i915_gem_gtt.c 105.8 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_scatterlist.h"
40
#include "i915_trace.h"
41
#include "i915_vgpu.h"
42
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111
static void gen6_ggtt_invalidate(struct drm_i915_private *i915)
112
{
113 114
	struct intel_uncore *uncore = &i915->uncore;

115 116
	/*
	 * Note that as an uncached mmio write, this will flush the
117 118
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
119
	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
120 121
}

122
static void guc_ggtt_invalidate(struct drm_i915_private *i915)
123
{
124 125 126 127
	struct intel_uncore *uncore = &i915->uncore;

	gen6_ggtt_invalidate(i915);
	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
128 129
}

130
static void gmch_ggtt_invalidate(struct drm_i915_private *i915)
131 132 133 134 135 136 137 138 139
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

140 141 142
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
143
{
144
	u32 pte_flags;
145 146 147 148 149 150 151 152
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
153

154
	/* Applicable to VLV, and gen8+ */
155
	pte_flags = 0;
156
	if (i915_gem_object_is_readonly(vma->obj))
157 158
		pte_flags |= PTE_READ_ONLY;

159
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
160 161

	return 0;
162 163 164 165
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
166
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
167
}
168

169 170 171 172 173 174
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

175 176
	vma->page_sizes = vma->obj->mm.page_sizes;

177 178 179 180 181 182 183 184 185 186 187 188
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
189 190

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
191 192
}

193 194 195
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
196
{
197 198 199 200
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
201 202 203

	switch (level) {
	case I915_CACHE_NONE:
204
		pte |= PPAT_UNCACHED;
205 206
		break;
	case I915_CACHE_WT:
207
		pte |= PPAT_DISPLAY_ELLC;
208 209
		break;
	default:
210
		pte |= PPAT_CACHED;
211 212 213
		break;
	}

B
Ben Widawsky 已提交
214 215 216
	return pte;
}

217 218
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
219
{
220
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
221 222
	pde |= addr;
	if (level != I915_CACHE_NONE)
223
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
224
	else
225
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
226 227 228
	return pde;
}

229 230 231
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

232 233 234
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
235
{
236
	gen6_pte_t pte = GEN6_PTE_VALID;
237
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
238 239

	switch (level) {
240 241 242 243 244 245 246 247
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
248
		MISSING_CASE(level);
249 250 251 252 253
	}

	return pte;
}

254 255 256
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
257
{
258
	gen6_pte_t pte = GEN6_PTE_VALID;
259 260 261 262 263
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
264 265 266 267 268
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
269
		pte |= GEN6_PTE_UNCACHED;
270 271
		break;
	default:
272
		MISSING_CASE(level);
273 274
	}

275 276 277
	return pte;
}

278 279 280
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
281
{
282
	gen6_pte_t pte = GEN6_PTE_VALID;
283 284
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

285 286
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
287 288 289 290 291 292 293

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

294 295 296
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
297
{
298
	gen6_pte_t pte = GEN6_PTE_VALID;
299
	pte |= HSW_PTE_ADDR_ENCODE(addr);
300 301

	if (level != I915_CACHE_NONE)
302
		pte |= HSW_WB_LLC_AGE3;
303 304 305 306

	return pte;
}

307 308 309
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
310
{
311
	gen6_pte_t pte = GEN6_PTE_VALID;
312 313
	pte |= HSW_PTE_ADDR_ENCODE(addr);

314 315 316 317
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
318
		pte |= HSW_WT_ELLC_LLC_AGE3;
319 320
		break;
	default:
321
		pte |= HSW_WB_ELLC_LLC_AGE3;
322 323
		break;
	}
324 325 326 327

	return pte;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
348
	unsigned int nr;
349 350 351

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

352
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
353 354 355 356 357 358 359 360 361 362
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

363
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
364
{
365 366
	struct pagevec stack;
	struct page *page;
367

368 369
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
370

371 372 373
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
374 375 376 377 378

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
379 380 381
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
382

383
	/*
384
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
385 386 387 388 389 390
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
391
	pagevec_init(&stack);
392 393
	do {
		struct page *page;
394

395 396 397 398
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

399 400
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
401

402 403
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
404

405
		/* Merge spare WC pages to the global stash */
406 407
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
408

409 410 411
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
412
	}
413

414 415 416 417 418 419 420
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
421 422
}

423 424
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
425
{
426 427
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
428

429
	lockdep_assert_held(&vm->free_pages.lock);
430
	GEM_BUG_ON(!pagevec_count(pvec));
431

432
	if (vm->pt_kmap_wc) {
433 434
		/*
		 * When we use WC, first fill up the global stash and then
435 436
		 * only if full immediately free the overflow.
		 */
437
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
438

439 440 441 442 443 444 445 446
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
447

448 449 450 451 452 453 454 455 456 457
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
458
		set_pages_array_wb(pvec->pages, pvec->nr);
459 460

		spin_lock(&vm->free_pages.lock);
461 462 463
	}

	__pagevec_release(pvec);
464 465 466 467
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
468 469 470 471 472 473 474 475
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
476
	spin_lock(&vm->free_pages.lock);
477
	while (!pagevec_space(&vm->free_pages.pvec))
478
		vm_free_pages_release(vm, false);
479 480
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
481 482 483
	spin_unlock(&vm->free_pages.lock);
}

484
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
485
{
486 487
	kref_init(&vm->ref);

488 489 490 491 492 493
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
494
	lockdep_set_subclass(&vm->mutex, subclass);
495
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
496

497 498 499 500 501 502 503
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
504
	INIT_LIST_HEAD(&vm->bound_list);
505 506 507 508 509 510 511 512 513 514 515
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
516 517

	mutex_destroy(&vm->mutex);
518
}
519

520 521 522 523
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
524
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
525 526
	if (unlikely(!p->page))
		return -ENOMEM;
527

528 529 530
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
531
				      DMA_ATTR_SKIP_CPU_SYNC |
532
				      DMA_ATTR_NO_WARN);
533 534 535
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
536
	}
537 538

	return 0;
539 540
}

541
static int setup_page_dma(struct i915_address_space *vm,
542
			  struct i915_page_dma *p)
543
{
544
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
545 546
}

547
static void cleanup_page_dma(struct i915_address_space *vm,
548
			     struct i915_page_dma *p)
549
{
550 551
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
552 553
}

554
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
555

556 557
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
558 559
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
560

561 562 563
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
564
{
565
	u64 * const vaddr = kmap_atomic(p->page);
566

567
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
568

569
	kunmap_atomic(vaddr);
570 571
}

572 573 574
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
575
{
576
	fill_page_dma(vm, p, (u64)v << 32 | v);
577 578
}

579
static int
580
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
581
{
582
	unsigned long size;
583

584 585 586 587 588 589 590
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
591 592 593
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
594
	 */
595
	size = I915_GTT_PAGE_SIZE_4K;
596
	if (i915_vm_is_4lvl(vm) &&
597
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
598 599
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
600
	}
601 602 603 604 605 606
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
607

608
		page = alloc_pages(gfp, order);
609
		if (unlikely(!page))
610
			goto skip;
611

612 613 614
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
615
					  DMA_ATTR_SKIP_CPU_SYNC |
616
					  DMA_ATTR_NO_WARN);
617 618
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
619

620 621
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
622

623 624
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
625
		vm->scratch_order = order;
626 627 628 629 630 631 632 633 634 635 636 637 638
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
639 640
}

641
static void cleanup_scratch_page(struct i915_address_space *vm)
642
{
643
	struct i915_page_dma *p = &vm->scratch_page;
644
	int order = vm->scratch_order;
645

646
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
647
		       PCI_DMA_BIDIRECTIONAL);
648
	__free_pages(p->page, order);
649 650
}

651
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
652
{
653
	struct i915_page_table *pt;
654

655
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
656
	if (unlikely(!pt))
657 658
		return ERR_PTR(-ENOMEM);

659 660 661 662
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
663

664
	atomic_set(&pt->used_ptes, 0);
665 666 667
	return pt;
}

668
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
669
{
670
	cleanup_px(vm, pt);
671 672 673 674 675 676
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
677
	fill_px(vm, pt, vm->scratch_pte);
678 679
}

680
static void gen6_initialize_pt(struct i915_address_space *vm,
681 682
			       struct i915_page_table *pt)
{
683
	fill32_px(vm, pt, vm->scratch_pte);
684 685
}

686
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
687
{
688
	struct i915_page_directory *pd;
689

690
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
691
	if (unlikely(!pd))
692 693
		return ERR_PTR(-ENOMEM);

694 695 696 697
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
698

699 700
	atomic_set(&pd->used_pdes, 0);
	spin_lock_init(&pd->lock);
701 702 703
	return pd;
}

704
static void free_pd(struct i915_address_space *vm,
705
		    struct i915_page_directory *pd)
706
{
707 708
	cleanup_px(vm, pd);
	kfree(pd);
709 710 711 712 713
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
714 715
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
716
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
717 718
}

719
static int __pdp_init(struct i915_address_space *vm,
720 721
		      struct i915_page_directory_pointer *pdp)
{
722
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
723

724
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
725
					    I915_GFP_ALLOW_FAIL);
726
	if (unlikely(!pdp->page_directory))
727 728
		return -ENOMEM;

729
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
730

731 732
	atomic_set(&pdp->used_pdpes, 0);
	spin_lock_init(&pdp->lock);
733 734 735 736 737 738 739 740 741
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

742 743
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
744 745 746 747
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

748
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
749 750 751 752 753

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

754
	ret = __pdp_init(vm, pdp);
755 756 757
	if (ret)
		goto fail_bitmap;

758
	ret = setup_px(vm, pdp);
759 760 761 762 763 764 765 766 767 768 769 770 771
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

772
static void free_pdp(struct i915_address_space *vm,
773 774 775
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
776

777
	if (!i915_vm_is_4lvl(vm))
778 779 780 781
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
782 783
}

784 785 786
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
787 788
	fill_px(vm, pdp,
		gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC));
789 790 791 792 793
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
794 795
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
796
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
797
	spin_lock_init(&pml4->lock);
798 799
}

800 801
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
802 803 804 805
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
806
static void mark_tlbs_dirty(struct i915_ppgtt *ppgtt)
807
{
808
	ppgtt->pd_dirty_engines = ALL_ENGINES;
809 810
}

811 812 813
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
814
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
815
				struct i915_page_table *pt,
816
				u64 start, u64 length)
817
{
818
	unsigned int num_entries = gen8_pte_count(start, length);
819
	gen8_pte_t *vaddr;
820

821
	vaddr = kmap_atomic_px(pt);
822
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
823
	kunmap_atomic(vaddr);
824

825 826
	GEM_BUG_ON(num_entries > atomic_read(&pt->used_ptes));
	return !atomic_sub_return(num_entries, &pt->used_ptes);
827
}
828

829 830 831 832 833 834 835 836 837 838 839 840
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

841
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
842
				struct i915_page_directory *pd,
843
				u64 start, u64 length)
844 845
{
	struct i915_page_table *pt;
846
	u32 pde;
847 848

	gen8_for_each_pde(pt, pd, start, length, pde) {
849 850
		bool free = false;

851 852
		GEM_BUG_ON(pt == vm->scratch_pt);

853 854
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
855

856 857 858 859
		spin_lock(&pd->lock);
		if (!atomic_read(&pt->used_ptes)) {
			gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
			pd->page_table[pde] = vm->scratch_pt;
860

861 862 863 864 865 866 867
			GEM_BUG_ON(!atomic_read(&pd->used_pdes));
			atomic_dec(&pd->used_pdes);
			free = true;
		}
		spin_unlock(&pd->lock);
		if (free)
			free_pt(vm, pt);
868 869
	}

870
	return !atomic_read(&pd->used_pdes);
871
}
872

873 874 875 876 877 878 879
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

880
	if (!i915_vm_is_4lvl(vm))
881 882 883 884 885
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
886
}
887

888 889 890 891
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
892
				 struct i915_page_directory_pointer *pdp,
893
				 u64 start, u64 length)
894 895
{
	struct i915_page_directory *pd;
896
	unsigned int pdpe;
897

898
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
899 900
		bool free = false;

901 902
		GEM_BUG_ON(pd == vm->scratch_pd);

903 904
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
905

906 907 908 909
		spin_lock(&pdp->lock);
		if (!atomic_read(&pd->used_pdes)) {
			gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
			pdp->page_directory[pdpe] = vm->scratch_pd;
910

911 912 913 914 915 916 917
			GEM_BUG_ON(!atomic_read(&pdp->used_pdpes));
			atomic_dec(&pdp->used_pdpes);
			free = true;
		}
		spin_unlock(&pdp->lock);
		if (free)
			free_pd(vm, pd);
918
	}
919

920
	return !atomic_read(&pdp->used_pdpes);
921
}
922

923 924 925 926 927 928
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

929 930 931 932 933 934 935 936 937 938 939
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

940 941 942 943
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
944 945
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
946
{
947
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
948
	struct i915_pml4 *pml4 = &ppgtt->pml4;
949
	struct i915_page_directory_pointer *pdp;
950
	unsigned int pml4e;
951

952
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
953

954
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
955
		bool free = false;
956 957
		GEM_BUG_ON(pdp == vm->scratch_pdp);

958 959
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
960

961 962 963 964 965 966 967 968 969
		spin_lock(&pml4->lock);
		if (!atomic_read(&pdp->used_pdpes)) {
			gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
			pml4->pdps[pml4e] = vm->scratch_pdp;
			free = true;
		}
		spin_unlock(&pml4->lock);
		if (free)
			free_pdp(vm, pdp);
970 971 972
	}
}

973
static inline struct sgt_dma {
974 975
	struct scatterlist *sg;
	dma_addr_t dma, max;
976 977 978 979 980
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
981

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

999
static __always_inline bool
1000
gen8_ppgtt_insert_pte_entries(struct i915_ppgtt *ppgtt,
1001
			      struct i915_page_directory_pointer *pdp,
1002
			      struct sgt_dma *iter,
1003
			      struct gen8_insert_pte *idx,
1004 1005
			      enum i915_cache_level cache_level,
			      u32 flags)
1006
{
1007
	struct i915_page_directory *pd;
1008
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1009 1010
	gen8_pte_t *vaddr;
	bool ret;
1011

1012
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1013 1014
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1015
	do {
1016 1017
		vaddr[idx->pte] = pte_encode | iter->dma;

1018
		iter->dma += I915_GTT_PAGE_SIZE;
1019 1020 1021 1022 1023 1024
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1025

1026 1027
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1028
		}
1029

1030 1031 1032 1033 1034 1035
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1036
				/* Limited by sg length for 3lvl */
1037 1038
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1039
					ret = true;
1040
					break;
1041 1042
				}

1043
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1044
				pd = pdp->page_directory[idx->pdpe];
1045
			}
1046

1047
			kunmap_atomic(vaddr);
1048
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1049
		}
1050
	} while (1);
1051
	kunmap_atomic(vaddr);
1052

1053
	return ret;
1054 1055
}

1056
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1057
				   struct i915_vma *vma,
1058
				   enum i915_cache_level cache_level,
1059
				   u32 flags)
1060
{
1061
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1062
	struct sgt_dma iter = sgt_dma(vma);
1063
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1064

1065
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1066
				      cache_level, flags);
1067 1068

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1069
}
1070

1071 1072 1073
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1074 1075
					   enum i915_cache_level cache_level,
					   u32 flags)
1076
{
1077
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1078 1079 1080 1081 1082 1083 1084 1085
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1086
		bool maybe_64K = false;
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1108 1109 1110 1111
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1112
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1113 1114
				maybe_64K = true;

1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1134 1135 1136
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1137
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1138 1139
					maybe_64K = false;

1140 1141 1142 1143 1144 1145
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1162
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1176
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1177 1178 1179 1180 1181 1182 1183
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1184
		}
1185 1186

		vma->page_sizes.gtt |= page_size;
1187 1188 1189
	} while (iter->sg);
}

1190
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1191
				   struct i915_vma *vma,
1192
				   enum i915_cache_level cache_level,
1193
				   u32 flags)
1194
{
1195
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1196
	struct sgt_dma iter = sgt_dma(vma);
1197
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1198

1199
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1200 1201
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1202 1203 1204 1205
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1206 1207
						     &iter, &idx, cache_level,
						     flags))
1208
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1209 1210

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1211
	}
1212 1213
}

1214
static void gen8_free_page_tables(struct i915_address_space *vm,
1215
				  struct i915_page_directory *pd)
1216 1217 1218
{
	int i;

1219 1220 1221
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1222
	}
B
Ben Widawsky 已提交
1223 1224
}

1225 1226
static int gen8_init_scratch(struct i915_address_space *vm)
{
1227
	int ret;
1228

1229 1230 1231 1232 1233 1234
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
1235 1236
	    vm->i915->kernel_context->vm) {
		struct i915_address_space *clone = vm->i915->kernel_context->vm;
1237 1238 1239

		GEM_BUG_ON(!clone->has_read_only);

1240
		vm->scratch_order = clone->scratch_order;
1241 1242 1243 1244 1245 1246 1247
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1248
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1249 1250
	if (ret)
		return ret;
1251

1252 1253 1254
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1255
				vm->has_read_only);
1256

1257
	vm->scratch_pt = alloc_pt(vm);
1258
	if (IS_ERR(vm->scratch_pt)) {
1259 1260
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1261 1262
	}

1263
	vm->scratch_pd = alloc_pd(vm);
1264
	if (IS_ERR(vm->scratch_pd)) {
1265 1266
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1267 1268
	}

1269
	if (i915_vm_is_4lvl(vm)) {
1270
		vm->scratch_pdp = alloc_pdp(vm);
1271
		if (IS_ERR(vm->scratch_pdp)) {
1272 1273
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1274 1275 1276
		}
	}

1277 1278
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1279
	if (i915_vm_is_4lvl(vm))
1280
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1281 1282

	return 0;
1283 1284

free_pd:
1285
	free_pd(vm, vm->scratch_pd);
1286
free_pt:
1287
	free_pt(vm, vm->scratch_pt);
1288
free_scratch_page:
1289
	cleanup_scratch_page(vm);
1290 1291

	return ret;
1292 1293
}

1294
static int gen8_ppgtt_notify_vgt(struct i915_ppgtt *ppgtt, bool create)
1295
{
1296
	struct i915_address_space *vm = &ppgtt->vm;
1297
	struct drm_i915_private *dev_priv = vm->i915;
1298 1299 1300
	enum vgt_g2v_type msg;
	int i;

1301
	if (i915_vm_is_4lvl(vm)) {
1302
		const u64 daddr = px_dma(&ppgtt->pml4);
1303

1304 1305
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1306 1307 1308 1309

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1310
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1311
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1312

1313 1314
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1326 1327
static void gen8_free_scratch(struct i915_address_space *vm)
{
1328 1329 1330
	if (!vm->scratch_page.daddr)
		return;

1331
	if (i915_vm_is_4lvl(vm))
1332 1333 1334 1335
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1336 1337
}

1338
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1339
				    struct i915_page_directory_pointer *pdp)
1340
{
1341
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1342 1343
	int i;

1344
	for (i = 0; i < pdpes; i++) {
1345
		if (pdp->page_directory[i] == vm->scratch_pd)
1346 1347
			continue;

1348 1349
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1350
	}
1351

1352
	free_pdp(vm, pdp);
1353 1354
}

1355
static void gen8_ppgtt_cleanup_4lvl(struct i915_ppgtt *ppgtt)
1356 1357 1358
{
	int i;

1359
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1360
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1361 1362
			continue;

1363
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1364 1365
	}

1366
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1367 1368 1369 1370
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1371
	struct drm_i915_private *i915 = vm->i915;
1372
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1373

1374
	if (intel_vgpu_active(i915))
1375 1376
		gen8_ppgtt_notify_vgt(ppgtt, false);

1377
	if (i915_vm_is_4lvl(vm))
1378
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1379
	else
1380
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1381

1382
	gen8_free_scratch(vm);
1383 1384
}

1385 1386 1387
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1388
{
1389
	struct i915_page_table *pt;
1390
	u64 from = start;
1391
	unsigned int pde;
1392

1393
	spin_lock(&pd->lock);
1394
	gen8_for_each_pde(pt, pd, start, length, pde) {
1395
		const int count = gen8_pte_count(start, length);
1396

1397
		if (pt == vm->scratch_pt) {
1398 1399 1400
			struct i915_page_table *old;

			spin_unlock(&pd->lock);
1401

1402
			pt = alloc_pt(vm);
1403
			if (IS_ERR(pt))
1404
				goto unwind;
1405

1406
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1407
				gen8_initialize_pt(vm, pt);
1408

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
			old = cmpxchg(&pd->page_table[pde], vm->scratch_pt, pt);
			if (old == vm->scratch_pt) {
				gen8_ppgtt_set_pde(vm, pd, pt, pde);
				atomic_inc(&pd->used_pdes);
			} else {
				free_pt(vm, pt);
				pt = old;
			}

			spin_lock(&pd->lock);
1419
		}
1420

1421
		atomic_add(count, &pt->used_ptes);
1422
	}
1423 1424
	spin_unlock(&pd->lock);

1425
	return 0;
1426

1427 1428
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1429
	return -ENOMEM;
1430 1431
}

1432 1433 1434
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1435
{
1436
	struct i915_page_directory *pd;
1437 1438
	u64 from = start;
	unsigned int pdpe;
1439 1440
	int ret;

1441
	spin_lock(&pdp->lock);
1442
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1443
		if (pd == vm->scratch_pd) {
1444 1445 1446
			struct i915_page_directory *old;

			spin_unlock(&pdp->lock);
1447

1448
			pd = alloc_pd(vm);
1449
			if (IS_ERR(pd))
1450
				goto unwind;
1451

1452
			gen8_initialize_pd(vm, pd);
1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

			old = cmpxchg(&pdp->page_directory[pdpe],
				      vm->scratch_pd, pd);
			if (old == vm->scratch_pd) {
				gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
				atomic_inc(&pdp->used_pdpes);
			} else {
				free_pd(vm, pd);
				pd = old;
			}

			spin_lock(&pdp->lock);
1465
		}
1466 1467
		atomic_inc(&pd->used_pdes);
		spin_unlock(&pdp->lock);
1468 1469

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1470 1471
		if (unlikely(ret))
			goto unwind_pd;
1472 1473 1474

		spin_lock(&pdp->lock);
		atomic_dec(&pd->used_pdes);
1475
	}
1476
	spin_unlock(&pdp->lock);
1477

B
Ben Widawsky 已提交
1478
	return 0;
1479

1480
unwind_pd:
1481 1482
	spin_lock(&pdp->lock);
	if (atomic_dec_and_test(&pd->used_pdes)) {
1483
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1484 1485
		GEM_BUG_ON(!atomic_read(&pdp->used_pdpes));
		atomic_dec(&pdp->used_pdpes);
1486 1487
		free_pd(vm, pd);
	}
1488
	spin_unlock(&pdp->lock);
1489 1490 1491
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1492 1493
}

1494 1495
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1496
{
1497 1498 1499
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1500

1501 1502 1503
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
1504
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1505 1506 1507 1508 1509
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1510

1511
	spin_lock(&pml4->lock);
1512
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1513 1514 1515 1516 1517
		if (pdp == vm->scratch_pdp) {
			struct i915_page_directory_pointer *old;

			spin_unlock(&pml4->lock);

1518 1519 1520
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1521

1522
			gen8_initialize_pdp(vm, pdp);
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

			old = cmpxchg(&pml4->pdps[pml4e], vm->scratch_pdp, pdp);
			if (old == vm->scratch_pdp) {
				gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
			} else {
				free_pdp(vm, pdp);
				pdp = old;
			}

			spin_lock(&pml4->lock);
1533
		}
1534 1535
		atomic_inc(&pdp->used_pdpes);
		spin_unlock(&pml4->lock);
1536

1537
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1538 1539
		if (unlikely(ret))
			goto unwind_pdp;
1540 1541 1542

		spin_lock(&pml4->lock);
		atomic_dec(&pdp->used_pdpes);
1543
	}
1544
	spin_unlock(&pml4->lock);
1545 1546 1547

	return 0;

1548
unwind_pdp:
1549 1550
	spin_lock(&pml4->lock);
	if (atomic_dec_and_test(&pdp->used_pdpes)) {
1551 1552 1553
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1554
	spin_unlock(&pml4->lock);
1555 1556 1557
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1558 1559
}

1560
static int gen8_preallocate_top_level_pdp(struct i915_ppgtt *ppgtt)
1561
{
1562
	struct i915_address_space *vm = &ppgtt->vm;
1563 1564
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1565
	u64 start = 0, length = ppgtt->vm.total;
1566 1567
	u64 from = start;
	unsigned int pdpe;
1568

1569 1570 1571 1572
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1573

1574 1575
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1576
		atomic_inc(&pdp->used_pdpes);
1577
	}
1578

1579
	atomic_inc(&pdp->used_pdpes); /* never remove */
1580
	return 0;
1581

1582 1583 1584 1585 1586 1587
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
1588
	atomic_set(&pdp->used_pdpes, 0);
1589
	return -ENOMEM;
1590 1591
}

1592
static void ppgtt_init(struct drm_i915_private *i915,
1593
		       struct i915_ppgtt *ppgtt)
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
{
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1607
/*
1608 1609 1610 1611
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1612
 *
1613
 */
1614
static struct i915_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1615
{
1616
	struct i915_ppgtt *ppgtt;
1617 1618 1619 1620 1621 1622
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1623
	ppgtt_init(i915, ppgtt);
1624

1625 1626 1627 1628 1629 1630 1631
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1632

1633 1634 1635
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1636
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1637
		ppgtt->vm.pt_kmap_wc = true;
1638

1639 1640 1641
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1642

1643
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1644 1645 1646
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1647

1648
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1649

1650 1651 1652
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1653
	} else {
1654 1655 1656
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1657

1658 1659 1660
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1661
				__pdp_fini(&ppgtt->pdp);
1662
				goto err_scratch;
1663
			}
1664
		}
1665

1666 1667 1668
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1669
	}
1670

1671
	if (intel_vgpu_active(i915))
1672 1673
		gen8_ppgtt_notify_vgt(ppgtt, true);

1674
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1675

1676
	return ppgtt;
1677

1678
err_scratch:
1679
	gen8_free_scratch(&ppgtt->vm);
1680 1681 1682
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1683 1684
}

1685
/* Write pde (index) from the page directory @pd to the page table @pt */
1686
static inline void gen6_write_pde(const struct gen6_ppgtt *ppgtt,
C
Chris Wilson 已提交
1687 1688
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1689
{
1690
	/* Caller needs to make sure the write completes if necessary */
1691 1692
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1693
}
B
Ben Widawsky 已提交
1694

1695
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1696
{
1697
	struct intel_engine_cs *engine;
1698
	u32 ecochk, ecobits;
1699
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1700

1701 1702
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1703

1704
	ecochk = I915_READ(GAM_ECOCHK);
1705
	if (IS_HASWELL(dev_priv)) {
1706 1707 1708 1709 1710 1711
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1712

1713
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1714
		/* GFX_MODE is per-ring on gen7+ */
1715 1716 1717
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1718
	}
1719
}
B
Ben Widawsky 已提交
1720

1721
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1722
{
1723
	u32 ecochk, gab_ctl, ecobits;
1724

1725 1726 1727
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1728

1729 1730 1731 1732 1733 1734
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1735 1736
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1737 1738
}

1739
/* PPGTT support for Sandybdrige/Gen6 and later */
1740
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1741
				   u64 start, u64 length)
1742
{
1743
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1744
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1745 1746
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1747
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1748
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1749

1750
	while (num_entries) {
1751
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1752
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1753
		gen6_pte_t *vaddr;
1754

1755 1756 1757 1758
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

1759 1760
		GEM_BUG_ON(count > atomic_read(&pt->used_ptes));
		if (!atomic_sub_return(count, &pt->used_ptes))
1761
			ppgtt->scan_for_unused_pt = true;
1762

1763 1764
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1765 1766 1767 1768
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1769

1770
		vaddr = kmap_atomic_px(pt);
1771
		memset32(vaddr + pte, scratch_pte, count);
1772
		kunmap_atomic(vaddr);
1773

1774
		pte = 0;
1775
	}
1776 1777
}

1778
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1779
				      struct i915_vma *vma,
1780 1781
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1782
{
1783
	struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1784
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1785 1786
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1787
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1788
	struct sgt_dma iter = sgt_dma(vma);
1789 1790
	gen6_pte_t *vaddr;

1791 1792
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1793
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1794 1795
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1796

1797
		iter.dma += I915_GTT_PAGE_SIZE;
1798 1799 1800 1801
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1802

1803 1804 1805
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1806

1807
		if (++act_pte == GEN6_PTES) {
1808 1809
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1810
			act_pte = 0;
D
Daniel Vetter 已提交
1811
		}
1812
	} while (1);
1813
	kunmap_atomic(vaddr);
1814 1815

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1816 1817
}

1818
static int gen6_alloc_va_range(struct i915_address_space *vm,
1819
			       u64 start, u64 length)
1820
{
1821
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1822
	struct i915_page_table *pt;
1823
	intel_wakeref_t wakeref;
1824 1825 1826
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1827

1828 1829
	wakeref = intel_runtime_pm_get(vm->i915);

1830
	spin_lock(&ppgtt->base.pd.lock);
1831
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1832 1833
		const unsigned int count = gen6_pte_count(start, length);

1834
		if (pt == vm->scratch_pt) {
1835 1836 1837 1838
			struct i915_page_table *old;

			spin_unlock(&ppgtt->base.pd.lock);

1839 1840 1841
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1842

1843
			gen6_initialize_pt(vm, pt);
1844

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
			old = cmpxchg(&ppgtt->base.pd.page_table[pde],
				      vm->scratch_pt, pt);
			if (old == vm->scratch_pt) {
				ppgtt->base.pd.page_table[pde] = pt;
				if (i915_vma_is_bound(ppgtt->vma,
						      I915_VMA_GLOBAL_BIND)) {
					gen6_write_pde(ppgtt, pde, pt);
					flush = true;
				}
			} else {
				free_pt(vm, pt);
				pt = old;
1857
			}
1858

1859
			spin_lock(&ppgtt->base.pd.lock);
1860
		}
1861

1862
		atomic_add(count, &pt->used_ptes);
1863
	}
1864
	spin_unlock(&ppgtt->base.pd.lock);
1865

1866
	if (flush) {
1867
		mark_tlbs_dirty(&ppgtt->base);
1868
		gen6_ggtt_invalidate(vm->i915);
1869 1870
	}

1871 1872
	intel_runtime_pm_put(vm->i915, wakeref);

1873
	return 0;
1874 1875

unwind_out:
1876
	intel_runtime_pm_put(vm->i915, wakeref);
1877
	gen6_ppgtt_clear_range(vm, from, start - from);
1878
	return -ENOMEM;
1879 1880
}

1881
static int gen6_ppgtt_init_scratch(struct gen6_ppgtt *ppgtt)
1882
{
1883 1884 1885
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1886
	int ret;
1887

1888
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1889 1890
	if (ret)
		return ret;
1891

1892 1893 1894
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1895

1896
	vm->scratch_pt = alloc_pt(vm);
1897
	if (IS_ERR(vm->scratch_pt)) {
1898
		cleanup_scratch_page(vm);
1899 1900 1901
		return PTR_ERR(vm->scratch_pt);
	}

1902
	gen6_initialize_pt(vm, vm->scratch_pt);
1903 1904
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1905
	spin_lock_init(&ppgtt->base.pd.lock);
1906 1907 1908 1909

	return 0;
}

1910
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1911
{
1912 1913
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1914 1915
}

1916
static void gen6_ppgtt_free_pd(struct gen6_ppgtt *ppgtt)
1917
{
1918
	struct i915_page_table *pt;
1919
	u32 pde;
1920

1921
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1922 1923 1924 1925
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
struct gen6_ppgtt_cleanup_work {
	struct work_struct base;
	struct i915_vma *vma;
};

static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
{
	struct gen6_ppgtt_cleanup_work *work =
		container_of(wrk, typeof(*work), base);
	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
	struct drm_i915_private *i915 = work->vma->vm->i915;

	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(work->vma);
	mutex_unlock(&i915->drm.struct_mutex);

	kfree(work);
}

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static int nop_set_pages(struct i915_vma *vma)
{
	return -ENODEV;
}

static void nop_clear_pages(struct i915_vma *vma)
{
}

static int nop_bind(struct i915_vma *vma,
		    enum i915_cache_level cache_level,
		    u32 unused)
{
	return -ENODEV;
}

static void nop_unbind(struct i915_vma *vma)
{
}

static const struct i915_vma_ops nop_vma_ops = {
	.set_pages = nop_set_pages,
	.clear_pages = nop_clear_pages,
	.bind_vma = nop_bind,
	.unbind_vma = nop_unbind,
};

1972 1973
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
1974
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1975
	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1976

1977 1978 1979
	/* FIXME remove the struct_mutex to bring the locking under control */
	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
	work->vma = ppgtt->vma;
1980
	work->vma->ops = &nop_vma_ops;
1981
	schedule_work(&work->base);
1982 1983 1984

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1985 1986
}

1987
static int pd_vma_set_pages(struct i915_vma *vma)
1988
{
1989 1990 1991
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1992

1993 1994 1995
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1996

1997 1998 1999 2000 2001 2002 2003 2004
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
2005
	struct gen6_ppgtt *ppgtt = vma->private;
2006
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
2007 2008
	struct i915_page_table *pt;
	unsigned int pde;
2009

2010 2011
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2012

2013 2014
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2015

2016 2017
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2018

2019
	return 0;
2020
}
2021

2022
static void pd_vma_unbind(struct i915_vma *vma)
2023
{
2024
	struct gen6_ppgtt *ppgtt = vma->private;
2025 2026 2027 2028 2029 2030 2031 2032 2033
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2034
		if (atomic_read(&pt->used_ptes) || pt == scratch_pt)
2035 2036 2037 2038 2039 2040 2041
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2042 2043 2044 2045 2046 2047 2048 2049 2050
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

2051
static struct i915_vma *pd_vma_create(struct gen6_ppgtt *ppgtt, int size)
2052 2053 2054 2055 2056 2057 2058 2059
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

2060
	vma = i915_vma_alloc();
2061 2062 2063
	if (!vma)
		return ERR_PTR(-ENOMEM);

2064
	i915_active_init(i915, &vma->active, NULL);
2065
	INIT_ACTIVE_REQUEST(&vma->last_fence);
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
2077
	INIT_LIST_HEAD(&vma->closed_link);
2078 2079

	mutex_lock(&vma->vm->mutex);
2080
	list_add(&vma->vm_link, &vma->vm->unbound_list);
2081
	mutex_unlock(&vma->vm->mutex);
2082 2083 2084

	return vma;
}
2085

2086
int gen6_ppgtt_pin(struct i915_ppgtt *base)
2087
{
2088
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2089
	int err;
2090

2091 2092
	GEM_BUG_ON(ppgtt->base.vm.closed);

2093 2094 2095 2096 2097 2098 2099 2100 2101
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2102 2103 2104 2105 2106
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2118 2119
}

2120
void gen6_ppgtt_unpin(struct i915_ppgtt *base)
2121
{
2122
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2123 2124 2125 2126 2127 2128 2129 2130

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2131
void gen6_ppgtt_unpin_all(struct i915_ppgtt *base)
2132
{
2133
	struct gen6_ppgtt *ppgtt = to_gen6_ppgtt(base);
2134 2135 2136 2137 2138 2139 2140 2141

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2142
static struct i915_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2143
{
2144
	struct i915_ggtt * const ggtt = &i915->ggtt;
2145
	struct gen6_ppgtt *ppgtt;
2146 2147 2148 2149 2150 2151
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2152
	ppgtt_init(i915, &ppgtt->base);
2153

2154
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2155 2156 2157
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2158

2159 2160
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2161
	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2162 2163
	if (!ppgtt->work) {
		err = -ENOMEM;
2164
		goto err_free;
2165
	}
2166

2167
	err = gen6_ppgtt_init_scratch(ppgtt);
2168
	if (err)
2169
		goto err_work;
2170

2171 2172 2173
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2174
		goto err_scratch;
2175
	}
2176

2177
	return &ppgtt->base;
2178

2179 2180
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2181 2182
err_work:
	kfree(ppgtt->work);
2183 2184 2185
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2186
}
2187

2188
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2189 2190 2191 2192 2193
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2194
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2195
	if (IS_BROADWELL(dev_priv))
2196
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2197
	else if (IS_CHERRYVIEW(dev_priv))
2198
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2199
	else if (IS_GEN9_LP(dev_priv))
2200
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2201 2202
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2220 2221
}

2222
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2223
{
2224
	gtt_write_workarounds(dev_priv);
2225

2226
	if (IS_GEN(dev_priv, 6))
2227
		gen6_ppgtt_enable(dev_priv);
2228
	else if (IS_GEN(dev_priv, 7))
2229
		gen7_ppgtt_enable(dev_priv);
2230

2231 2232
	return 0;
}
2233

2234 2235
static struct i915_ppgtt *
__ppgtt_create(struct drm_i915_private *i915)
2236 2237 2238 2239 2240 2241 2242
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2243
struct i915_ppgtt *
2244
i915_ppgtt_create(struct drm_i915_private *i915)
2245
{
2246
	struct i915_ppgtt *ppgtt;
2247

2248
	ppgtt = __ppgtt_create(i915);
2249 2250
	if (IS_ERR(ppgtt))
		return ppgtt;
2251

2252
	trace_i915_ppgtt_create(&ppgtt->vm);
2253

2254 2255 2256
	return ppgtt;
}

2257
static void ppgtt_destroy_vma(struct i915_address_space *vm)
2258 2259
{
	struct list_head *phases[] = {
2260
		&vm->bound_list,
2261 2262 2263 2264 2265 2266 2267 2268 2269
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2270
			i915_vma_destroy(vma);
2271 2272 2273
	}
}

2274
void i915_vm_release(struct kref *kref)
2275
{
2276 2277
	struct i915_address_space *vm =
		container_of(kref, struct i915_address_space, ref);
2278

2279 2280
	GEM_BUG_ON(i915_is_ggtt(vm));
	trace_i915_ppgtt_release(vm);
2281

2282
	ppgtt_destroy_vma(vm);
2283

2284 2285
	GEM_BUG_ON(!list_empty(&vm->bound_list));
	GEM_BUG_ON(!list_empty(&vm->unbound_list));
2286

2287 2288 2289 2290
	vm->cleanup(vm);
	i915_address_space_fini(vm);

	kfree(vm);
2291
}
2292

2293 2294 2295
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2296
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2297 2298 2299 2300
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2301
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2302 2303
}

2304
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2305
{
2306
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2307 2308 2309 2310

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2311
	if (INTEL_GEN(dev_priv) < 6)
2312 2313
		return;

2314
	i915_check_and_clear_faults(dev_priv);
2315

2316
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2317

2318
	i915_ggtt_invalidate(dev_priv);
2319 2320
}

2321 2322
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2323
{
2324
	do {
2325 2326 2327 2328
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2329 2330
			return 0;

2331 2332
		/*
		 * If the DMA remap fails, one cause can be that we have
2333 2334 2335 2336 2337 2338 2339
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2340
				 obj->base.size >> PAGE_SHIFT, NULL,
2341
				 I915_SHRINK_BOUND |
2342
				 I915_SHRINK_UNBOUND));
2343

2344
	return -ENOSPC;
2345 2346
}

2347
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2348 2349 2350 2351
{
	writeq(pte, addr);
}

2352 2353
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2354
				  u64 offset,
2355 2356 2357
				  enum i915_cache_level level,
				  u32 unused)
{
2358
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2359
	gen8_pte_t __iomem *pte =
2360
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2361

2362
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2363

2364
	ggtt->invalidate(vm->i915);
2365 2366
}

B
Ben Widawsky 已提交
2367
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2368
				     struct i915_vma *vma,
2369
				     enum i915_cache_level level,
2370
				     u32 flags)
B
Ben Widawsky 已提交
2371
{
2372
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2373 2374
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2375
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2376
	dma_addr_t addr;
2377

2378 2379 2380 2381
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2382

2383
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2384
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2385
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2386
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2387

2388 2389 2390
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2391
	 */
2392
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2393 2394
}

2395 2396
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2397
				  u64 offset,
2398 2399 2400
				  enum i915_cache_level level,
				  u32 flags)
{
2401
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2402
	gen6_pte_t __iomem *pte =
2403
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2404

2405
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2406

2407
	ggtt->invalidate(vm->i915);
2408 2409
}

2410 2411 2412 2413 2414 2415
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2416
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2417
				     struct i915_vma *vma,
2418 2419
				     enum i915_cache_level level,
				     u32 flags)
2420
{
2421
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2422
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2423
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2424
	struct sgt_iter iter;
2425
	dma_addr_t addr;
2426
	for_each_sgt_dma(addr, iter, vma->pages)
2427
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2428

2429 2430 2431
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2432
	 */
2433
	ggtt->invalidate(vm->i915);
2434 2435
}

2436
static void nop_clear_range(struct i915_address_space *vm,
2437
			    u64 start, u64 length)
2438 2439 2440
{
}

B
Ben Widawsky 已提交
2441
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2442
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2443
{
2444
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2445 2446
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2447
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2448
	gen8_pte_t __iomem *gtt_base =
2449 2450
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2506
	struct i915_vma *vma;
2507
	enum i915_cache_level level;
2508
	u32 flags;
2509 2510 2511 2512 2513 2514
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2515
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2516 2517 2518 2519 2520 2521
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2522
					     struct i915_vma *vma,
2523
					     enum i915_cache_level level,
2524
					     u32 flags)
2525
{
2526
	struct insert_entries arg = { vm, vma, level, flags };
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2556
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2557
				  u64 start, u64 length)
2558
{
2559
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2560 2561
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2562
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2563 2564
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2565 2566 2567 2568 2569 2570 2571
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2572
	scratch_pte = vm->scratch_pte;
2573

2574 2575 2576 2577
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2578 2579
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2580
				  u64 offset,
2581 2582 2583 2584 2585 2586 2587 2588 2589
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2590
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2591
				     struct i915_vma *vma,
2592 2593
				     enum i915_cache_level cache_level,
				     u32 unused)
2594 2595 2596 2597
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2598 2599
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2600 2601
}

2602
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2603
				  u64 start, u64 length)
2604
{
2605
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2606 2607
}

2608 2609 2610
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2611
{
2612
	struct drm_i915_private *i915 = vma->vm->i915;
2613
	struct drm_i915_gem_object *obj = vma->obj;
2614
	intel_wakeref_t wakeref;
2615
	u32 pte_flags;
2616

2617
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2618
	pte_flags = 0;
2619
	if (i915_gem_object_is_readonly(obj))
2620 2621
		pte_flags |= PTE_READ_ONLY;

2622 2623
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2624

2625 2626
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2627 2628 2629 2630 2631
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2632
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2633 2634 2635 2636

	return 0;
}

2637 2638 2639
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2640
	intel_wakeref_t wakeref;
2641

2642 2643
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2644 2645
}

2646 2647 2648
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2649
{
2650
	struct drm_i915_private *i915 = vma->vm->i915;
2651
	u32 pte_flags;
2652
	int ret;
2653

2654
	/* Currently applicable only to VLV */
2655
	pte_flags = 0;
2656
	if (i915_gem_object_is_readonly(vma->obj))
2657
		pte_flags |= PTE_READ_ONLY;
2658

2659
	if (flags & I915_VMA_LOCAL_BIND) {
2660
		struct i915_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2661

2662
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2663 2664 2665
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2666
			if (ret)
2667
				return ret;
2668 2669
		}

2670 2671
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2672 2673
	}

2674
	if (flags & I915_VMA_GLOBAL_BIND) {
2675 2676
		intel_wakeref_t wakeref;

2677 2678 2679 2680
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2681
	}
2682

2683
	return 0;
2684 2685
}

2686
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2687
{
2688
	struct drm_i915_private *i915 = vma->vm->i915;
2689

2690
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2691
		struct i915_address_space *vm = vma->vm;
2692 2693
		intel_wakeref_t wakeref;

2694 2695
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2696
	}
2697

2698
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2699
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2700 2701 2702

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2703 2704
}

2705 2706
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2707
{
D
David Weinehall 已提交
2708 2709
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2710
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2711

2712
	if (unlikely(ggtt->do_idle_maps)) {
2713
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2714 2715 2716 2717 2718
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2719

2720
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2721
}
2722

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2733 2734
	vma->page_sizes = vma->obj->mm.page_sizes;

2735 2736 2737
	return 0;
}

C
Chris Wilson 已提交
2738
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2739
				  unsigned long color,
2740 2741
				  u64 *start,
				  u64 *end)
2742
{
2743
	if (node->allocated && node->color != color)
2744
		*start += I915_GTT_PAGE_SIZE;
2745

2746 2747 2748 2749 2750
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2751
	node = list_next_entry(node, node_list);
2752
	if (node->color != color)
2753
		*end -= I915_GTT_PAGE_SIZE;
2754
}
B
Ben Widawsky 已提交
2755

2756
static int init_aliasing_ppgtt(struct drm_i915_private *i915)
2757 2758
{
	struct i915_ggtt *ggtt = &i915->ggtt;
2759
	struct i915_ppgtt *ppgtt;
2760 2761
	int err;

2762
	ppgtt = i915_ppgtt_create(i915);
2763 2764
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2765

2766
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2767 2768 2769 2770
		err = -ENODEV;
		goto err_ppgtt;
	}

2771 2772 2773 2774 2775 2776 2777 2778 2779
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2780 2781

	i915->mm.aliasing_ppgtt = ppgtt;
2782

2783 2784
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2785

2786 2787
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2788

2789 2790 2791
	return 0;

err_ppgtt:
2792
	i915_vm_put(&ppgtt->vm);
2793 2794 2795
	return err;
}

2796
static void fini_aliasing_ppgtt(struct drm_i915_private *i915)
2797 2798
{
	struct i915_ggtt *ggtt = &i915->ggtt;
2799
	struct i915_ppgtt *ppgtt;
2800 2801 2802 2803 2804

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2805
	i915_vm_put(&ppgtt->vm);
2806

2807 2808
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2809 2810
}

2811
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2812
{
2813 2814 2815 2816 2817 2818 2819 2820 2821
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2822
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2823
	unsigned long hole_start, hole_end;
2824
	struct drm_mm_node *entry;
2825
	int ret;
2826

2827 2828 2829 2830 2831 2832 2833
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
2834
			       intel_wopcm_guc_size(&dev_priv->wopcm));
2835

2836 2837 2838
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2839

2840
	/* Reserve a mappable slot for our lockless error capture */
2841
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2842 2843 2844
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2845 2846 2847
	if (ret)
		return ret;

2848 2849 2850 2851 2852 2853
	if (USES_GUC(dev_priv)) {
		ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
		if (ret)
			goto err_reserve;
	}

2854
	/* Clear any non-preallocated blocks */
2855
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2856 2857
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2858 2859
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2860 2861 2862
	}

	/* And finally clear the reserved guard page */
2863
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2864

2865
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2866
		ret = init_aliasing_ppgtt(dev_priv);
2867
		if (ret)
2868
			goto err_appgtt;
2869 2870
	}

2871
	return 0;
2872

2873 2874 2875
err_appgtt:
	intel_guc_release_ggtt_top(&dev_priv->guc);
err_reserve:
2876 2877
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2878 2879
}

2880 2881
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2882
 * @dev_priv: i915 device
2883
 */
2884
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2885
{
2886
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2887
	struct i915_vma *vma, *vn;
2888
	struct pagevec *pvec;
2889

2890
	ggtt->vm.closed = true;
2891 2892

	mutex_lock(&dev_priv->drm.struct_mutex);
2893
	fini_aliasing_ppgtt(dev_priv);
2894

2895
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2896
		WARN_ON(i915_vma_unbind(vma));
2897

2898 2899 2900
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2901 2902
	intel_guc_release_ggtt_top(&dev_priv->guc);

2903
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2904
		intel_vgt_deballoon(dev_priv);
2905
		i915_address_space_fini(&ggtt->vm);
2906 2907
	}

2908
	ggtt->vm.cleanup(&ggtt->vm);
2909

2910
	pvec = &dev_priv->mm.wc_stash.pvec;
2911 2912 2913 2914 2915
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2916
	mutex_unlock(&dev_priv->drm.struct_mutex);
2917 2918

	arch_phys_wc_del(ggtt->mtrr);
2919
	io_mapping_fini(&ggtt->iomap);
2920

2921
	i915_gem_cleanup_stolen(dev_priv);
2922
}
2923

2924
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2925 2926 2927 2928 2929 2930
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2931
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2932 2933 2934 2935 2936
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2937 2938

#ifdef CONFIG_X86_32
2939
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2940 2941 2942 2943
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2944 2945 2946
	return bdw_gmch_ctl << 20;
}

2947
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2958
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2959
{
2960
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2961
	struct pci_dev *pdev = dev_priv->drm.pdev;
2962
	phys_addr_t phys_addr;
2963
	int ret;
B
Ben Widawsky 已提交
2964 2965

	/* For Modern GENs the PTEs and register space are split in the BAR */
2966
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2967

I
Imre Deak 已提交
2968
	/*
2969 2970 2971
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2972 2973 2974
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2975
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2976
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2977
	else
2978
		ggtt->gsm = ioremap_wc(phys_addr, size);
2979
	if (!ggtt->gsm) {
2980
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2981 2982 2983
		return -ENOMEM;
	}

2984
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2985
	if (ret) {
B
Ben Widawsky 已提交
2986 2987
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2988
		iounmap(ggtt->gsm);
2989
		return ret;
B
Ben Widawsky 已提交
2990 2991
	}

2992 2993 2994 2995
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2996
	return 0;
B
Ben Widawsky 已提交
2997 2998
}

2999 3000
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3001
{
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3045
	struct intel_ppat_entry *entry = NULL;
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3068
		if (!entry)
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3145
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3183 3184
}

B
Ben Widawsky 已提交
3185 3186 3187
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3188
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3189
{
3190 3191 3192 3193
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3194

3195
	if (!HAS_PPGTT(ppat->i915)) {
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3209 3210 3211
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3212

3213 3214 3215 3216 3217 3218 3219 3220
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3221 3222
}

3223
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3224
{
3225 3226 3227 3228
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3229 3230 3231 3232 3233 3234 3235

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3247 3248
	 */

3249 3250 3251 3252 3253 3254 3255 3256
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3257 3258
}

3259 3260 3261 3262 3263
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3264
	cleanup_scratch_page(vm);
3265 3266
}

3267 3268
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3269 3270 3271 3272 3273
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3274
	if (INTEL_GEN(dev_priv) >= 10)
3275
		cnl_setup_private_ppat(ppat);
3276
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3277
		chv_setup_private_ppat(ppat);
3278
	else
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3290 3291
}

3292
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3293
{
3294
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3295
	struct pci_dev *pdev = dev_priv->drm.pdev;
3296
	unsigned int size;
B
Ben Widawsky 已提交
3297
	u16 snb_gmch_ctl;
3298
	int err;
B
Ben Widawsky 已提交
3299 3300

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3301 3302 3303 3304
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3305

3306 3307 3308 3309 3310
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3311

3312
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3313
	if (IS_CHERRYVIEW(dev_priv))
3314
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3315
	else
3316
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3317

3318
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3319 3320 3321
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3322
	if (intel_scanout_needs_vtd_wa(dev_priv))
3323
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3324

3325
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3326

3327
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3328 3329
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3330 3331 3332 3333
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3334 3335 3336 3337 3338

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3339 3340
	}

3341 3342
	ggtt->invalidate = gen6_ggtt_invalidate;

3343 3344 3345 3346 3347
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3348 3349
	ggtt->vm.pte_encode = gen8_pte_encode;

3350 3351
	setup_private_pat(dev_priv);

3352
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3353 3354
}

3355
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3356
{
3357
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3358
	struct pci_dev *pdev = dev_priv->drm.pdev;
3359
	unsigned int size;
3360
	u16 snb_gmch_ctl;
3361
	int err;
3362

3363 3364 3365 3366
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3367

3368 3369
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3370
	 */
3371
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3372
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3373
		return -ENXIO;
3374 3375
	}

3376 3377 3378 3379 3380
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3381
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3382

3383
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3384
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3385

3386 3387 3388
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3389 3390 3391
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3392

3393 3394
	ggtt->invalidate = gen6_ggtt_invalidate;

3395
	if (HAS_EDRAM(dev_priv))
3396
		ggtt->vm.pte_encode = iris_pte_encode;
3397
	else if (IS_HASWELL(dev_priv))
3398
		ggtt->vm.pte_encode = hsw_pte_encode;
3399
	else if (IS_VALLEYVIEW(dev_priv))
3400
		ggtt->vm.pte_encode = byt_pte_encode;
3401
	else if (INTEL_GEN(dev_priv) >= 7)
3402
		ggtt->vm.pte_encode = ivb_pte_encode;
3403
	else
3404
		ggtt->vm.pte_encode = snb_pte_encode;
3405

3406 3407 3408 3409 3410
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3411
	return ggtt_probe_common(ggtt, size);
3412 3413
}

3414
static void i915_gmch_remove(struct i915_address_space *vm)
3415
{
3416
	intel_gmch_remove();
3417
}
3418

3419
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3420
{
3421
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3422
	phys_addr_t gmadr_base;
3423 3424
	int ret;

3425
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3426 3427 3428 3429 3430
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3431
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3432

3433 3434 3435 3436
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3437
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3438 3439 3440 3441
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3442

3443 3444
	ggtt->invalidate = gmch_ggtt_invalidate;

3445 3446 3447 3448 3449
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3450
	if (unlikely(ggtt->do_idle_maps))
3451 3452
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3453 3454 3455
	return 0;
}

3456
/**
3457
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3458
 * @dev_priv: i915 device
3459
 */
3460
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3461
{
3462
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3463 3464
	int ret;

3465 3466
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3467

3468 3469 3470 3471 3472 3473
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3474
	if (ret)
3475 3476
		return ret;

3477
	if ((ggtt->vm.total - 1) >> 32) {
3478
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3479
			  " of address space! Found %lldM!\n",
3480 3481 3482 3483
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3484 3485
	}

3486
	if (ggtt->mappable_end > ggtt->vm.total) {
3487
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3488
			  " aperture=%pa, total=%llx\n",
3489 3490
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3491 3492
	}

3493
	/* GMADR is the PCI mmio aperture into the global GTT. */
3494
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3495
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3496
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3497
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3498
	if (intel_vtd_active())
3499
		DRM_INFO("VT-d active for gfx access\n");
3500 3501

	return 0;
3502 3503 3504 3505
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3506
 * @dev_priv: i915 device
3507
 */
3508
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3509 3510 3511 3512
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3513 3514
	stash_init(&dev_priv->mm.wc_stash);

3515 3516 3517 3518
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3519
	 */
C
Chris Wilson 已提交
3520
	mutex_lock(&dev_priv->drm.struct_mutex);
3521
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3522

3523 3524
	ggtt->vm.is_ggtt = true;

3525 3526 3527
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3528
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3529
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3530
	mutex_unlock(&dev_priv->drm.struct_mutex);
3531

3532 3533
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3534
				dev_priv->ggtt.mappable_end)) {
3535 3536 3537 3538
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3539
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3540

3541 3542 3543 3544
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3545
	ret = i915_gem_init_stolen(dev_priv);
3546 3547 3548 3549
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3550 3551

out_gtt_cleanup:
3552
	ggtt->vm.cleanup(&ggtt->vm);
3553
	return ret;
3554
}
3555

3556
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3557
{
3558
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3559 3560 3561 3562 3563
		return -EIO;

	return 0;
}

3564 3565
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3566 3567
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3568
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3569 3570

	i915_ggtt_invalidate(i915);
3571 3572 3573 3574
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3575 3576 3577 3578
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3579 3580 3581 3582
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3583 3584

	i915_ggtt_invalidate(i915);
3585 3586
}

3587
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3588
{
3589
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3590
	struct i915_vma *vma, *vn;
3591

3592
	i915_check_and_clear_faults(dev_priv);
3593

3594 3595
	mutex_lock(&ggtt->vm.mutex);

3596
	/* First fill our portion of the GTT with scratch pages */
3597 3598
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3599 3600

	/* clflush objects bound into the GGTT and rebind them. */
3601
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3602
		struct drm_i915_gem_object *obj = vma->obj;
3603

3604 3605
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3606

3607 3608
		mutex_unlock(&ggtt->vm.mutex);

3609
		if (!i915_vma_unbind(vma))
3610
			goto lock;
3611

3612 3613 3614
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3615 3616
		if (obj) {
			i915_gem_object_lock(obj);
3617
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3618 3619
			i915_gem_object_unlock(obj);
		}
3620 3621 3622

lock:
		mutex_lock(&ggtt->vm.mutex);
3623
	}
3624

3625
	ggtt->vm.closed = false;
3626
	i915_ggtt_invalidate(dev_priv);
3627

3628 3629
	mutex_unlock(&ggtt->vm.mutex);

3630
	if (INTEL_GEN(dev_priv) >= 8) {
3631
		struct intel_ppat *ppat = &dev_priv->ppat;
3632

3633 3634
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3635 3636 3637 3638
		return;
	}
}

3639
static struct scatterlist *
3640
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3641
	     unsigned int width, unsigned int height,
3642
	     unsigned int stride,
3643
	     struct sg_table *st, struct scatterlist *sg)
3644 3645 3646 3647 3648
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3649
		src_idx = stride * (height - 1) + column + offset;
3650 3651 3652 3653 3654 3655
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3656
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3657 3658
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3659
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3660
			sg = sg_next(sg);
3661
			src_idx -= stride;
3662 3663
		}
	}
3664 3665

	return sg;
3666 3667
}

3668 3669 3670
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3671
{
3672
	unsigned int size = intel_rotation_info_size(rot_info);
3673
	struct sg_table *st;
3674
	struct scatterlist *sg;
3675
	int ret = -ENOMEM;
3676
	int i;
3677 3678 3679 3680 3681 3682

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3683
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3684 3685 3686
	if (ret)
		goto err_sg_alloc;

3687 3688 3689
	st->nents = 0;
	sg = st->sgl;

3690
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3691
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3692 3693
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3694 3695
	}

3696 3697 3698 3699 3700 3701
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3702 3703
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3704

3705 3706
	return ERR_PTR(ret);
}
3707

3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3791
static noinline struct sg_table *
3792 3793 3794 3795
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3796
	struct scatterlist *sg, *iter;
3797
	unsigned int count = view->partial.size;
3798
	unsigned int offset;
3799 3800 3801 3802 3803 3804
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3805
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3806 3807 3808
	if (ret)
		goto err_sg_alloc;

3809
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3810 3811
	GEM_BUG_ON(!iter);

3812 3813
	sg = st->sgl;
	st->nents = 0;
3814 3815
	do {
		unsigned int len;
3816

3817 3818 3819 3820 3821 3822
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3823 3824

		st->nents++;
3825 3826 3827
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3828 3829
			i915_sg_trim(st); /* Drop any unused tail entries. */

3830 3831
			return st;
		}
3832

3833 3834 3835 3836
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3837 3838 3839 3840 3841 3842 3843

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3844
static int
3845
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3846
{
3847
	int ret;
3848

3849 3850 3851 3852 3853 3854 3855
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3856
	switch (vma->ggtt_view.type) {
3857 3858 3859
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3860 3861
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3862 3863
		return 0;

3864
	case I915_GGTT_VIEW_ROTATED:
3865
		vma->pages =
3866 3867 3868
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3869 3870 3871 3872 3873
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3874
	case I915_GGTT_VIEW_PARTIAL:
3875
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3876 3877
		break;
	}
3878

3879
	ret = 0;
3880
	if (IS_ERR(vma->pages)) {
3881 3882
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3883 3884
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3885
	}
3886
	return ret;
3887 3888
}

3889 3890
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3925
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3926
	GEM_BUG_ON(drm_mm_node_allocated(node));
3927 3928 3929 3930 3931 3932 3933 3934 3935

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3936 3937 3938
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3939 3940 3941 3942 3943 3944 3945
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3971 3972
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3973 3974 3975 3976 3977 3978 3979 3980 3981
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3982
 *         must be #I915_GTT_PAGE_SIZE aligned
3983 3984 3985
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3986 3987 3988 3989 3990 3991
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3992 3993
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
4010
	enum drm_mm_insert_mode mode;
4011
	u64 offset;
4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4022
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4023
	GEM_BUG_ON(drm_mm_node_allocated(node));
4024 4025 4026 4027 4028 4029 4030

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4031 4032
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4033
		mode = DRM_MM_INSERT_HIGHEST;
4034 4035
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4047 4048 4049
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4050 4051 4052
	if (err != -ENOSPC)
		return err;

4053 4054 4055 4056 4057 4058 4059 4060 4061
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4062 4063 4064
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4094 4095 4096 4097 4098
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4099 4100 4101
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4102
}
4103 4104 4105

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4106
#include "selftests/i915_gem_gtt.c"
4107
#endif