i915_gem_gtt.c 105.4 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_scatterlist.h"
40
#include "i915_trace.h"
41
#include "i915_vgpu.h"
42
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111
static void gen6_ggtt_invalidate(struct drm_i915_private *i915)
112
{
113 114
	struct intel_uncore *uncore = &i915->uncore;

115 116
	/*
	 * Note that as an uncached mmio write, this will flush the
117 118
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
119
	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
120 121
}

122
static void guc_ggtt_invalidate(struct drm_i915_private *i915)
123
{
124 125 126 127
	struct intel_uncore *uncore = &i915->uncore;

	gen6_ggtt_invalidate(i915);
	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
128 129
}

130
static void gmch_ggtt_invalidate(struct drm_i915_private *i915)
131 132 133 134 135 136 137 138 139
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

140 141 142
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
143
{
144
	u32 pte_flags;
145 146 147 148 149 150 151 152
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
153

154
	/* Applicable to VLV, and gen8+ */
155
	pte_flags = 0;
156
	if (i915_gem_object_is_readonly(vma->obj))
157 158
		pte_flags |= PTE_READ_ONLY;

159
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
160 161

	return 0;
162 163 164 165
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
166
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
167
}
168

169 170 171 172 173 174
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

175 176
	vma->page_sizes = vma->obj->mm.page_sizes;

177 178 179 180 181 182 183 184 185 186 187 188
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
189 190

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
191 192
}

193 194 195
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
196
{
197 198 199 200
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
201 202 203

	switch (level) {
	case I915_CACHE_NONE:
204
		pte |= PPAT_UNCACHED;
205 206
		break;
	case I915_CACHE_WT:
207
		pte |= PPAT_DISPLAY_ELLC;
208 209
		break;
	default:
210
		pte |= PPAT_CACHED;
211 212 213
		break;
	}

B
Ben Widawsky 已提交
214 215 216
	return pte;
}

217 218
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
219
{
220
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
221 222
	pde |= addr;
	if (level != I915_CACHE_NONE)
223
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
224
	else
225
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
226 227 228
	return pde;
}

229 230 231
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

232 233 234
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
235
{
236
	gen6_pte_t pte = GEN6_PTE_VALID;
237
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
238 239

	switch (level) {
240 241 242 243 244 245 246 247
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
248
		MISSING_CASE(level);
249 250 251 252 253
	}

	return pte;
}

254 255 256
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
257
{
258
	gen6_pte_t pte = GEN6_PTE_VALID;
259 260 261 262 263
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
264 265 266 267 268
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
269
		pte |= GEN6_PTE_UNCACHED;
270 271
		break;
	default:
272
		MISSING_CASE(level);
273 274
	}

275 276 277
	return pte;
}

278 279 280
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
281
{
282
	gen6_pte_t pte = GEN6_PTE_VALID;
283 284
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

285 286
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
287 288 289 290 291 292 293

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

294 295 296
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
297
{
298
	gen6_pte_t pte = GEN6_PTE_VALID;
299
	pte |= HSW_PTE_ADDR_ENCODE(addr);
300 301

	if (level != I915_CACHE_NONE)
302
		pte |= HSW_WB_LLC_AGE3;
303 304 305 306

	return pte;
}

307 308 309
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
310
{
311
	gen6_pte_t pte = GEN6_PTE_VALID;
312 313
	pte |= HSW_PTE_ADDR_ENCODE(addr);

314 315 316 317
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
318
		pte |= HSW_WT_ELLC_LLC_AGE3;
319 320
		break;
	default:
321
		pte |= HSW_WB_ELLC_LLC_AGE3;
322 323
		break;
	}
324 325 326 327

	return pte;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
348
	unsigned int nr;
349 350 351

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

352
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
353 354 355 356 357 358 359 360 361 362
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

363
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
364
{
365 366
	struct pagevec stack;
	struct page *page;
367

368 369
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
370

371 372 373
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
374 375 376 377 378

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
379 380 381
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
382

383
	/*
384
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
385 386 387 388 389 390
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
391
	pagevec_init(&stack);
392 393
	do {
		struct page *page;
394

395 396 397 398
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

399 400
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
401

402 403
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
404

405
		/* Merge spare WC pages to the global stash */
406 407
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
408

409 410 411
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
412
	}
413

414 415 416 417 418 419 420
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
421 422
}

423 424
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
425
{
426 427
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
428

429
	lockdep_assert_held(&vm->free_pages.lock);
430
	GEM_BUG_ON(!pagevec_count(pvec));
431

432
	if (vm->pt_kmap_wc) {
433 434
		/*
		 * When we use WC, first fill up the global stash and then
435 436
		 * only if full immediately free the overflow.
		 */
437
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
438

439 440 441 442 443 444 445 446
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
447

448 449 450 451 452 453 454 455 456 457
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
458
		set_pages_array_wb(pvec->pages, pvec->nr);
459 460

		spin_lock(&vm->free_pages.lock);
461 462 463
	}

	__pagevec_release(pvec);
464 465 466 467
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
468 469 470 471 472 473 474 475
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
476
	spin_lock(&vm->free_pages.lock);
477
	while (!pagevec_space(&vm->free_pages.pvec))
478
		vm_free_pages_release(vm, false);
479 480
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
481 482 483
	spin_unlock(&vm->free_pages.lock);
}

484
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
485
{
486 487 488 489 490 491
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
492
	lockdep_set_subclass(&vm->mutex, subclass);
493
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
494

495 496 497 498 499 500 501
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
502
	INIT_LIST_HEAD(&vm->bound_list);
503 504 505 506 507 508 509 510 511 512 513
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
514 515

	mutex_destroy(&vm->mutex);
516
}
517

518 519 520 521
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
522
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
523 524
	if (unlikely(!p->page))
		return -ENOMEM;
525

526 527 528
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
529
				      DMA_ATTR_SKIP_CPU_SYNC |
530
				      DMA_ATTR_NO_WARN);
531 532 533
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
534
	}
535 536

	return 0;
537 538
}

539
static int setup_page_dma(struct i915_address_space *vm,
540
			  struct i915_page_dma *p)
541
{
542
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
543 544
}

545
static void cleanup_page_dma(struct i915_address_space *vm,
546
			     struct i915_page_dma *p)
547
{
548 549
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
550 551
}

552
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
553

554 555
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
556 557
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
558

559 560 561
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
562
{
563
	u64 * const vaddr = kmap_atomic(p->page);
564

565
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
566

567
	kunmap_atomic(vaddr);
568 569
}

570 571 572
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
573
{
574
	fill_page_dma(vm, p, (u64)v << 32 | v);
575 576
}

577
static int
578
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
579
{
580
	unsigned long size;
581

582 583 584 585 586 587 588
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
589 590 591
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
592
	 */
593
	size = I915_GTT_PAGE_SIZE_4K;
594
	if (i915_vm_is_4lvl(vm) &&
595
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
596 597
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
598
	}
599 600 601 602 603 604
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
605

606
		page = alloc_pages(gfp, order);
607
		if (unlikely(!page))
608
			goto skip;
609

610 611 612
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
613
					  DMA_ATTR_SKIP_CPU_SYNC |
614
					  DMA_ATTR_NO_WARN);
615 616
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
617

618 619
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
620

621 622
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
623
		vm->scratch_order = order;
624 625 626 627 628 629 630 631 632 633 634 635 636
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
637 638
}

639
static void cleanup_scratch_page(struct i915_address_space *vm)
640
{
641
	struct i915_page_dma *p = &vm->scratch_page;
642
	int order = vm->scratch_order;
643

644
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
645
		       PCI_DMA_BIDIRECTIONAL);
646
	__free_pages(p->page, order);
647 648
}

649
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
650
{
651
	struct i915_page_table *pt;
652

653
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
654
	if (unlikely(!pt))
655 656
		return ERR_PTR(-ENOMEM);

657 658 659 660
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
661

662
	pt->used_ptes = 0;
663 664 665
	return pt;
}

666
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
667
{
668
	cleanup_px(vm, pt);
669 670 671 672 673 674
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
675
	fill_px(vm, pt, vm->scratch_pte);
676 677
}

678
static void gen6_initialize_pt(struct i915_address_space *vm,
679 680
			       struct i915_page_table *pt)
{
681
	fill32_px(vm, pt, vm->scratch_pte);
682 683
}

684
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
685
{
686
	struct i915_page_directory *pd;
687

688
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
689
	if (unlikely(!pd))
690 691
		return ERR_PTR(-ENOMEM);

692 693 694 695
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
696

697
	pd->used_pdes = 0;
698 699 700
	return pd;
}

701
static void free_pd(struct i915_address_space *vm,
702
		    struct i915_page_directory *pd)
703
{
704 705
	cleanup_px(vm, pd);
	kfree(pd);
706 707 708 709 710
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
711 712
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
713
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
714 715
}

716
static int __pdp_init(struct i915_address_space *vm,
717 718
		      struct i915_page_directory_pointer *pdp)
{
719
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
720

721
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
722
					    I915_GFP_ALLOW_FAIL);
723
	if (unlikely(!pdp->page_directory))
724 725
		return -ENOMEM;

726
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
727

728 729 730 731 732 733 734 735 736
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

737 738
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
739 740 741 742
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

743
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
744 745 746 747 748

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

749
	ret = __pdp_init(vm, pdp);
750 751 752
	if (ret)
		goto fail_bitmap;

753
	ret = setup_px(vm, pdp);
754 755 756 757 758 759 760 761 762 763 764 765 766
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

767
static void free_pdp(struct i915_address_space *vm,
768 769 770
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
771

772
	if (!i915_vm_is_4lvl(vm))
773 774 775 776
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
777 778
}

779 780 781 782 783 784 785
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

786
	fill_px(vm, pdp, scratch_pdpe);
787 788 789 790 791
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
792 793
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
794
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
795 796
}

797 798
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
799 800 801 802 803 804
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
805
	ppgtt->pd_dirty_engines = ALL_ENGINES;
806 807
}

808 809 810
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
811
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
812
				struct i915_page_table *pt,
813
				u64 start, u64 length)
814
{
815
	unsigned int num_entries = gen8_pte_count(start, length);
816
	gen8_pte_t *vaddr;
817

818
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
819

820 821 822
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
823

824
	vaddr = kmap_atomic_px(pt);
825
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
826
	kunmap_atomic(vaddr);
827 828

	return false;
829
}
830

831 832 833 834 835 836 837 838 839 840 841 842 843 844
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

845
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
846
				struct i915_page_directory *pd,
847
				u64 start, u64 length)
848 849
{
	struct i915_page_table *pt;
850
	u32 pde;
851 852

	gen8_for_each_pde(pt, pd, start, length, pde) {
853 854
		GEM_BUG_ON(pt == vm->scratch_pt);

855 856
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
857

858
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
859
		GEM_BUG_ON(!pd->used_pdes);
860
		pd->used_pdes--;
861 862

		free_pt(vm, pt);
863 864
	}

865 866
	return !pd->used_pdes;
}
867

868 869 870 871 872 873 874 875
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
876
	if (!i915_vm_is_4lvl(vm))
877 878 879 880 881
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
882
}
883

884 885 886 887
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
888
				 struct i915_page_directory_pointer *pdp,
889
				 u64 start, u64 length)
890 891
{
	struct i915_page_directory *pd;
892
	unsigned int pdpe;
893

894
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
895 896
		GEM_BUG_ON(pd == vm->scratch_pd);

897 898
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
899

900
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
901
		GEM_BUG_ON(!pdp->used_pdpes);
902
		pdp->used_pdpes--;
903

904 905
		free_pd(vm, pd);
	}
906

907
	return !pdp->used_pdpes;
908
}
909

910 911 912 913 914 915
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

916 917 918 919 920 921 922 923 924 925 926 927 928
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

929 930 931 932
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
933 934
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
935
{
936 937
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
938
	struct i915_page_directory_pointer *pdp;
939
	unsigned int pml4e;
940

941
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
942

943
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
944 945
		GEM_BUG_ON(pdp == vm->scratch_pdp);

946 947
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
948

949 950 951
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
952 953 954
	}
}

955
static inline struct sgt_dma {
956 957
	struct scatterlist *sg;
	dma_addr_t dma, max;
958 959 960 961 962
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

981 982
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
983
			      struct i915_page_directory_pointer *pdp,
984
			      struct sgt_dma *iter,
985
			      struct gen8_insert_pte *idx,
986 987
			      enum i915_cache_level cache_level,
			      u32 flags)
988
{
989
	struct i915_page_directory *pd;
990
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
991 992
	gen8_pte_t *vaddr;
	bool ret;
993

994
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
995 996
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
997
	do {
998 999
		vaddr[idx->pte] = pte_encode | iter->dma;

1000
		iter->dma += I915_GTT_PAGE_SIZE;
1001 1002 1003 1004 1005 1006
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1007

1008 1009
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1010
		}
1011

1012 1013 1014 1015 1016 1017
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1018
				/* Limited by sg length for 3lvl */
1019 1020
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1021
					ret = true;
1022
					break;
1023 1024
				}

1025
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1026
				pd = pdp->page_directory[idx->pdpe];
1027
			}
1028

1029
			kunmap_atomic(vaddr);
1030
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1031
		}
1032
	} while (1);
1033
	kunmap_atomic(vaddr);
1034

1035
	return ret;
1036 1037
}

1038
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1039
				   struct i915_vma *vma,
1040
				   enum i915_cache_level cache_level,
1041
				   u32 flags)
1042
{
1043
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1044
	struct sgt_dma iter = sgt_dma(vma);
1045
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1046

1047
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1048
				      cache_level, flags);
1049 1050

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1051
}
1052

1053 1054 1055
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1056 1057
					   enum i915_cache_level cache_level,
					   u32 flags)
1058
{
1059
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1060 1061 1062 1063 1064 1065 1066 1067
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1068
		bool maybe_64K = false;
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1090 1091 1092 1093
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1094
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1095 1096
				maybe_64K = true;

1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1116 1117 1118
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1119
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1120 1121
					maybe_64K = false;

1122 1123 1124 1125 1126 1127
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1144
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1158
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1159 1160 1161 1162 1163 1164 1165
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1166
		}
1167 1168

		vma->page_sizes.gtt |= page_size;
1169 1170 1171
	} while (iter->sg);
}

1172
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1173
				   struct i915_vma *vma,
1174
				   enum i915_cache_level cache_level,
1175
				   u32 flags)
1176 1177
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1178
	struct sgt_dma iter = sgt_dma(vma);
1179
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1180

1181
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1182 1183
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1184 1185 1186 1187
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1188 1189
						     &iter, &idx, cache_level,
						     flags))
1190
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1191 1192

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1193
	}
1194 1195
}

1196
static void gen8_free_page_tables(struct i915_address_space *vm,
1197
				  struct i915_page_directory *pd)
1198 1199 1200
{
	int i;

1201 1202 1203
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1204
	}
B
Ben Widawsky 已提交
1205 1206
}

1207 1208
static int gen8_init_scratch(struct i915_address_space *vm)
{
1209
	int ret;
1210

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

1223
		vm->scratch_order = clone->scratch_order;
1224 1225 1226 1227 1228 1229 1230
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1231
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1232 1233
	if (ret)
		return ret;
1234

1235 1236 1237
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1238
				vm->has_read_only);
1239

1240
	vm->scratch_pt = alloc_pt(vm);
1241
	if (IS_ERR(vm->scratch_pt)) {
1242 1243
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1244 1245
	}

1246
	vm->scratch_pd = alloc_pd(vm);
1247
	if (IS_ERR(vm->scratch_pd)) {
1248 1249
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1250 1251
	}

1252
	if (i915_vm_is_4lvl(vm)) {
1253
		vm->scratch_pdp = alloc_pdp(vm);
1254
		if (IS_ERR(vm->scratch_pdp)) {
1255 1256
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1257 1258 1259
		}
	}

1260 1261
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1262
	if (i915_vm_is_4lvl(vm))
1263
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1264 1265

	return 0;
1266 1267

free_pd:
1268
	free_pd(vm, vm->scratch_pd);
1269
free_pt:
1270
	free_pt(vm, vm->scratch_pt);
1271
free_scratch_page:
1272
	cleanup_scratch_page(vm);
1273 1274

	return ret;
1275 1276
}

1277 1278
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1279
	struct i915_address_space *vm = &ppgtt->vm;
1280
	struct drm_i915_private *dev_priv = vm->i915;
1281 1282 1283
	enum vgt_g2v_type msg;
	int i;

1284
	if (i915_vm_is_4lvl(vm)) {
1285
		const u64 daddr = px_dma(&ppgtt->pml4);
1286

1287 1288
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1289 1290 1291 1292

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1293
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1294
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1295

1296 1297
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1309 1310
static void gen8_free_scratch(struct i915_address_space *vm)
{
1311 1312 1313
	if (!vm->scratch_page.daddr)
		return;

1314
	if (i915_vm_is_4lvl(vm))
1315 1316 1317 1318
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1319 1320
}

1321
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1322
				    struct i915_page_directory_pointer *pdp)
1323
{
1324
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1325 1326
	int i;

1327
	for (i = 0; i < pdpes; i++) {
1328
		if (pdp->page_directory[i] == vm->scratch_pd)
1329 1330
			continue;

1331 1332
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1333
	}
1334

1335
	free_pdp(vm, pdp);
1336 1337 1338 1339 1340 1341
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1342
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1343
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1344 1345
			continue;

1346
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1347 1348
	}

1349
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1350 1351 1352 1353
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1354
	struct drm_i915_private *i915 = vm->i915;
1355
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1356

1357
	if (intel_vgpu_active(i915))
1358 1359
		gen8_ppgtt_notify_vgt(ppgtt, false);

1360
	if (i915_vm_is_4lvl(vm))
1361
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1362
	else
1363
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1364

1365
	gen8_free_scratch(vm);
1366 1367
}

1368 1369 1370
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1371
{
1372
	struct i915_page_table *pt;
1373
	u64 from = start;
1374
	unsigned int pde;
1375

1376
	gen8_for_each_pde(pt, pd, start, length, pde) {
1377 1378
		int count = gen8_pte_count(start, length);

1379
		if (pt == vm->scratch_pt) {
1380 1381
			pd->used_pdes++;

1382
			pt = alloc_pt(vm);
1383 1384
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1385
				goto unwind;
1386
			}
1387

1388
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1389
				gen8_initialize_pt(vm, pt);
1390 1391

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1392
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1393
		}
1394

1395
		pt->used_ptes += count;
1396
	}
1397
	return 0;
1398

1399 1400
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1401
	return -ENOMEM;
1402 1403
}

1404 1405 1406
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1407
{
1408
	struct i915_page_directory *pd;
1409 1410
	u64 from = start;
	unsigned int pdpe;
1411 1412
	int ret;

1413
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1414
		if (pd == vm->scratch_pd) {
1415 1416
			pdp->used_pdpes++;

1417
			pd = alloc_pd(vm);
1418 1419
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1420
				goto unwind;
1421
			}
1422

1423
			gen8_initialize_pd(vm, pd);
1424
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1425
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1426 1427 1428
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1429 1430
		if (unlikely(ret))
			goto unwind_pd;
1431
	}
1432

B
Ben Widawsky 已提交
1433
	return 0;
1434

1435 1436 1437 1438 1439 1440 1441
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1442 1443 1444
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1445 1446
}

1447 1448
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1449
{
1450 1451 1452
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1453

1454 1455 1456 1457 1458 1459 1460 1461 1462
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1463

1464
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1465 1466 1467 1468
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1469

1470 1471 1472
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1473

1474
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1475 1476
		if (unlikely(ret))
			goto unwind_pdp;
1477 1478 1479 1480
	}

	return 0;

1481 1482 1483 1484 1485
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1486 1487 1488
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1489 1490
}

1491
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1492
{
1493
	struct i915_address_space *vm = &ppgtt->vm;
1494 1495
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1496
	u64 start = 0, length = ppgtt->vm.total;
1497 1498
	u64 from = start;
	unsigned int pdpe;
1499

1500 1501 1502 1503
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1504

1505 1506 1507 1508
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1509

1510 1511
	pdp->used_pdpes++; /* never remove */
	return 0;
1512

1513 1514 1515 1516 1517 1518 1519 1520
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static void ppgtt_init(struct drm_i915_private *i915,
		       struct i915_hw_ppgtt *ppgtt)
{
	kref_init(&ppgtt->ref);

	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1540
/*
1541 1542 1543 1544
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1545
 *
1546
 */
1547
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1548
{
1549 1550 1551 1552 1553 1554 1555
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1556
	ppgtt_init(i915, ppgtt);
1557

1558 1559 1560 1561 1562 1563 1564
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1565

1566 1567 1568
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1569
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1570
		ppgtt->vm.pt_kmap_wc = true;
1571

1572 1573 1574
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1575

1576
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1577 1578 1579
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1580

1581
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1582

1583 1584 1585
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1586
	} else {
1587 1588 1589
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1590

1591 1592 1593
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1594
				__pdp_fini(&ppgtt->pdp);
1595
				goto err_scratch;
1596
			}
1597
		}
1598

1599 1600 1601
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1602
	}
1603

1604
	if (intel_vgpu_active(i915))
1605 1606
		gen8_ppgtt_notify_vgt(ppgtt, true);

1607
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1608

1609
	return ppgtt;
1610

1611
err_scratch:
1612
	gen8_free_scratch(&ppgtt->vm);
1613 1614 1615
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1616 1617
}

1618
/* Write pde (index) from the page directory @pd to the page table @pt */
1619
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1620 1621
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1622
{
1623
	/* Caller needs to make sure the write completes if necessary */
1624 1625
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1626
}
B
Ben Widawsky 已提交
1627

1628
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1629
{
1630
	struct intel_engine_cs *engine;
1631
	u32 ecochk, ecobits;
1632
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1633

1634 1635
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1636

1637
	ecochk = I915_READ(GAM_ECOCHK);
1638
	if (IS_HASWELL(dev_priv)) {
1639 1640 1641 1642 1643 1644
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1645

1646
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1647
		/* GFX_MODE is per-ring on gen7+ */
1648
		I915_WRITE(RING_MODE_GEN7(engine),
1649
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1650
	}
1651
}
B
Ben Widawsky 已提交
1652

1653
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1654
{
1655
	u32 ecochk, gab_ctl, ecobits;
1656

1657 1658 1659
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1660

1661 1662 1663 1664 1665 1666
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1667 1668
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1669 1670
}

1671
/* PPGTT support for Sandybdrige/Gen6 and later */
1672
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1673
				   u64 start, u64 length)
1674
{
1675
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1676
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1677 1678
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1679
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1680
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1681

1682
	while (num_entries) {
1683
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1684
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1685
		gen6_pte_t *vaddr;
1686

1687 1688 1689 1690 1691 1692 1693 1694
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1695

1696 1697
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1698 1699 1700 1701
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1702

1703
		vaddr = kmap_atomic_px(pt);
1704
		memset32(vaddr + pte, scratch_pte, count);
1705
		kunmap_atomic(vaddr);
1706

1707
		pte = 0;
1708
	}
1709 1710
}

1711
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1712
				      struct i915_vma *vma,
1713 1714
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1715
{
1716
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1717
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1718 1719
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1720
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1721
	struct sgt_dma iter = sgt_dma(vma);
1722 1723
	gen6_pte_t *vaddr;

1724 1725
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1726
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1727 1728
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1729

1730
		iter.dma += I915_GTT_PAGE_SIZE;
1731 1732 1733 1734
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1735

1736 1737 1738
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1739

1740
		if (++act_pte == GEN6_PTES) {
1741 1742
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1743
			act_pte = 0;
D
Daniel Vetter 已提交
1744
		}
1745
	} while (1);
1746
	kunmap_atomic(vaddr);
1747 1748

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1749 1750
}

1751
static int gen6_alloc_va_range(struct i915_address_space *vm,
1752
			       u64 start, u64 length)
1753
{
1754
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1755
	struct i915_page_table *pt;
1756
	intel_wakeref_t wakeref;
1757 1758 1759
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1760

1761 1762
	wakeref = intel_runtime_pm_get(vm->i915);

1763
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1764 1765
		const unsigned int count = gen6_pte_count(start, length);

1766 1767 1768 1769
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1770

1771
			gen6_initialize_pt(vm, pt);
1772
			ppgtt->base.pd.page_table[pde] = pt;
1773 1774 1775 1776 1777 1778

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1779 1780

			GEM_BUG_ON(pt->used_ptes);
1781
		}
1782 1783

		pt->used_ptes += count;
1784 1785
	}

1786
	if (flush) {
1787
		mark_tlbs_dirty(&ppgtt->base);
1788
		gen6_ggtt_invalidate(vm->i915);
1789 1790
	}

1791 1792
	intel_runtime_pm_put(vm->i915, wakeref);

1793
	return 0;
1794 1795

unwind_out:
1796
	intel_runtime_pm_put(vm->i915, wakeref);
1797
	gen6_ppgtt_clear_range(vm, from, start - from);
1798
	return -ENOMEM;
1799 1800
}

1801
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1802
{
1803 1804 1805
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1806
	int ret;
1807

1808
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1809 1810
	if (ret)
		return ret;
1811

1812 1813 1814
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1815

1816
	vm->scratch_pt = alloc_pt(vm);
1817
	if (IS_ERR(vm->scratch_pt)) {
1818
		cleanup_scratch_page(vm);
1819 1820 1821
		return PTR_ERR(vm->scratch_pt);
	}

1822
	gen6_initialize_pt(vm, vm->scratch_pt);
1823 1824
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1825 1826 1827 1828

	return 0;
}

1829
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1830
{
1831 1832
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1833 1834
}

1835
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1836
{
1837
	struct i915_page_table *pt;
1838
	u32 pde;
1839

1840
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1841 1842 1843 1844
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
struct gen6_ppgtt_cleanup_work {
	struct work_struct base;
	struct i915_vma *vma;
};

static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
{
	struct gen6_ppgtt_cleanup_work *work =
		container_of(wrk, typeof(*work), base);
	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
	struct drm_i915_private *i915 = work->vma->vm->i915;

	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(work->vma);
	mutex_unlock(&i915->drm.struct_mutex);

	kfree(work);
}

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
static int nop_set_pages(struct i915_vma *vma)
{
	return -ENODEV;
}

static void nop_clear_pages(struct i915_vma *vma)
{
}

static int nop_bind(struct i915_vma *vma,
		    enum i915_cache_level cache_level,
		    u32 unused)
{
	return -ENODEV;
}

static void nop_unbind(struct i915_vma *vma)
{
}

static const struct i915_vma_ops nop_vma_ops = {
	.set_pages = nop_set_pages,
	.clear_pages = nop_clear_pages,
	.bind_vma = nop_bind,
	.unbind_vma = nop_unbind,
};

1891 1892 1893
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1894
	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1895

1896 1897 1898
	/* FIXME remove the struct_mutex to bring the locking under control */
	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
	work->vma = ppgtt->vma;
1899
	work->vma->ops = &nop_vma_ops;
1900
	schedule_work(&work->base);
1901 1902 1903

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1904 1905
}

1906
static int pd_vma_set_pages(struct i915_vma *vma)
1907
{
1908 1909 1910
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1911

1912 1913 1914
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1925
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1926 1927
	struct i915_page_table *pt;
	unsigned int pde;
1928

1929 1930
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1931

1932 1933
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1934

1935 1936
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1937

1938
	return 0;
1939
}
1940

1941
static void pd_vma_unbind(struct i915_vma *vma)
1942
{
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

1979
	vma = i915_vma_alloc();
1980 1981 1982
	if (!vma)
		return ERR_PTR(-ENOMEM);

1983
	i915_active_init(i915, &vma->active, NULL);
1984
	INIT_ACTIVE_REQUEST(&vma->last_fence);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
1996 1997

	mutex_lock(&vma->vm->mutex);
1998
	list_add(&vma->vm_link, &vma->vm->unbound_list);
1999
	mutex_unlock(&vma->vm->mutex);
2000 2001 2002

	return vma;
}
2003

2004
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2005 2006
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2007
	int err;
2008

2009 2010
	GEM_BUG_ON(ppgtt->base.vm.closed);

2011 2012 2013 2014 2015 2016 2017 2018 2019
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2020 2021 2022 2023 2024
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2036 2037
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2060
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2061
{
2062
	struct i915_ggtt * const ggtt = &i915->ggtt;
2063
	struct gen6_hw_ppgtt *ppgtt;
2064 2065 2066 2067 2068 2069
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2070
	ppgtt_init(i915, &ppgtt->base);
2071

2072
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2073 2074 2075
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2076

2077 2078
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2079
	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2080 2081
	if (!ppgtt->work) {
		err = -ENOMEM;
2082
		goto err_free;
2083
	}
2084

2085
	err = gen6_ppgtt_init_scratch(ppgtt);
2086
	if (err)
2087
		goto err_work;
2088

2089 2090 2091
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2092
		goto err_scratch;
2093
	}
2094

2095
	return &ppgtt->base;
2096

2097 2098
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2099 2100
err_work:
	kfree(ppgtt->work);
2101 2102 2103
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2104
}
2105

2106
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2107 2108 2109 2110 2111
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2112
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2113
	if (IS_BROADWELL(dev_priv))
2114
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2115
	else if (IS_CHERRYVIEW(dev_priv))
2116
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2117
	else if (IS_GEN9_LP(dev_priv))
2118
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2119 2120
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2138 2139
}

2140
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2141
{
2142
	gtt_write_workarounds(dev_priv);
2143

2144
	if (IS_GEN(dev_priv, 6))
2145
		gen6_ppgtt_enable(dev_priv);
2146
	else if (IS_GEN(dev_priv, 7))
2147
		gen7_ppgtt_enable(dev_priv);
2148

2149 2150
	return 0;
}
2151

2152 2153 2154 2155 2156 2157 2158 2159 2160
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2161
struct i915_hw_ppgtt *
2162
i915_ppgtt_create(struct drm_i915_private *i915)
2163 2164 2165
{
	struct i915_hw_ppgtt *ppgtt;

2166 2167 2168
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2169

2170
	trace_i915_ppgtt_create(&ppgtt->vm);
2171

2172 2173 2174
	return ppgtt;
}

2175
static void ppgtt_destroy_vma(struct i915_address_space *vm)
2176 2177
{
	struct list_head *phases[] = {
2178
		&vm->bound_list,
2179 2180 2181 2182 2183 2184 2185 2186 2187
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2188
			i915_vma_destroy(vma);
2189 2190 2191
	}
}

2192
void i915_ppgtt_release(struct kref *kref)
2193 2194 2195 2196
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2197
	trace_i915_ppgtt_release(&ppgtt->vm);
2198

2199
	ppgtt_destroy_vma(&ppgtt->vm);
2200

2201
	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2202
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2203

2204 2205
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2206 2207
	kfree(ppgtt);
}
2208

2209 2210 2211
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2212
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2213 2214 2215 2216
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2217
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2218 2219
}

2220
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2221
{
2222
	struct intel_engine_cs *engine;
2223
	enum intel_engine_id id;
2224
	u32 fault;
2225

2226
	for_each_engine(engine, dev_priv, id) {
2227 2228
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2229
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2230
					 "\tAddr: 0x%08lx\n"
2231 2232 2233
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2234 2235 2236 2237
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2238 2239
		}
	}
2240 2241
}

2242
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2243 2244 2245 2246
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2247 2248 2249 2250 2251 2252 2253 2254
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2255
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2256 2257
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2258 2259 2260
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2261 2262 2263
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2274
		gen8_check_faults(dev_priv);
2275
	else if (INTEL_GEN(dev_priv) >= 6)
2276
		gen6_check_faults(dev_priv);
2277 2278
	else
		return;
2279 2280

	i915_clear_error_registers(dev_priv);
2281 2282
}

2283
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2284
{
2285
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2286 2287 2288 2289

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2290
	if (INTEL_GEN(dev_priv) < 6)
2291 2292
		return;

2293
	i915_check_and_clear_faults(dev_priv);
2294

2295
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2296

2297
	i915_ggtt_invalidate(dev_priv);
2298 2299
}

2300 2301
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2302
{
2303
	do {
2304 2305 2306 2307
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2308 2309
			return 0;

2310 2311
		/*
		 * If the DMA remap fails, one cause can be that we have
2312 2313 2314 2315 2316 2317 2318
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2319
				 obj->base.size >> PAGE_SHIFT, NULL,
2320
				 I915_SHRINK_BOUND |
2321
				 I915_SHRINK_UNBOUND));
2322

2323
	return -ENOSPC;
2324 2325
}

2326
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2327 2328 2329 2330
{
	writeq(pte, addr);
}

2331 2332
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2333
				  u64 offset,
2334 2335 2336
				  enum i915_cache_level level,
				  u32 unused)
{
2337
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2338
	gen8_pte_t __iomem *pte =
2339
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2340

2341
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2342

2343
	ggtt->invalidate(vm->i915);
2344 2345
}

B
Ben Widawsky 已提交
2346
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2347
				     struct i915_vma *vma,
2348
				     enum i915_cache_level level,
2349
				     u32 flags)
B
Ben Widawsky 已提交
2350
{
2351
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2352 2353
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2354
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2355
	dma_addr_t addr;
2356

2357 2358 2359 2360
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2361

2362
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2363
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2364
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2365
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2366

2367 2368 2369
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2370
	 */
2371
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2372 2373
}

2374 2375
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2376
				  u64 offset,
2377 2378 2379
				  enum i915_cache_level level,
				  u32 flags)
{
2380
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2381
	gen6_pte_t __iomem *pte =
2382
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2383

2384
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2385

2386
	ggtt->invalidate(vm->i915);
2387 2388
}

2389 2390 2391 2392 2393 2394
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2395
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2396
				     struct i915_vma *vma,
2397 2398
				     enum i915_cache_level level,
				     u32 flags)
2399
{
2400
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2401
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2402
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2403
	struct sgt_iter iter;
2404
	dma_addr_t addr;
2405
	for_each_sgt_dma(addr, iter, vma->pages)
2406
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2407

2408 2409 2410
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2411
	 */
2412
	ggtt->invalidate(vm->i915);
2413 2414
}

2415
static void nop_clear_range(struct i915_address_space *vm,
2416
			    u64 start, u64 length)
2417 2418 2419
{
}

B
Ben Widawsky 已提交
2420
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2421
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2422
{
2423
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2424 2425
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2426
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2427
	gen8_pte_t __iomem *gtt_base =
2428 2429
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2485
	struct i915_vma *vma;
2486
	enum i915_cache_level level;
2487
	u32 flags;
2488 2489 2490 2491 2492 2493
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2494
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2495 2496 2497 2498 2499 2500
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2501
					     struct i915_vma *vma,
2502
					     enum i915_cache_level level,
2503
					     u32 flags)
2504
{
2505
	struct insert_entries arg = { vm, vma, level, flags };
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2535
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2536
				  u64 start, u64 length)
2537
{
2538
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2539 2540
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2541
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2542 2543
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2544 2545 2546 2547 2548 2549 2550
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2551
	scratch_pte = vm->scratch_pte;
2552

2553 2554 2555 2556
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2557 2558
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2559
				  u64 offset,
2560 2561 2562 2563 2564 2565 2566 2567 2568
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2569
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2570
				     struct i915_vma *vma,
2571 2572
				     enum i915_cache_level cache_level,
				     u32 unused)
2573 2574 2575 2576
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2577 2578
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2579 2580
}

2581
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2582
				  u64 start, u64 length)
2583
{
2584
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2585 2586
}

2587 2588 2589
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2590
{
2591
	struct drm_i915_private *i915 = vma->vm->i915;
2592
	struct drm_i915_gem_object *obj = vma->obj;
2593
	intel_wakeref_t wakeref;
2594
	u32 pte_flags;
2595

2596
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2597
	pte_flags = 0;
2598
	if (i915_gem_object_is_readonly(obj))
2599 2600
		pte_flags |= PTE_READ_ONLY;

2601 2602
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2603

2604 2605
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2606 2607 2608 2609 2610
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2611
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2612 2613 2614 2615

	return 0;
}

2616 2617 2618
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2619
	intel_wakeref_t wakeref;
2620

2621 2622
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2623 2624
}

2625 2626 2627
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2628
{
2629
	struct drm_i915_private *i915 = vma->vm->i915;
2630
	u32 pte_flags;
2631
	int ret;
2632

2633
	/* Currently applicable only to VLV */
2634
	pte_flags = 0;
2635
	if (i915_gem_object_is_readonly(vma->obj))
2636
		pte_flags |= PTE_READ_ONLY;
2637

2638 2639 2640
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2641
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2642 2643 2644
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2645
			if (ret)
2646
				return ret;
2647 2648
		}

2649 2650
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2651 2652
	}

2653
	if (flags & I915_VMA_GLOBAL_BIND) {
2654 2655
		intel_wakeref_t wakeref;

2656 2657 2658 2659
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2660
	}
2661

2662
	return 0;
2663 2664
}

2665
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2666
{
2667
	struct drm_i915_private *i915 = vma->vm->i915;
2668

2669
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2670
		struct i915_address_space *vm = vma->vm;
2671 2672
		intel_wakeref_t wakeref;

2673 2674
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2675
	}
2676

2677
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2678
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2679 2680 2681

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2682 2683
}

2684 2685
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2686
{
D
David Weinehall 已提交
2687 2688
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2689
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2690

2691
	if (unlikely(ggtt->do_idle_maps)) {
2692
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2693 2694 2695 2696 2697
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2698

2699
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2700
}
2701

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2712 2713
	vma->page_sizes = vma->obj->mm.page_sizes;

2714 2715 2716
	return 0;
}

C
Chris Wilson 已提交
2717
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2718
				  unsigned long color,
2719 2720
				  u64 *start,
				  u64 *end)
2721
{
2722
	if (node->allocated && node->color != color)
2723
		*start += I915_GTT_PAGE_SIZE;
2724

2725 2726 2727 2728 2729
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2730
	node = list_next_entry(node, node_list);
2731
	if (node->color != color)
2732
		*end -= I915_GTT_PAGE_SIZE;
2733
}
B
Ben Widawsky 已提交
2734

2735 2736 2737 2738 2739 2740
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2741
	ppgtt = i915_ppgtt_create(i915);
2742 2743
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2744

2745
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2746 2747 2748 2749
		err = -ENODEV;
		goto err_ppgtt;
	}

2750 2751 2752 2753 2754 2755 2756 2757 2758
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2759 2760

	i915->mm.aliasing_ppgtt = ppgtt;
2761

2762 2763
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2764

2765 2766
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2767

2768 2769 2770
	return 0;

err_ppgtt:
2771
	i915_ppgtt_put(ppgtt);
2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2784
	i915_ppgtt_put(ppgtt);
2785

2786 2787
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2788 2789
}

2790
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2791
{
2792 2793 2794 2795 2796 2797 2798 2799 2800
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2801
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2802
	unsigned long hole_start, hole_end;
2803
	struct drm_mm_node *entry;
2804
	int ret;
2805

2806 2807 2808 2809 2810 2811 2812 2813 2814
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2815 2816 2817
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2818

2819
	/* Reserve a mappable slot for our lockless error capture */
2820
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2821 2822 2823
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2824 2825 2826
	if (ret)
		return ret;

2827 2828 2829 2830 2831 2832
	if (USES_GUC(dev_priv)) {
		ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
		if (ret)
			goto err_reserve;
	}

2833
	/* Clear any non-preallocated blocks */
2834
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2835 2836
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2837 2838
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2839 2840 2841
	}

	/* And finally clear the reserved guard page */
2842
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2843

2844
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2845
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2846
		if (ret)
2847
			goto err_appgtt;
2848 2849
	}

2850
	return 0;
2851

2852 2853 2854
err_appgtt:
	intel_guc_release_ggtt_top(&dev_priv->guc);
err_reserve:
2855 2856
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2857 2858
}

2859 2860
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2861
 * @dev_priv: i915 device
2862
 */
2863
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2864
{
2865
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2866
	struct i915_vma *vma, *vn;
2867
	struct pagevec *pvec;
2868

2869
	ggtt->vm.closed = true;
2870 2871

	mutex_lock(&dev_priv->drm.struct_mutex);
2872 2873
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2874
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2875
		WARN_ON(i915_vma_unbind(vma));
2876

2877 2878 2879
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2880 2881
	intel_guc_release_ggtt_top(&dev_priv->guc);

2882
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2883
		intel_vgt_deballoon(dev_priv);
2884
		i915_address_space_fini(&ggtt->vm);
2885 2886
	}

2887
	ggtt->vm.cleanup(&ggtt->vm);
2888

2889
	pvec = &dev_priv->mm.wc_stash.pvec;
2890 2891 2892 2893 2894
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2895
	mutex_unlock(&dev_priv->drm.struct_mutex);
2896 2897

	arch_phys_wc_del(ggtt->mtrr);
2898
	io_mapping_fini(&ggtt->iomap);
2899

2900
	i915_gem_cleanup_stolen(dev_priv);
2901
}
2902

2903
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2904 2905 2906 2907 2908 2909
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2910
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2911 2912 2913 2914 2915
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2916 2917

#ifdef CONFIG_X86_32
2918
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2919 2920 2921 2922
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2923 2924 2925
	return bdw_gmch_ctl << 20;
}

2926
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2927 2928 2929 2930 2931 2932 2933 2934 2935 2936
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2937
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2938
{
2939
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2940
	struct pci_dev *pdev = dev_priv->drm.pdev;
2941
	phys_addr_t phys_addr;
2942
	int ret;
B
Ben Widawsky 已提交
2943 2944

	/* For Modern GENs the PTEs and register space are split in the BAR */
2945
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2946

I
Imre Deak 已提交
2947
	/*
2948 2949 2950
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2951 2952 2953
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2954
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2955
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2956
	else
2957
		ggtt->gsm = ioremap_wc(phys_addr, size);
2958
	if (!ggtt->gsm) {
2959
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2960 2961 2962
		return -ENOMEM;
	}

2963
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2964
	if (ret) {
B
Ben Widawsky 已提交
2965 2966
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2967
		iounmap(ggtt->gsm);
2968
		return ret;
B
Ben Widawsky 已提交
2969 2970
	}

2971 2972 2973 2974
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2975
	return 0;
B
Ben Widawsky 已提交
2976 2977
}

2978 2979
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2980
{
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3024
	struct intel_ppat_entry *entry = NULL;
3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3047
		if (!entry)
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3124
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3162 3163
}

B
Ben Widawsky 已提交
3164 3165 3166
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3167
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3168
{
3169 3170 3171 3172
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3173

3174
	if (!HAS_PPGTT(ppat->i915)) {
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3188 3189 3190
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3191

3192 3193 3194 3195 3196 3197 3198 3199
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3200 3201
}

3202
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3203
{
3204 3205 3206 3207
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3208 3209 3210 3211 3212 3213 3214

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3226 3227
	 */

3228 3229 3230 3231 3232 3233 3234 3235
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3236 3237
}

3238 3239 3240 3241 3242
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3243
	cleanup_scratch_page(vm);
3244 3245
}

3246 3247
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3248 3249 3250 3251 3252
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3253
	if (INTEL_GEN(dev_priv) >= 10)
3254
		cnl_setup_private_ppat(ppat);
3255
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3256
		chv_setup_private_ppat(ppat);
3257
	else
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3269 3270
}

3271
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3272
{
3273
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3274
	struct pci_dev *pdev = dev_priv->drm.pdev;
3275
	unsigned int size;
B
Ben Widawsky 已提交
3276
	u16 snb_gmch_ctl;
3277
	int err;
B
Ben Widawsky 已提交
3278 3279

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3280 3281 3282 3283
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3284

3285 3286 3287 3288 3289
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3290

3291
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3292
	if (IS_CHERRYVIEW(dev_priv))
3293
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3294
	else
3295
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3296

3297
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3298 3299 3300
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3301
	if (intel_scanout_needs_vtd_wa(dev_priv))
3302
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3303

3304
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3305

3306
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3307 3308
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3309 3310 3311 3312
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3313 3314 3315 3316 3317

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3318 3319
	}

3320 3321
	ggtt->invalidate = gen6_ggtt_invalidate;

3322 3323 3324 3325 3326
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3327 3328
	ggtt->vm.pte_encode = gen8_pte_encode;

3329 3330
	setup_private_pat(dev_priv);

3331
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3332 3333
}

3334
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3335
{
3336
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3337
	struct pci_dev *pdev = dev_priv->drm.pdev;
3338
	unsigned int size;
3339
	u16 snb_gmch_ctl;
3340
	int err;
3341

3342 3343 3344 3345
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3346

3347 3348
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3349
	 */
3350
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3351
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3352
		return -ENXIO;
3353 3354
	}

3355 3356 3357 3358 3359
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3360
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3361

3362
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3363
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3364

3365 3366 3367
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3368 3369 3370
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3371

3372 3373
	ggtt->invalidate = gen6_ggtt_invalidate;

3374
	if (HAS_EDRAM(dev_priv))
3375
		ggtt->vm.pte_encode = iris_pte_encode;
3376
	else if (IS_HASWELL(dev_priv))
3377
		ggtt->vm.pte_encode = hsw_pte_encode;
3378
	else if (IS_VALLEYVIEW(dev_priv))
3379
		ggtt->vm.pte_encode = byt_pte_encode;
3380
	else if (INTEL_GEN(dev_priv) >= 7)
3381
		ggtt->vm.pte_encode = ivb_pte_encode;
3382
	else
3383
		ggtt->vm.pte_encode = snb_pte_encode;
3384

3385 3386 3387 3388 3389
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3390
	return ggtt_probe_common(ggtt, size);
3391 3392
}

3393
static void i915_gmch_remove(struct i915_address_space *vm)
3394
{
3395
	intel_gmch_remove();
3396
}
3397

3398
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3399
{
3400
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3401
	phys_addr_t gmadr_base;
3402 3403
	int ret;

3404
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3405 3406 3407 3408 3409
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3410
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3411

3412 3413 3414 3415
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3416
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3417 3418 3419 3420
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3421

3422 3423
	ggtt->invalidate = gmch_ggtt_invalidate;

3424 3425 3426 3427 3428
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3429
	if (unlikely(ggtt->do_idle_maps))
3430 3431
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3432 3433 3434
	return 0;
}

3435
/**
3436
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3437
 * @dev_priv: i915 device
3438
 */
3439
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3440
{
3441
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3442 3443
	int ret;

3444 3445
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3446

3447 3448 3449 3450 3451 3452
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3453
	if (ret)
3454 3455
		return ret;

3456
	if ((ggtt->vm.total - 1) >> 32) {
3457
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3458
			  " of address space! Found %lldM!\n",
3459 3460 3461 3462
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3463 3464
	}

3465
	if (ggtt->mappable_end > ggtt->vm.total) {
3466
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3467
			  " aperture=%pa, total=%llx\n",
3468 3469
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3470 3471
	}

3472
	/* GMADR is the PCI mmio aperture into the global GTT. */
3473
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3474
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3475
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3476
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3477
	if (intel_vtd_active())
3478
		DRM_INFO("VT-d active for gfx access\n");
3479 3480

	return 0;
3481 3482 3483 3484
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3485
 * @dev_priv: i915 device
3486
 */
3487
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3488 3489 3490 3491
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3492 3493
	stash_init(&dev_priv->mm.wc_stash);

3494 3495 3496 3497
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3498
	 */
C
Chris Wilson 已提交
3499
	mutex_lock(&dev_priv->drm.struct_mutex);
3500
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3501

3502 3503
	ggtt->vm.is_ggtt = true;

3504 3505 3506
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3507
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3508
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3509
	mutex_unlock(&dev_priv->drm.struct_mutex);
3510

3511 3512
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3513
				dev_priv->ggtt.mappable_end)) {
3514 3515 3516 3517
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3518
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3519

3520 3521 3522 3523
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3524
	ret = i915_gem_init_stolen(dev_priv);
3525 3526 3527 3528
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3529 3530

out_gtt_cleanup:
3531
	ggtt->vm.cleanup(&ggtt->vm);
3532
	return ret;
3533
}
3534

3535
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3536
{
3537
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3538 3539 3540 3541 3542
		return -EIO;

	return 0;
}

3543 3544
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3545 3546
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3547
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3548 3549

	i915_ggtt_invalidate(i915);
3550 3551 3552 3553
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3554 3555 3556 3557
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3558 3559 3560 3561
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3562 3563

	i915_ggtt_invalidate(i915);
3564 3565
}

3566
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3567
{
3568
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3569
	struct i915_vma *vma, *vn;
3570

3571
	i915_check_and_clear_faults(dev_priv);
3572

3573 3574
	mutex_lock(&ggtt->vm.mutex);

3575
	/* First fill our portion of the GTT with scratch pages */
3576 3577
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3578 3579

	/* clflush objects bound into the GGTT and rebind them. */
3580
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3581
		struct drm_i915_gem_object *obj = vma->obj;
3582

3583 3584
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3585

3586 3587
		mutex_unlock(&ggtt->vm.mutex);

3588
		if (!i915_vma_unbind(vma))
3589
			goto lock;
3590

3591 3592 3593
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3594 3595
		if (obj) {
			i915_gem_object_lock(obj);
3596
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3597 3598
			i915_gem_object_unlock(obj);
		}
3599 3600 3601

lock:
		mutex_lock(&ggtt->vm.mutex);
3602
	}
3603

3604
	ggtt->vm.closed = false;
3605
	i915_ggtt_invalidate(dev_priv);
3606

3607 3608
	mutex_unlock(&ggtt->vm.mutex);

3609
	if (INTEL_GEN(dev_priv) >= 8) {
3610
		struct intel_ppat *ppat = &dev_priv->ppat;
3611

3612 3613
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3614 3615 3616 3617
		return;
	}
}

3618
static struct scatterlist *
3619
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3620
	     unsigned int width, unsigned int height,
3621
	     unsigned int stride,
3622
	     struct sg_table *st, struct scatterlist *sg)
3623 3624 3625 3626 3627
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3628
		src_idx = stride * (height - 1) + column + offset;
3629 3630 3631 3632 3633 3634
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3635
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3636 3637
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3638
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3639
			sg = sg_next(sg);
3640
			src_idx -= stride;
3641 3642
		}
	}
3643 3644

	return sg;
3645 3646
}

3647 3648 3649
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3650
{
3651
	unsigned int size = intel_rotation_info_size(rot_info);
3652
	struct sg_table *st;
3653
	struct scatterlist *sg;
3654
	int ret = -ENOMEM;
3655
	int i;
3656 3657 3658 3659 3660 3661

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3662
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3663 3664 3665
	if (ret)
		goto err_sg_alloc;

3666 3667 3668
	st->nents = 0;
	sg = st->sgl;

3669
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3670
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3671 3672
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3673 3674
	}

3675 3676 3677 3678 3679 3680
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3681 3682
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3683

3684 3685
	return ERR_PTR(ret);
}
3686

3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3770
static noinline struct sg_table *
3771 3772 3773 3774
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3775
	struct scatterlist *sg, *iter;
3776
	unsigned int count = view->partial.size;
3777
	unsigned int offset;
3778 3779 3780 3781 3782 3783
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3784
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3785 3786 3787
	if (ret)
		goto err_sg_alloc;

3788
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3789 3790
	GEM_BUG_ON(!iter);

3791 3792
	sg = st->sgl;
	st->nents = 0;
3793 3794
	do {
		unsigned int len;
3795

3796 3797 3798 3799 3800 3801
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3802 3803

		st->nents++;
3804 3805 3806
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3807 3808
			i915_sg_trim(st); /* Drop any unused tail entries. */

3809 3810
			return st;
		}
3811

3812 3813 3814 3815
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3816 3817 3818 3819 3820 3821 3822

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3823
static int
3824
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3825
{
3826
	int ret;
3827

3828 3829 3830 3831 3832 3833 3834
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3835
	switch (vma->ggtt_view.type) {
3836 3837 3838
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3839 3840
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3841 3842
		return 0;

3843
	case I915_GGTT_VIEW_ROTATED:
3844
		vma->pages =
3845 3846 3847
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3848 3849 3850 3851 3852
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3853
	case I915_GGTT_VIEW_PARTIAL:
3854
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3855 3856
		break;
	}
3857

3858
	ret = 0;
3859
	if (IS_ERR(vma->pages)) {
3860 3861
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3862 3863
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3864
	}
3865
	return ret;
3866 3867
}

3868 3869
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3904
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3905
	GEM_BUG_ON(drm_mm_node_allocated(node));
3906 3907 3908 3909 3910 3911 3912 3913 3914

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3915 3916 3917
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3918 3919 3920 3921 3922 3923 3924
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3950 3951
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3952 3953 3954 3955 3956 3957 3958 3959 3960
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3961
 *         must be #I915_GTT_PAGE_SIZE aligned
3962 3963 3964
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3965 3966 3967 3968 3969 3970
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3971 3972
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3989
	enum drm_mm_insert_mode mode;
3990
	u64 offset;
3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4001
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4002
	GEM_BUG_ON(drm_mm_node_allocated(node));
4003 4004 4005 4006 4007 4008 4009

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4010 4011
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4012
		mode = DRM_MM_INSERT_HIGHEST;
4013 4014
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4026 4027 4028
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4029 4030 4031
	if (err != -ENOSPC)
		return err;

4032 4033 4034 4035 4036 4037 4038 4039 4040
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4041 4042 4043
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4073 4074 4075 4076 4077
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4078 4079 4080
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4081
}
4082 4083 4084

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4085
#include "selftests/i915_gem_gtt.c"
4086
#endif