454 455 456
	if (vm->pt_kmap_wc) {
		struct pagevec *stash = &vm->i915->mm.wc_stash;

		/* When we use WC, first fill up the global stash and then
		 * only if full immediately free the overflow.
		 */
457

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
		lockdep_assert_held(&vm->i915->drm.struct_mutex);
		if (pagevec_space(stash)) {
			do {
				stash->pages[stash->nr++] =
					pvec->pages[--pvec->nr];
				if (!pvec->nr)
					return;
			} while (pagevec_space(stash));

			/* As we have made some room in the VM's free_pages,
			 * we can wait for it to fill again. Unless we are
			 * inside i915_address_space_fini() and must
			 * immediately release the pages!
			 */
			if (!immediate)
				return;
		}

		set_pages_array_wb(pvec->pages, pvec->nr);
	}

	__pagevec_release(pvec);
480 481 482 483
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
484 485 486 487 488 489 490 491
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
492
	if (!pagevec_add(&vm->free_pages, page))
493
		vm_free_pages_release(vm, false);
494
}
495

496 497 498 499
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
500
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
501 502
	if (unlikely(!p->page))
		return -ENOMEM;
503

504 505 506 507 508
	p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
				PCI_DMA_BIDIRECTIONAL);
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
509
	}
510 511

	return 0;
512 513
}

514
static int setup_page_dma(struct i915_address_space *vm,
515
			  struct i915_page_dma *p)
516
{
517
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
518 519
}

520
static void cleanup_page_dma(struct i915_address_space *vm,
521
			     struct i915_page_dma *p)
522
{
523 524
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
525 526
}

527
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
528

529 530
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
531 532
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
533

534 535 536
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
537
{
538
	u64 * const vaddr = kmap_atomic(p->page);
539

540
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
541

542
	kunmap_atomic(vaddr);
543 544
}

545 546 547
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
548
{
549
	fill_page_dma(vm, p, (u64)v << 32 | v);
550 551
}

552
static int
553
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
554
{
555
	unsigned long size;
556

557 558 559 560 561 562 563 564 565 566 567 568
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
	 * huge-gtt-pages, see also i915_vma_insert().
	 *
	 * TODO: we should really consider write-protecting the scratch-page and
	 * sharing between ppgtt
	 */
569
	size = I915_GTT_PAGE_SIZE_4K;
570 571
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
572 573
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
574
	}
575 576 577 578 579 580
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
581

582
		page = alloc_pages(gfp, order);
583
		if (unlikely(!page))
584
			goto skip;
585

586
		addr = dma_map_page(vm->dma, page, 0, size,
587
				    PCI_DMA_BIDIRECTIONAL);
588 589
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
590

591 592
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
593

594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
610 611
}

612
static void cleanup_scratch_page(struct i915_address_space *vm)
613
{
614 615
	struct i915_page_dma *p = &vm->scratch_page;

616 617 618
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
619 620
}

621
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
622
{
623
	struct i915_page_table *pt;
624

625
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
626
	if (unlikely(!pt))
627 628
		return ERR_PTR(-ENOMEM);

629 630 631 632
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
633

634
	pt->used_ptes = 0;
635 636 637
	return pt;
}

638
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
639
{
640
	cleanup_px(vm, pt);
641 642 643 644 645 646
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
647 648
	fill_px(vm, pt,
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
649 650 651 652 653
}

static void gen6_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
654 655
	fill32_px(vm, pt,
		  vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
656 657
}

658
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
659
{
660
	struct i915_page_directory *pd;
661

662
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
663
	if (unlikely(!pd))
664 665
		return ERR_PTR(-ENOMEM);

666 667 668 669
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
670

671
	pd->used_pdes = 0;
672 673 674
	return pd;
}

675
static void free_pd(struct i915_address_space *vm,
676
		    struct i915_page_directory *pd)
677
{
678 679
	cleanup_px(vm, pd);
	kfree(pd);
680 681 682 683 684
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
685 686
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
687
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
688 689
}

690
static int __pdp_init(struct i915_address_space *vm,
691 692
		      struct i915_page_directory_pointer *pdp)
{
693
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
694

695
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
696
					    I915_GFP_ALLOW_FAIL);
697
	if (unlikely(!pdp->page_directory))
698 699
		return -ENOMEM;

700
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
701

702 703 704 705 706 707 708 709 710
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

711 712 713 714 715
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

716 717
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
718 719 720 721
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

722
	GEM_BUG_ON(!use_4lvl(vm));
723 724 725 726 727

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

728
	ret = __pdp_init(vm, pdp);
729 730 731
	if (ret)
		goto fail_bitmap;

732
	ret = setup_px(vm, pdp);
733 734 735 736 737 738 739 740 741 742 743 744 745
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

746
static void free_pdp(struct i915_address_space *vm,
747 748 749
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
750 751 752 753 754 755

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
756 757
}

758 759 760 761 762 763 764
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

765
	fill_px(vm, pdp, scratch_pdpe);
766 767 768 769 770
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
771 772
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
773
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
774 775
}

776 777 778 779 780 781 782
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
783
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
784 785
}

786 787 788 789
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
790
				struct i915_page_table *pt,
791
				u64 start, u64 length)
792
{
793
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
794 795
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
796 797 798
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
	gen8_pte_t *vaddr;
799

800
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
801

802 803 804
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
805

806
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
807
	while (pte < pte_end)
808
		vaddr[pte++] = scratch_pte;
809
	kunmap_atomic(vaddr);
810 811

	return false;
812
}
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

828
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
829
				struct i915_page_directory *pd,
830
				u64 start, u64 length)
831 832
{
	struct i915_page_table *pt;
833
	u32 pde;
834 835

	gen8_for_each_pde(pt, pd, start, length, pde) {
836 837
		GEM_BUG_ON(pt == vm->scratch_pt);

838 839
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
840

841
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
842
		GEM_BUG_ON(!pd->used_pdes);
843
		pd->used_pdes--;
844 845

		free_pt(vm, pt);
846 847
	}

848 849
	return !pd->used_pdes;
}
850

851 852 853 854 855 856 857 858
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
859
	if (!use_4lvl(vm))
860 861 862 863 864
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
865
}
866

867 868 869 870
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
871
				 struct i915_page_directory_pointer *pdp,
872
				 u64 start, u64 length)
873 874
{
	struct i915_page_directory *pd;
875
	unsigned int pdpe;
876

877
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
878 879
		GEM_BUG_ON(pd == vm->scratch_pd);

880 881
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
882

883
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
884
		GEM_BUG_ON(!pdp->used_pdpes);
885
		pdp->used_pdpes--;
886

887 888
		free_pd(vm, pd);
	}
889

890
	return !pdp->used_pdpes;
891
}
892

893 894 895 896 897 898
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

899 900 901 902 903 904 905 906 907 908 909 910 911
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

912 913 914 915
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
916 917
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
918
{
919 920
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
921
	struct i915_page_directory_pointer *pdp;
922
	unsigned int pml4e;
923

924
	GEM_BUG_ON(!use_4lvl(vm));
925

926
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
927 928
		GEM_BUG_ON(pdp == vm->scratch_pdp);

929 930
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
931

932 933 934
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
935 936 937
	}
}

938
static inline struct sgt_dma {
939 940
	struct scatterlist *sg;
	dma_addr_t dma, max;
941 942 943 944 945
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

964 965
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
966
			      struct i915_page_directory_pointer *pdp,
967
			      struct sgt_dma *iter,
968
			      struct gen8_insert_pte *idx,
969 970
			      enum i915_cache_level cache_level)
{
971 972 973 974
	struct i915_page_directory *pd;
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
	gen8_pte_t *vaddr;
	bool ret;
975

976
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
977 978
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
979
	do {
980 981
		vaddr[idx->pte] = pte_encode | iter->dma;

982 983 984 985 986 987 988
		iter->dma += PAGE_SIZE;
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
989

990 991
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
992
		}
993

994 995 996 997 998 999
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1000
				/* Limited by sg length for 3lvl */
1001 1002
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1003
					ret = true;
1004
					break;
1005 1006
				}

1007
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1008
				pd = pdp->page_directory[idx->pdpe];
1009
			}
1010

1011
			kunmap_atomic(vaddr);
1012
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1013
		}
1014
	} while (1);
1015
	kunmap_atomic(vaddr);
1016

1017
	return ret;
1018 1019
}

1020
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1021
				   struct i915_vma *vma,
1022 1023
				   enum i915_cache_level cache_level,
				   u32 unused)
1024
{
1025
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1026
	struct sgt_dma iter = sgt_dma(vma);
1027
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1028

1029 1030
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
				      cache_level);
1031 1032

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1033
}
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
					   enum i915_cache_level cache_level)
{
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1049
		bool maybe_64K = false;
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1071 1072 1073 1074 1075 1076 1077
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
			     rem >= (max - index) << PAGE_SHIFT))
				maybe_64K = true;

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1097 1098 1099 1100 1101 1102
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
				       rem >= (max - index) << PAGE_SHIFT)))
					maybe_64K = false;

1103 1104 1105 1106 1107 1108
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1125
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

				encode = pte_encode | vma->vm->scratch_page.daddr;
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1147
		}
1148 1149

		vma->page_sizes.gtt |= page_size;
1150 1151 1152
	} while (iter->sg);
}

1153
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1154
				   struct i915_vma *vma,
1155 1156 1157 1158
				   enum i915_cache_level cache_level,
				   u32 unused)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1159
	struct sgt_dma iter = sgt_dma(vma);
1160
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1161

1162 1163 1164 1165 1166 1167 1168 1169
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
						     &iter, &idx, cache_level))
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1170 1171

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1172
	}
1173 1174
}

1175
static void gen8_free_page_tables(struct i915_address_space *vm,
1176
				  struct i915_page_directory *pd)
1177 1178 1179
{
	int i;

1180
	if (!px_page(pd))
1181 1182
		return;

1183 1184 1185
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1186
	}
B
Ben Widawsky 已提交
1187 1188
}

1189 1190
static int gen8_init_scratch(struct i915_address_space *vm)
{
1191
	int ret;
1192

1193
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1194 1195
	if (ret)
		return ret;
1196

1197
	vm->scratch_pt = alloc_pt(vm);
1198
	if (IS_ERR(vm->scratch_pt)) {
1199 1200
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1201 1202
	}

1203
	vm->scratch_pd = alloc_pd(vm);
1204
	if (IS_ERR(vm->scratch_pd)) {
1205 1206
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1207 1208
	}

1209
	if (use_4lvl(vm)) {
1210
		vm->scratch_pdp = alloc_pdp(vm);
1211
		if (IS_ERR(vm->scratch_pdp)) {
1212 1213
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1214 1215 1216
		}
	}

1217 1218
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1219
	if (use_4lvl(vm))
1220
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1221 1222

	return 0;
1223 1224

free_pd:
1225
	free_pd(vm, vm->scratch_pd);
1226
free_pt:
1227
	free_pt(vm, vm->scratch_pt);
1228
free_scratch_page:
1229
	cleanup_scratch_page(vm);
1230 1231

	return ret;
1232 1233
}

1234 1235
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1236
	struct i915_address_space *vm = &ppgtt->vm;
1237
	struct drm_i915_private *dev_priv = vm->i915;
1238 1239 1240
	enum vgt_g2v_type msg;
	int i;

1241 1242
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1243

1244 1245
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1246 1247 1248 1249

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1250
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1251
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1252

1253 1254
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1266 1267
static void gen8_free_scratch(struct i915_address_space *vm)
{
1268
	if (use_4lvl(vm))
1269 1270 1271 1272
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1273 1274
}

1275
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1276
				    struct i915_page_directory_pointer *pdp)
1277
{
1278
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1279 1280
	int i;

1281
	for (i = 0; i < pdpes; i++) {
1282
		if (pdp->page_directory[i] == vm->scratch_pd)
1283 1284
			continue;

1285 1286
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1287
	}
1288

1289
	free_pdp(vm, pdp);
1290 1291 1292 1293 1294 1295
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1296
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1297
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1298 1299
			continue;

1300
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1301 1302
	}

1303
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1304 1305 1306 1307
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1308
	struct drm_i915_private *dev_priv = vm->i915;
1309
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1310

1311
	if (intel_vgpu_active(dev_priv))
1312 1313
		gen8_ppgtt_notify_vgt(ppgtt, false);

1314
	if (use_4lvl(vm))
1315
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1316
	else
1317
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1318

1319
	gen8_free_scratch(vm);
1320 1321
}

1322 1323 1324
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1325
{
1326
	struct i915_page_table *pt;
1327
	u64 from = start;
1328
	unsigned int pde;
1329

1330
	gen8_for_each_pde(pt, pd, start, length, pde) {
1331 1332
		int count = gen8_pte_count(start, length);

1333
		if (pt == vm->scratch_pt) {
1334 1335
			pd->used_pdes++;

1336
			pt = alloc_pt(vm);
1337 1338
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1339
				goto unwind;
1340
			}
1341

1342
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1343
				gen8_initialize_pt(vm, pt);
1344 1345

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1346
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1347
		}
1348

1349
		pt->used_ptes += count;
1350
	}
1351
	return 0;
1352

1353 1354
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1355
	return -ENOMEM;
1356 1357
}

1358 1359 1360
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1361
{
1362
	struct i915_page_directory *pd;
1363 1364
	u64 from = start;
	unsigned int pdpe;
1365 1366
	int ret;

1367
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1368
		if (pd == vm->scratch_pd) {
1369 1370
			pdp->used_pdpes++;

1371
			pd = alloc_pd(vm);
1372 1373
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1374
				goto unwind;
1375
			}
1376

1377
			gen8_initialize_pd(vm, pd);
1378
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1379
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1380 1381

			mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1382 1383 1384
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1385 1386
		if (unlikely(ret))
			goto unwind_pd;
1387
	}
1388

B
Ben Widawsky 已提交
1389
	return 0;
1390

1391 1392 1393 1394 1395 1396 1397
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1398 1399 1400
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1401 1402
}

1403 1404
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1405
{
1406 1407 1408
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1419

1420
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1421 1422 1423 1424
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1425

1426 1427 1428
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1429

1430
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1431 1432
		if (unlikely(ret))
			goto unwind_pdp;
1433 1434 1435 1436
	}

	return 0;

1437 1438 1439 1440 1441
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1442 1443 1444
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1445 1446
}

1447 1448
static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
			  struct i915_page_directory_pointer *pdp,
1449
			  u64 start, u64 length,
1450 1451 1452
			  gen8_pte_t scratch_pte,
			  struct seq_file *m)
{
1453
	struct i915_address_space *vm = &ppgtt->vm;
1454
	struct i915_page_directory *pd;
1455
	u32 pdpe;
1456

1457
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1458
		struct i915_page_table *pt;
1459 1460 1461
		u64 pd_len = length;
		u64 pd_start = start;
		u32 pde;
1462

1463
		if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd)
1464 1465 1466
			continue;

		seq_printf(m, "\tPDPE #%d\n", pdpe);
1467
		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1468
			u32 pte;
1469 1470
			gen8_pte_t *pt_vaddr;

1471
			if (pd->page_table[pde] == ppgtt->vm.scratch_pt)
1472 1473
				continue;

1474
			pt_vaddr = kmap_atomic_px(pt);
1475
			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1476 1477 1478
				u64 va = (pdpe << GEN8_PDPE_SHIFT |
					  pde << GEN8_PDE_SHIFT |
					  pte << GEN8_PTE_SHIFT);
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
				int i;
				bool found = false;

				for (i = 0; i < 4; i++)
					if (pt_vaddr[pte + i] != scratch_pte)
						found = true;
				if (!found)
					continue;

				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
				for (i = 0; i < 4; i++) {
					if (pt_vaddr[pte + i] != scratch_pte)
						seq_printf(m, " %llx", pt_vaddr[pte + i]);
					else
						seq_puts(m, "  SCRATCH ");
				}
				seq_puts(m, "\n");
			}
			kunmap_atomic(pt_vaddr);
		}
	}
}

static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
{
1504
	struct i915_address_space *vm = &ppgtt->vm;
1505 1506
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1507
	u64 start = 0, length = ppgtt->vm.total;
1508

1509
	if (use_4lvl(vm)) {
1510
		u64 pml4e;
1511 1512 1513
		struct i915_pml4 *pml4 = &ppgtt->pml4;
		struct i915_page_directory_pointer *pdp;

1514
		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1515
			if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp)
1516 1517 1518
				continue;

			seq_printf(m, "    PML4E #%llu\n", pml4e);
1519
			gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1520
		}
1521 1522
	} else {
		gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1523 1524 1525
	}
}

1526
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1527
{
1528
	struct i915_address_space *vm = &ppgtt->vm;
1529 1530
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1531
	u64 start = 0, length = ppgtt->vm.total;
1532 1533
	u64 from = start;
	unsigned int pdpe;
1534

1535 1536 1537 1538
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1539

1540 1541 1542 1543
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1544

1545 1546
	pdp->used_pdpes++; /* never remove */
	return 0;
1547

1548 1549 1550 1551 1552 1553 1554 1555
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1556 1557
}

1558
/*
1559 1560 1561 1562
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1563
 *
1564
 */
1565
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1566
{
1567 1568 1569 1570 1571 1572 1573 1574 1575
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1576

1577
	ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ?
1578 1579 1580
		1ULL << 48 :
		1ULL << 32;

1581 1582 1583
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1584
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1585
		ppgtt->vm.pt_kmap_wc = true;
1586

1587 1588 1589
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1590

1591 1592 1593 1594
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1595

1596
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1597

1598 1599 1600
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1601
	} else {
1602 1603 1604
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1605

1606 1607 1608
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1609
				__pdp_fini(&ppgtt->pdp);
1610
				goto err_scratch;
1611
			}
1612
		}
1613

1614 1615 1616
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1617
	}
1618

1619
	if (intel_vgpu_active(i915))
1620 1621
		gen8_ppgtt_notify_vgt(ppgtt, true);

1622
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1623 1624
	ppgtt->debug_dump = gen8_dump_ppgtt;

1625 1626 1627 1628 1629
	ppgtt->vm.vma_ops.bind_vma    = gen8_ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1630
	return ppgtt;
1631

1632
err_scratch:
1633
	gen8_free_scratch(&ppgtt->vm);
1634 1635 1636
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1637 1638
}

1639
static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m)
B
Ben Widawsky 已提交
1640
{
1641 1642
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
	struct i915_address_space *vm = &base->vm;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
	const gen6_pte_t scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
	struct i915_page_table *pt;
	u32 pte, pde;

	gen6_for_all_pdes(pt, &base->pd, pde) {
		gen6_pte_t *vaddr;

		if (pt == base->vm.scratch_pt)
			continue;

		if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) {
			u32 expected =
				GEN6_PDE_ADDR_ENCODE(px_dma(pt)) |
				GEN6_PDE_VALID;
			u32 pd_entry = readl(ppgtt->pd_addr + pde);

			if (pd_entry != expected)
				seq_printf(m,
					   "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
					   pde,
					   pd_entry,
					   expected);

			seq_printf(m, "\tPDE: %x\n", pd_entry);
		}

		vaddr = kmap_atomic_px(base->pd.page_table[pde]);
		for (pte = 0; pte < GEN6_PTES; pte += 4) {
B
Ben Widawsky 已提交
1672
			int i;
1673

B
Ben Widawsky 已提交
1674
			for (i = 0; i < 4; i++)
1675 1676 1677
				if (vaddr[pte + i] != scratch_pte)
					break;
			if (i == 4)
B
Ben Widawsky 已提交
1678 1679
				continue;

1680 1681 1682
			seq_printf(m, "\t\t(%03d, %04d) %08lx: ",
				   pde, pte,
				   (pde * GEN6_PTES + pte) * PAGE_SIZE);
B
Ben Widawsky 已提交
1683
			for (i = 0; i < 4; i++) {
1684 1685
				if (vaddr[pte + i] != scratch_pte)
					seq_printf(m, " %08x", vaddr[pte + i]);
B
Ben Widawsky 已提交
1686
				else
1687
					seq_puts(m, "  SCRATCH");
B
Ben Widawsky 已提交
1688 1689 1690
			}
			seq_puts(m, "\n");
		}
1691
		kunmap_atomic(vaddr);
B
Ben Widawsky 已提交
1692 1693 1694
	}
}

1695
/* Write pde (index) from the page directory @pd to the page table @pt */
1696
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1697 1698
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1699
{
1700
	/* Caller needs to make sure the write completes if necessary */
1701 1702
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1703
}
B
Ben Widawsky 已提交
1704

1705
static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1706
{
1707
	struct intel_engine_cs *engine;
1708
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1709

1710
	for_each_engine(engine, dev_priv, id) {
1711 1712
		u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
				 GEN8_GFX_PPGTT_48B : 0;
1713
		I915_WRITE(RING_MODE_GEN7(engine),
1714
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1715 1716
	}
}
B
Ben Widawsky 已提交
1717

1718
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1719
{
1720
	struct intel_engine_cs *engine;
1721
	u32 ecochk, ecobits;
1722
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1723

1724 1725
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1726

1727
	ecochk = I915_READ(GAM_ECOCHK);
1728
	if (IS_HASWELL(dev_priv)) {
1729 1730 1731 1732 1733 1734
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1735

1736
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1737
		/* GFX_MODE is per-ring on gen7+ */
1738
		I915_WRITE(RING_MODE_GEN7(engine),
1739
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1740
	}
1741
}
B
Ben Widawsky 已提交
1742

1743
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1744
{
1745
	u32 ecochk, gab_ctl, ecobits;
1746

1747 1748 1749
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1750

1751 1752 1753 1754 1755 1756 1757
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1758 1759
}

1760
/* PPGTT support for Sandybdrige/Gen6 and later */
1761
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1762
				   u64 start, u64 length)
1763
{
1764
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1765 1766 1767 1768 1769 1770
	unsigned int first_entry = start >> PAGE_SHIFT;
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
	unsigned int num_entries = length >> PAGE_SHIFT;
	gen6_pte_t scratch_pte =
		vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1771

1772
	while (num_entries) {
1773 1774 1775
		struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
		unsigned int end = min(pte + num_entries, GEN6_PTES);
		gen6_pte_t *vaddr;
1776

1777
		num_entries -= end - pte;
1778

1779 1780 1781 1782 1783
		/* Note that the hw doesn't support removing PDE on the fly
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1784

1785 1786 1787 1788 1789
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1790

1791
		pte = 0;
1792
	}
1793 1794
}

1795
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1796
				      struct i915_vma *vma,
1797 1798
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1799
{
1800
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1801
	unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1802 1803
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1804
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1805
	struct sgt_dma iter = sgt_dma(vma);
1806 1807
	gen6_pte_t *vaddr;

1808
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1809 1810
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1811

1812 1813 1814 1815 1816
		iter.dma += PAGE_SIZE;
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1817

1818 1819 1820
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1821

1822
		if (++act_pte == GEN6_PTES) {
1823 1824
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1825
			act_pte = 0;
D
Daniel Vetter 已提交
1826
		}
1827
	} while (1);
1828
	kunmap_atomic(vaddr);
1829 1830

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1831 1832
}

1833
static int gen6_alloc_va_range(struct i915_address_space *vm,
1834
			       u64 start, u64 length)
1835
{
1836
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1837
	struct i915_page_table *pt;
1838 1839 1840
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1841

1842
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1843 1844 1845 1846
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1847

1848
			gen6_initialize_pt(vm, pt);
1849
			ppgtt->base.pd.page_table[pde] = pt;
1850 1851 1852 1853 1854 1855

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1856 1857 1858
		}
	}

1859
	if (flush) {
1860 1861
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1862 1863 1864
	}

	return 0;
1865 1866

unwind_out:
1867
	gen6_ppgtt_clear_range(vm, from, start - from);
1868
	return -ENOMEM;
1869 1870
}

1871
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1872
{
1873 1874 1875
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1876
	int ret;
1877

1878
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1879 1880
	if (ret)
		return ret;
1881

1882
	vm->scratch_pt = alloc_pt(vm);
1883
	if (IS_ERR(vm->scratch_pt)) {
1884
		cleanup_scratch_page(vm);
1885 1886 1887 1888
		return PTR_ERR(vm->scratch_pt);
	}

	gen6_initialize_pt(vm, vm->scratch_pt);
1889 1890
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1891 1892 1893 1894

	return 0;
}

1895
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1896
{
1897 1898
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1899 1900
}

1901
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1902
{
1903
	struct i915_page_table *pt;
1904
	u32 pde;
1905

1906
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1907 1908 1909 1910 1911 1912 1913
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1914

1915
	i915_vma_destroy(ppgtt->vma);
1916 1917 1918

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1919 1920
}

1921
static int pd_vma_set_pages(struct i915_vma *vma)
1922
{
1923 1924 1925
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1926

1927 1928 1929
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1930

1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	u32 ggtt_offset = i915_ggtt_offset(vma) / PAGE_SIZE;
	struct i915_page_table *pt;
	unsigned int pde;
1943

1944 1945
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1946

1947 1948
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1949

1950 1951
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1952

1953
	return 0;
1954
}
1955

1956
static void pd_vma_unbind(struct i915_vma *vma)
1957
{
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;
	int i;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	for (i = 0; i < ARRAY_SIZE(vma->last_read); i++)
		init_request_active(&vma->last_read[i], NULL);
	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
1999

2000
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2001 2002 2003
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

2004 2005 2006 2007 2008 2009 2010 2011 2012
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2013 2014 2015 2016 2017 2018 2019 2020
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
	return i915_vma_pin(ppgtt->vma,
			    0, GEN6_PD_ALIGN,
			    PIN_GLOBAL | PIN_HIGH);
2021 2022
}

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2034
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2035
{
2036
	struct i915_ggtt * const ggtt = &i915->ggtt;
2037
	struct gen6_hw_ppgtt *ppgtt;
2038 2039 2040 2041 2042 2043
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2044 2045
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
2046

2047
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2048

2049 2050 2051 2052
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
	ppgtt->base.debug_dump = gen6_dump_ppgtt;
2053

2054 2055 2056 2057
	ppgtt->base.vm.vma_ops.bind_vma    = gen6_ppgtt_bind_vma;
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2058

2059 2060
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2061
	err = gen6_ppgtt_init_scratch(ppgtt);
2062 2063 2064
	if (err)
		goto err_free;

2065 2066 2067
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2068
		goto err_scratch;
2069
	}
2070 2071

	err = gen6_alloc_va_range(&ppgtt->base.vm, 0, ppgtt->base.vm.total);
2072 2073 2074
	if (err)
		goto err_vma;

2075
	return &ppgtt->base;
2076

2077 2078
err_vma:
	i915_vma_destroy(ppgtt->vma);
2079 2080
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2081 2082 2083
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2084
}
2085

2086
static void i915_address_space_init(struct i915_address_space *vm,
C
Chris Wilson 已提交
2087 2088
				    struct drm_i915_private *dev_priv,
				    const char *name)
2089
{
2090
	drm_mm_init(&vm->mm, 0, vm->total);
2091 2092
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

2093 2094
	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
2095
	INIT_LIST_HEAD(&vm->unbound_list);
2096

2097
	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2098
	pagevec_init(&vm->free_pages);
2099 2100
}

2101 2102
static void i915_address_space_fini(struct i915_address_space *vm)
{
2103
	if (pagevec_count(&vm->free_pages))
2104
		vm_free_pages_release(vm, true);
2105

2106 2107 2108 2109
	drm_mm_takedown(&vm->mm);
	list_del(&vm->global_link);
}

2110
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2111 2112 2113 2114 2115
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2116
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2117
	if (IS_BROADWELL(dev_priv))
2118
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2119
	else if (IS_CHERRYVIEW(dev_priv))
2120
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2121
	else if (IS_GEN9_LP(dev_priv))
2122
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2123 2124
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2142 2143
}

2144
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2145
{
2146
	gtt_write_workarounds(dev_priv);
2147

2148 2149 2150
	/* In the case of execlists, PPGTT is enabled by the context descriptor
	 * and the PDPs are contained within the context itself.  We don't
	 * need to do anything here. */
2151
	if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2152 2153
		return 0;

2154
	if (!USES_PPGTT(dev_priv))
2155 2156
		return 0;

2157
	if (IS_GEN6(dev_priv))
2158
		gen6_ppgtt_enable(dev_priv);
2159
	else if (IS_GEN7(dev_priv))
2160 2161 2162
		gen7_ppgtt_enable(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 8)
		gen8_ppgtt_enable(dev_priv);
2163
	else
2164
		MISSING_CASE(INTEL_GEN(dev_priv));
2165

2166 2167
	return 0;
}
2168

2169 2170 2171 2172 2173 2174 2175 2176 2177
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2178
struct i915_hw_ppgtt *
2179
i915_ppgtt_create(struct drm_i915_private *i915,
C
Chris Wilson 已提交
2180 2181
		  struct drm_i915_file_private *fpriv,
		  const char *name)
2182 2183 2184
{
	struct i915_hw_ppgtt *ppgtt;

2185 2186 2187
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2188

2189
	kref_init(&ppgtt->ref);
2190
	i915_address_space_init(&ppgtt->vm, i915, name);
2191
	ppgtt->vm.file = fpriv;
2192

2193
	trace_i915_ppgtt_create(&ppgtt->vm);
2194

2195 2196 2197
	return ppgtt;
}

2198
void i915_ppgtt_close(struct i915_address_space *vm)
2199 2200 2201 2202 2203 2204
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2218
			i915_vma_destroy(vma);
2219 2220 2221
	}
}

2222
void i915_ppgtt_release(struct kref *kref)
2223 2224 2225 2226
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2227
	trace_i915_ppgtt_release(&ppgtt->vm);
2228

2229
	ppgtt_destroy_vma(&ppgtt->vm);
2230

2231 2232 2233
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2234

2235 2236
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2237 2238
	kfree(ppgtt);
}
2239

2240 2241 2242
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2243
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2244 2245 2246 2247
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2248
	return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2249 2250
}

2251
static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2252
{
2253
	struct intel_engine_cs *engine;
2254
	enum intel_engine_id id;
2255
	u32 fault;
2256

2257
	for_each_engine(engine, dev_priv, id) {
2258 2259
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2260
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2261
					 "\tAddr: 0x%08lx\n"
2262 2263 2264
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2265 2266 2267 2268
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2269
			I915_WRITE(RING_FAULT_REG(engine),
2270
				   fault & ~RING_FAULT_VALID);
2271 2272
		}
	}
2273

2274 2275 2276 2277 2278 2279 2280 2281
	POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}

static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2282 2283 2284 2285 2286 2287 2288 2289
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2290
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2291 2292
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2293 2294 2295
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2296 2297 2298
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
		I915_WRITE(GEN8_RING_FAULT_REG,
			   fault & ~RING_FAULT_VALID);
	}

	POSTING_READ(GEN8_RING_FAULT_REG);
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
		gen8_check_and_clear_faults(dev_priv);
	else if (INTEL_GEN(dev_priv) >= 6)
		gen6_check_and_clear_faults(dev_priv);
	else
		return;
2318 2319
}

2320
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2321
{
2322
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2323 2324 2325 2326

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2327
	if (INTEL_GEN(dev_priv) < 6)
2328 2329
		return;

2330
	i915_check_and_clear_faults(dev_priv);
2331

2332
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2333

2334
	i915_ggtt_invalidate(dev_priv);
2335 2336
}

2337 2338
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2339
{
2340
	do {
2341 2342 2343 2344
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2345 2346 2347 2348 2349 2350 2351 2352 2353 2354
			return 0;

		/* If the DMA remap fails, one cause can be that we have
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2355
				 obj->base.size >> PAGE_SHIFT, NULL,
2356 2357 2358
				 I915_SHRINK_BOUND |
				 I915_SHRINK_UNBOUND |
				 I915_SHRINK_ACTIVE));
2359

2360
	return -ENOSPC;
2361 2362
}

2363
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2364 2365 2366 2367
{
	writeq(pte, addr);
}

2368 2369
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2370
				  u64 offset,
2371 2372 2373
				  enum i915_cache_level level,
				  u32 unused)
{
2374
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2375
	gen8_pte_t __iomem *pte =
2376
		(gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2377

2378
	gen8_set_pte(pte, gen8_pte_encode(addr, level));
2379

2380
	ggtt->invalidate(vm->i915);
2381 2382
}

B
Ben Widawsky 已提交
2383
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2384
				     struct i915_vma *vma,
2385 2386
				     enum i915_cache_level level,
				     u32 unused)
B
Ben Widawsky 已提交
2387
{
2388
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2389 2390
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2391
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2392
	dma_addr_t addr;
2393

2394
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2395 2396
	gtt_entries += vma->node.start >> PAGE_SHIFT;
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2397
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2398

2399 2400 2401
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2402
	 */
2403
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2404 2405
}

2406 2407
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2408
				  u64 offset,
2409 2410 2411
				  enum i915_cache_level level,
				  u32 flags)
{
2412
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2413
	gen6_pte_t __iomem *pte =
2414
		(gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2415

2416
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2417

2418
	ggtt->invalidate(vm->i915);
2419 2420
}

2421 2422 2423 2424 2425 2426
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2427
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2428
				     struct i915_vma *vma,
2429 2430
				     enum i915_cache_level level,
				     u32 flags)
2431
{
2432
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2433
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2434
	unsigned int i = vma->node.start >> PAGE_SHIFT;
2435
	struct sgt_iter iter;
2436
	dma_addr_t addr;
2437
	for_each_sgt_dma(addr, iter, vma->pages)
2438
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2439

2440 2441 2442
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2443
	 */
2444
	ggtt->invalidate(vm->i915);
2445 2446
}

2447
static void nop_clear_range(struct i915_address_space *vm,
2448
			    u64 start, u64 length)
2449 2450 2451
{
}

B
Ben Widawsky 已提交
2452
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2453
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2454
{
2455
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2456 2457
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2458 2459 2460
	const gen8_pte_t scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
	gen8_pte_t __iomem *gtt_base =
2461 2462
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2518
	struct i915_vma *vma;
2519 2520 2521 2522 2523 2524 2525
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2526
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2527 2528 2529 2530 2531 2532
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2533
					     struct i915_vma *vma,
2534 2535 2536
					     enum i915_cache_level level,
					     u32 unused)
{
2537
	struct insert_entries arg = { vm, vma, level };
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2567
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2568
				  u64 start, u64 length)
2569
{
2570
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2571 2572
	unsigned first_entry = start >> PAGE_SHIFT;
	unsigned num_entries = length >> PAGE_SHIFT;
2573
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2574 2575
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2576 2577 2578 2579 2580 2581 2582
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2583
	scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2584
				     I915_CACHE_LLC, 0);
2585

2586 2587 2588 2589
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2590 2591
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2592
				  u64 offset,
2593 2594 2595 2596 2597 2598 2599 2600 2601
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2602
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2603
				     struct i915_vma *vma,
2604 2605
				     enum i915_cache_level cache_level,
				     u32 unused)
2606 2607 2608 2609
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2610 2611
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2612 2613
}

2614
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2615
				  u64 start, u64 length)
2616
{
2617
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2618 2619
}

2620 2621 2622
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2623
{
2624
	struct drm_i915_private *i915 = vma->vm->i915;
2625
	struct drm_i915_gem_object *obj = vma->obj;
2626
	u32 pte_flags;
2627 2628

	/* Currently applicable only to VLV */
2629
	pte_flags = 0;
2630 2631 2632
	if (obj->gt_ro)
		pte_flags |= PTE_READ_ONLY;

2633
	intel_runtime_pm_get(i915);
2634
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2635
	intel_runtime_pm_put(i915);
2636

2637 2638
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2639 2640 2641 2642 2643
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2644
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2645 2646 2647 2648

	return 0;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;

	intel_runtime_pm_get(i915);
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
	intel_runtime_pm_put(i915);
}

2658 2659 2660
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2661
{
2662
	struct drm_i915_private *i915 = vma->vm->i915;
2663
	u32 pte_flags;
2664
	int ret;
2665

2666
	/* Currently applicable only to VLV */
2667 2668
	pte_flags = 0;
	if (vma->obj->gt_ro)
2669
		pte_flags |= PTE_READ_ONLY;
2670

2671 2672 2673
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2674
		if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2675 2676 2677 2678
		    appgtt->vm.allocate_va_range) {
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2679
			if (ret)
2680
				return ret;
2681 2682
		}

2683 2684
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2685 2686
	}

2687
	if (flags & I915_VMA_GLOBAL_BIND) {
2688
		intel_runtime_pm_get(i915);
2689
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2690
		intel_runtime_pm_put(i915);
2691
	}
2692

2693
	return 0;
2694 2695
}

2696
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2697
{
2698
	struct drm_i915_private *i915 = vma->vm->i915;
2699

2700 2701
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
		intel_runtime_pm_get(i915);
2702
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2703 2704
		intel_runtime_pm_put(i915);
	}
2705

2706
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2707
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2708 2709 2710

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2711 2712
}

2713 2714
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2715
{
D
David Weinehall 已提交
2716 2717
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2718
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2719

2720
	if (unlikely(ggtt->do_idle_maps)) {
2721
		if (i915_gem_wait_for_idle(dev_priv, 0)) {
2722 2723 2724 2725 2726
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2727

2728
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2729
}
2730

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2741 2742
	vma->page_sizes = vma->obj->mm.page_sizes;

2743 2744 2745
	return 0;
}

C
Chris Wilson 已提交
2746
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2747
				  unsigned long color,
2748 2749
				  u64 *start,
				  u64 *end)
2750
{
2751
	if (node->allocated && node->color != color)
2752
		*start += I915_GTT_PAGE_SIZE;
2753

2754 2755 2756 2757 2758
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2759
	node = list_next_entry(node, node_list);
2760
	if (node->color != color)
2761
		*end -= I915_GTT_PAGE_SIZE;
2762
}
B
Ben Widawsky 已提交
2763

2764 2765 2766 2767 2768 2769
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2770
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2771 2772
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2773

2774
	if (WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2775 2776 2777 2778
		err = -ENODEV;
		goto err_ppgtt;
	}

2779
	if (ppgtt->vm.allocate_va_range) {
2780 2781 2782 2783 2784
		/* Note we only pre-allocate as far as the end of the global
		 * GTT. On 48b / 4-level page-tables, the difference is very,
		 * very significant! We have to preallocate as GVT/vgpu does
		 * not like the page directory disappearing.
		 */
2785 2786
		err = ppgtt->vm.allocate_va_range(&ppgtt->vm,
						  0, ggtt->vm.total);
2787
		if (err)
2788
			goto err_ppgtt;
2789 2790 2791
	}

	i915->mm.aliasing_ppgtt = ppgtt;
2792

2793 2794
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2795

2796 2797
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2798

2799 2800 2801
	return 0;

err_ppgtt:
2802
	i915_ppgtt_put(ppgtt);
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2815
	i915_ppgtt_put(ppgtt);
2816

2817 2818
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2819 2820
}

2821
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2822
{
2823 2824 2825 2826 2827 2828 2829 2830 2831
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2832
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2833
	unsigned long hole_start, hole_end;
2834
	struct drm_mm_node *entry;
2835
	int ret;
2836

2837 2838 2839
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2840

2841
	/* Reserve a mappable slot for our lockless error capture */
2842
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2843 2844 2845
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2846 2847 2848
	if (ret)
		return ret;

2849
	/* Clear any non-preallocated blocks */
2850
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2851 2852
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2853 2854
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2855 2856 2857
	}

	/* And finally clear the reserved guard page */
2858
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2859

2860
	if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2861
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2862
		if (ret)
2863
			goto err;
2864 2865
	}

2866
	return 0;
2867 2868 2869 2870

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2871 2872
}

2873 2874
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2875
 * @dev_priv: i915 device
2876
 */
2877
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2878
{
2879
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2880
	struct i915_vma *vma, *vn;
2881
	struct pagevec *pvec;
2882

2883
	ggtt->vm.closed = true;
2884 2885

	mutex_lock(&dev_priv->drm.struct_mutex);
2886 2887
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2888 2889
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2890
		WARN_ON(i915_vma_unbind(vma));
2891

2892 2893 2894
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2895
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2896
		intel_vgt_deballoon(dev_priv);
2897
		i915_address_space_fini(&ggtt->vm);
2898 2899
	}

2900
	ggtt->vm.cleanup(&ggtt->vm);
2901 2902 2903 2904 2905 2906 2907

	pvec = &dev_priv->mm.wc_stash;
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2908
	mutex_unlock(&dev_priv->drm.struct_mutex);
2909 2910

	arch_phys_wc_del(ggtt->mtrr);
2911
	io_mapping_fini(&ggtt->iomap);
2912 2913

	i915_gem_cleanup_stolen(&dev_priv->drm);
2914
}
2915

2916
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2917 2918 2919 2920 2921 2922
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2923
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2924 2925 2926 2927 2928
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2929 2930 2931 2932 2933 2934 2935

#ifdef CONFIG_X86_32
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2936 2937 2938
	return bdw_gmch_ctl << 20;
}

2939
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2950
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2951
{
2952
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2953
	struct pci_dev *pdev = dev_priv->drm.pdev;
2954
	phys_addr_t phys_addr;
2955
	int ret;
B
Ben Widawsky 已提交
2956 2957

	/* For Modern GENs the PTEs and register space are split in the BAR */
2958
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2959

I
Imre Deak 已提交
2960
	/*
2961 2962 2963
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2964 2965 2966
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2967
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2968
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2969
	else
2970
		ggtt->gsm = ioremap_wc(phys_addr, size);
2971
	if (!ggtt->gsm) {
2972
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2973 2974 2975
		return -ENOMEM;
	}

2976
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2977
	if (ret) {
B
Ben Widawsky 已提交
2978 2979
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2980
		iounmap(ggtt->gsm);
2981
		return ret;
B
Ben Widawsky 已提交
2982 2983
	}

2984
	return 0;
B
Ben Widawsky 已提交
2985 2986
}

2987 2988
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2989
{
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3033
	struct intel_ppat_entry *entry = NULL;
3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3056
		if (!entry)
3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3133
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3171 3172
}

B
Ben Widawsky 已提交
3173 3174 3175
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3176
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3177
{
3178 3179 3180 3181
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3182

3183
	if (!USES_PPGTT(ppat->i915)) {
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3197 3198 3199
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3200

3201 3202 3203 3204 3205 3206 3207 3208
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3209 3210
}

3211
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3212
{
3213 3214 3215 3216
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3217 3218 3219 3220 3221 3222 3223

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3235 3236
	 */

3237 3238 3239 3240 3241 3242 3243 3244
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3245 3246
}

3247 3248 3249 3250 3251
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3252
	cleanup_scratch_page(vm);
3253 3254
}

3255 3256
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3257 3258 3259 3260 3261
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3262
	if (INTEL_GEN(dev_priv) >= 10)
3263
		cnl_setup_private_ppat(ppat);
3264
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3265
		chv_setup_private_ppat(ppat);
3266
	else
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3278 3279
}

3280
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3281
{
3282
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3283
	struct pci_dev *pdev = dev_priv->drm.pdev;
3284
	unsigned int size;
B
Ben Widawsky 已提交
3285
	u16 snb_gmch_ctl;
3286
	int err;
B
Ben Widawsky 已提交
3287 3288

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3289 3290 3291 3292
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3293

3294 3295 3296 3297 3298
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3299

3300
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3301
	if (IS_CHERRYVIEW(dev_priv))
3302
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3303
	else
3304
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3305

3306 3307 3308 3309
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3310
	if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3311
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3312

3313
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3314

3315 3316
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3317 3318 3319 3320
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3321 3322
	}

3323 3324
	ggtt->invalidate = gen6_ggtt_invalidate;

3325 3326 3327 3328 3329
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3330 3331
	setup_private_pat(dev_priv);

3332
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3333 3334
}

3335
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3336
{
3337
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3338
	struct pci_dev *pdev = dev_priv->drm.pdev;
3339
	unsigned int size;
3340
	u16 snb_gmch_ctl;
3341
	int err;
3342

3343 3344 3345 3346
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3347

3348 3349
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3350
	 */
3351
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3352
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3353
		return -ENXIO;
3354 3355
	}

3356 3357 3358 3359 3360
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3361
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3362

3363
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3364
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3365

3366 3367 3368 3369
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3370

3371 3372
	ggtt->invalidate = gen6_ggtt_invalidate;

3373
	if (HAS_EDRAM(dev_priv))
3374
		ggtt->vm.pte_encode = iris_pte_encode;
3375
	else if (IS_HASWELL(dev_priv))
3376
		ggtt->vm.pte_encode = hsw_pte_encode;
3377
	else if (IS_VALLEYVIEW(dev_priv))
3378
		ggtt->vm.pte_encode = byt_pte_encode;
3379
	else if (INTEL_GEN(dev_priv) >= 7)
3380
		ggtt->vm.pte_encode = ivb_pte_encode;
3381
	else
3382
		ggtt->vm.pte_encode = snb_pte_encode;
3383

3384 3385 3386 3387 3388
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3389
	return ggtt_probe_common(ggtt, size);
3390 3391
}

3392
static void i915_gmch_remove(struct i915_address_space *vm)
3393
{
3394
	intel_gmch_remove();
3395
}
3396

3397
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3398
{
3399
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3400
	phys_addr_t gmadr_base;
3401 3402
	int ret;

3403
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3404 3405 3406 3407 3408
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3409
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3410

3411 3412 3413 3414
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3415
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3416 3417 3418 3419
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3420

3421 3422
	ggtt->invalidate = gmch_ggtt_invalidate;

3423 3424 3425 3426 3427
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3428
	if (unlikely(ggtt->do_idle_maps))
3429 3430
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3431 3432 3433
	return 0;
}

3434
/**
3435
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3436
 * @dev_priv: i915 device
3437
 */
3438
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3439
{
3440
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3441 3442
	int ret;

3443 3444
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3445

3446 3447 3448 3449 3450 3451
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3452
	if (ret)
3453 3454
		return ret;

3455 3456 3457 3458 3459
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3460
	if (USES_GUC(dev_priv)) {
3461 3462 3463
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3464 3465
	}

3466
	if ((ggtt->vm.total - 1) >> 32) {
3467
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3468
			  " of address space! Found %lldM!\n",
3469 3470 3471 3472
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3473 3474
	}

3475
	if (ggtt->mappable_end > ggtt->vm.total) {
3476
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3477
			  " aperture=%pa, total=%llx\n",
3478 3479
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3480 3481
	}

3482
	/* GMADR is the PCI mmio aperture into the global GTT. */
3483
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3484
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3485
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3486
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3487
	if (intel_vtd_active())
3488
		DRM_INFO("VT-d active for gfx access\n");
3489 3490

	return 0;
3491 3492 3493 3494
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3495
 * @dev_priv: i915 device
3496
 */
3497
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3498 3499 3500 3501
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3502 3503
	INIT_LIST_HEAD(&dev_priv->vm_list);

3504 3505 3506 3507
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3508
	 */
C
Chris Wilson 已提交
3509
	mutex_lock(&dev_priv->drm.struct_mutex);
3510
	i915_address_space_init(&ggtt->vm, dev_priv, "[global]");
3511
	if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3512
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3513
	mutex_unlock(&dev_priv->drm.struct_mutex);
3514

3515 3516
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3517
				dev_priv->ggtt.mappable_end)) {
3518 3519 3520 3521
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3522
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3523

3524 3525 3526 3527
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3528
	ret = i915_gem_init_stolen(dev_priv);
3529 3530 3531 3532
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3533 3534

out_gtt_cleanup:
3535
	ggtt->vm.cleanup(&ggtt->vm);
3536
	return ret;
3537
}
3538

3539
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3540
{
3541
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3542 3543 3544 3545 3546
		return -EIO;

	return 0;
}

3547 3548
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3549 3550
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3551
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3552 3553

	i915_ggtt_invalidate(i915);
3554 3555 3556 3557
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3558 3559 3560 3561
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3562 3563

	i915_ggtt_invalidate(i915);
3564 3565
}

3566
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3567
{
3568
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3569
	struct i915_vma *vma, *vn;
3570

3571
	i915_check_and_clear_faults(dev_priv);
3572 3573

	/* First fill our portion of the GTT with scratch pages */
3574
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3575

3576
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3577 3578

	/* clflush objects bound into the GGTT and rebind them. */
3579 3580
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3581
		struct drm_i915_gem_object *obj = vma->obj;
3582

3583 3584
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3585

3586 3587
		if (!i915_vma_unbind(vma))
			continue;
3588

3589 3590 3591 3592 3593
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3594
	}
3595

3596
	ggtt->vm.closed = false;
3597
	i915_ggtt_invalidate(dev_priv);
3598

3599
	if (INTEL_GEN(dev_priv) >= 8) {
3600
		struct intel_ppat *ppat = &dev_priv->ppat;
3601

3602 3603
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3604 3605 3606 3607
		return;
	}
}

3608
static struct scatterlist *
3609
rotate_pages(const dma_addr_t *in, unsigned int offset,
3610
	     unsigned int width, unsigned int height,
3611
	     unsigned int stride,
3612
	     struct sg_table *st, struct scatterlist *sg)
3613 3614 3615 3616 3617
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3618
		src_idx = stride * (height - 1) + column;
3619 3620 3621 3622 3623 3624 3625
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3626
			sg_dma_address(sg) = in[offset + src_idx];
3627 3628
			sg_dma_len(sg) = PAGE_SIZE;
			sg = sg_next(sg);
3629
			src_idx -= stride;
3630 3631
		}
	}
3632 3633

	return sg;
3634 3635
}

3636 3637 3638
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3639
{
3640
	const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3641
	unsigned int size = intel_rotation_info_size(rot_info);
3642 3643
	struct sgt_iter sgt_iter;
	dma_addr_t dma_addr;
3644 3645 3646
	unsigned long i;
	dma_addr_t *page_addr_list;
	struct sg_table *st;
3647
	struct scatterlist *sg;
3648
	int ret = -ENOMEM;
3649 3650

	/* Allocate a temporary list of source pages for random access. */
M
Michal Hocko 已提交
3651
	page_addr_list = kvmalloc_array(n_pages,
3652
					sizeof(dma_addr_t),
3653
					GFP_KERNEL);
3654 3655 3656 3657 3658 3659 3660 3661
	if (!page_addr_list)
		return ERR_PTR(ret);

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3662
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3663 3664 3665 3666 3667
	if (ret)
		goto err_sg_alloc;

	/* Populate source page list from the object. */
	i = 0;
C
Chris Wilson 已提交
3668
	for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3669
		page_addr_list[i++] = dma_addr;
3670

3671
	GEM_BUG_ON(i != n_pages);
3672 3673 3674
	st->nents = 0;
	sg = st->sgl;

3675 3676 3677 3678
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
		sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3679 3680
	}

M
Michal Hocko 已提交
3681
	kvfree(page_addr_list);
3682 3683 3684 3685 3686 3687

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:
M
Michal Hocko 已提交
3688
	kvfree(page_addr_list);
3689

3690 3691
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3692

3693 3694
	return ERR_PTR(ret);
}
3695

3696
static noinline struct sg_table *
3697 3698 3699 3700
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3701
	struct scatterlist *sg, *iter;
3702
	unsigned int count = view->partial.size;
3703
	unsigned int offset;
3704 3705 3706 3707 3708 3709
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3710
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3711 3712 3713
	if (ret)
		goto err_sg_alloc;

3714
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3715 3716
	GEM_BUG_ON(!iter);

3717 3718
	sg = st->sgl;
	st->nents = 0;
3719 3720
	do {
		unsigned int len;
3721

3722 3723 3724 3725 3726 3727
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3728 3729

		st->nents++;
3730 3731 3732 3733 3734
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
			return st;
		}
3735

3736 3737 3738 3739
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3740 3741 3742 3743 3744 3745 3746

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3747
static int
3748
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3749
{
3750
	int ret;
3751

3752 3753 3754 3755 3756 3757 3758
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3759
	switch (vma->ggtt_view.type) {
3760 3761 3762
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3763 3764
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3765 3766
		return 0;

3767
	case I915_GGTT_VIEW_ROTATED:
3768
		vma->pages =
3769 3770 3771 3772
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3773
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3774 3775
		break;
	}
3776

3777 3778
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3779 3780
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3781 3782
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3783
	}
3784
	return ret;
3785 3786
}

3787 3788
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3823
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3824
	GEM_BUG_ON(drm_mm_node_allocated(node));
3825 3826 3827 3828 3829 3830 3831 3832 3833

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3834 3835 3836
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3837 3838 3839 3840 3841 3842 3843
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3869 3870
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3871 3872 3873 3874 3875 3876 3877 3878 3879
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3880
 *         must be #I915_GTT_PAGE_SIZE aligned
3881 3882 3883
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3884 3885 3886 3887 3888 3889
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3890 3891
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3908
	enum drm_mm_insert_mode mode;
3909
	u64 offset;
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3920
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3921
	GEM_BUG_ON(drm_mm_node_allocated(node));
3922 3923 3924 3925 3926 3927 3928

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3929 3930 3931 3932 3933
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
		mode = DRM_MM_INSERT_HIGH;
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3945 3946 3947
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3948 3949 3950
	if (err != -ENOSPC)
		return err;

3951 3952 3953
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
3983 3984 3985 3986 3987
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

3988 3989 3990
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
3991
}
3992 3993 3994

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
3995
#include "selftests/i915_gem_gtt.c"
3996
#endif