i915_gem_gtt.c 106.0 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_scatterlist.h"
40
#include "i915_trace.h"
41
#include "i915_vgpu.h"
42
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111
static void gen6_ggtt_invalidate(struct drm_i915_private *i915)
112
{
113 114
	struct intel_uncore *uncore = &i915->uncore;

115 116
	/*
	 * Note that as an uncached mmio write, this will flush the
117 118
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
119
	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
120 121
}

122
static void guc_ggtt_invalidate(struct drm_i915_private *i915)
123
{
124 125 126 127
	struct intel_uncore *uncore = &i915->uncore;

	gen6_ggtt_invalidate(i915);
	intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
128 129
}

130
static void gmch_ggtt_invalidate(struct drm_i915_private *i915)
131 132 133 134 135 136 137 138 139
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

140 141 142
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
143
{
144
	u32 pte_flags;
145 146 147 148 149 150 151 152
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
153

154
	/* Applicable to VLV, and gen8+ */
155
	pte_flags = 0;
156
	if (i915_gem_object_is_readonly(vma->obj))
157 158
		pte_flags |= PTE_READ_ONLY;

159
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
160 161

	return 0;
162 163 164 165
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
166
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
167
}
168

169 170 171 172 173 174
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

175 176
	vma->page_sizes = vma->obj->mm.page_sizes;

177 178 179 180 181 182 183 184 185 186 187 188
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
189 190

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
191 192
}

193 194 195
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
196
{
197 198 199 200
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
201 202 203

	switch (level) {
	case I915_CACHE_NONE:
204
		pte |= PPAT_UNCACHED;
205 206
		break;
	case I915_CACHE_WT:
207
		pte |= PPAT_DISPLAY_ELLC;
208 209
		break;
	default:
210
		pte |= PPAT_CACHED;
211 212 213
		break;
	}

B
Ben Widawsky 已提交
214 215 216
	return pte;
}

217 218
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
219
{
220
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
221 222
	pde |= addr;
	if (level != I915_CACHE_NONE)
223
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
224
	else
225
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
226 227 228
	return pde;
}

229 230 231
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

232 233 234
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
235
{
236
	gen6_pte_t pte = GEN6_PTE_VALID;
237
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
238 239

	switch (level) {
240 241 242 243 244 245 246 247
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
248
		MISSING_CASE(level);
249 250 251 252 253
	}

	return pte;
}

254 255 256
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
257
{
258
	gen6_pte_t pte = GEN6_PTE_VALID;
259 260 261 262 263
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
264 265 266 267 268
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
269
		pte |= GEN6_PTE_UNCACHED;
270 271
		break;
	default:
272
		MISSING_CASE(level);
273 274
	}

275 276 277
	return pte;
}

278 279 280
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
281
{
282
	gen6_pte_t pte = GEN6_PTE_VALID;
283 284
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

285 286
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
287 288 289 290 291 292 293

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

294 295 296
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
297
{
298
	gen6_pte_t pte = GEN6_PTE_VALID;
299
	pte |= HSW_PTE_ADDR_ENCODE(addr);
300 301

	if (level != I915_CACHE_NONE)
302
		pte |= HSW_WB_LLC_AGE3;
303 304 305 306

	return pte;
}

307 308 309
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
310
{
311
	gen6_pte_t pte = GEN6_PTE_VALID;
312 313
	pte |= HSW_PTE_ADDR_ENCODE(addr);

314 315 316 317
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
318
		pte |= HSW_WT_ELLC_LLC_AGE3;
319 320
		break;
	default:
321
		pte |= HSW_WB_ELLC_LLC_AGE3;
322 323
		break;
	}
324 325 326 327

	return pte;
}

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
348
	unsigned int nr;
349 350 351

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

352
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
353 354 355 356 357 358 359 360 361 362
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

363
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
364
{
365 366
	struct pagevec stack;
	struct page *page;
367

368 369
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
370

371 372 373
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
374 375 376 377 378

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
379 380 381
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
382

383
	/*
384
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
385 386 387 388 389 390
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
391
	pagevec_init(&stack);
392 393
	do {
		struct page *page;
394

395 396 397 398
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

399 400
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
401

402 403
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
404

405
		/* Merge spare WC pages to the global stash */
406 407
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
408

409 410 411
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
412
	}
413

414 415 416 417 418 419 420
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
421 422
}

423 424
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
425
{
426 427
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
428

429
	lockdep_assert_held(&vm->free_pages.lock);
430
	GEM_BUG_ON(!pagevec_count(pvec));
431

432
	if (vm->pt_kmap_wc) {
433 434
		/*
		 * When we use WC, first fill up the global stash and then
435 436
		 * only if full immediately free the overflow.
		 */
437
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
438

439 440 441 442 443 444 445 446
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
447

448 449 450 451 452 453 454 455 456 457
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
458
		set_pages_array_wb(pvec->pages, pvec->nr);
459 460

		spin_lock(&vm->free_pages.lock);
461 462 463
	}

	__pagevec_release(pvec);
464 465 466 467
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
468 469 470 471 472 473 474 475
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
476
	spin_lock(&vm->free_pages.lock);
477
	while (!pagevec_space(&vm->free_pages.pvec))
478
		vm_free_pages_release(vm, false);
479 480
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
481 482 483
	spin_unlock(&vm->free_pages.lock);
}

484
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
485
{
486 487 488 489 490 491
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
492
	lockdep_set_subclass(&vm->mutex, subclass);
493
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
494

495 496 497 498 499 500 501
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
502
	INIT_LIST_HEAD(&vm->bound_list);
503 504 505 506 507 508 509 510 511 512 513
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
514 515

	mutex_destroy(&vm->mutex);
516
}
517

518 519 520 521
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
522
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
523 524
	if (unlikely(!p->page))
		return -ENOMEM;
525

526 527 528
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
529
				      DMA_ATTR_SKIP_CPU_SYNC |
530
				      DMA_ATTR_NO_WARN);
531 532 533
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
534
	}
535 536

	return 0;
537 538
}

539
static int setup_page_dma(struct i915_address_space *vm,
540
			  struct i915_page_dma *p)
541
{
542
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
543 544
}

545
static void cleanup_page_dma(struct i915_address_space *vm,
546
			     struct i915_page_dma *p)
547
{
548 549
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
550 551
}

552
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
553

554 555
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
556 557
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
558

559 560 561
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
562
{
563
	u64 * const vaddr = kmap_atomic(p->page);
564

565
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
566

567
	kunmap_atomic(vaddr);
568 569
}

570 571 572
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
573
{
574
	fill_page_dma(vm, p, (u64)v << 32 | v);
575 576
}

577
static int
578
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
579
{
580
	unsigned long size;
581

582 583 584 585 586 587 588
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
589 590 591
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
592
	 */
593
	size = I915_GTT_PAGE_SIZE_4K;
594
	if (i915_vm_is_4lvl(vm) &&
595
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
596 597
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
598
	}
599 600 601 602 603 604
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
605

606
		page = alloc_pages(gfp, order);
607
		if (unlikely(!page))
608
			goto skip;
609

610 611 612
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
613
					  DMA_ATTR_SKIP_CPU_SYNC |
614
					  DMA_ATTR_NO_WARN);
615 616
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
617

618 619
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
620

621 622
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
623
		vm->scratch_order = order;
624 625 626 627 628 629 630 631 632 633 634 635 636
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
637 638
}

639
static void cleanup_scratch_page(struct i915_address_space *vm)
640
{
641
	struct i915_page_dma *p = &vm->scratch_page;
642
	int order = vm->scratch_order;
643

644
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
645
		       PCI_DMA_BIDIRECTIONAL);
646
	__free_pages(p->page, order);
647 648
}

649
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
650
{
651
	struct i915_page_table *pt;
652

653
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
654
	if (unlikely(!pt))
655 656
		return ERR_PTR(-ENOMEM);

657 658 659 660
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
661

662
	atomic_set(&pt->used_ptes, 0);
663 664 665
	return pt;
}

666
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
667
{
668
	cleanup_px(vm, pt);
669 670 671 672 673 674
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
675
	fill_px(vm, pt, vm->scratch_pte);
676 677
}

678
static void gen6_initialize_pt(struct i915_address_space *vm,
679 680
			       struct i915_page_table *pt)
{
681
	fill32_px(vm, pt, vm->scratch_pte);
682 683
}

684
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
685
{
686
	struct i915_page_directory *pd;
687

688
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
689
	if (unlikely(!pd))
690 691
		return ERR_PTR(-ENOMEM);

692 693 694 695
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
696

697 698
	atomic_set(&pd->used_pdes, 0);
	spin_lock_init(&pd->lock);
699 700 701
	return pd;
}

702
static void free_pd(struct i915_address_space *vm,
703
		    struct i915_page_directory *pd)
704
{
705 706
	cleanup_px(vm, pd);
	kfree(pd);
707 708 709 710 711
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
712 713
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
714
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
715 716
}

717
static int __pdp_init(struct i915_address_space *vm,
718 719
		      struct i915_page_directory_pointer *pdp)
{
720
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
721

722
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
723
					    I915_GFP_ALLOW_FAIL);
724
	if (unlikely(!pdp->page_directory))
725 726
		return -ENOMEM;

727
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
728

729 730
	atomic_set(&pdp->used_pdpes, 0);
	spin_lock_init(&pdp->lock);
731 732 733 734 735 736 737 738 739
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

740 741
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
742 743 744 745
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

746
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
747 748 749 750 751

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

752
	ret = __pdp_init(vm, pdp);
753 754 755
	if (ret)
		goto fail_bitmap;

756
	ret = setup_px(vm, pdp);
757 758 759 760 761 762 763 764 765 766 767 768 769
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

770
static void free_pdp(struct i915_address_space *vm,
771 772 773
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
774

775
	if (!i915_vm_is_4lvl(vm))
776 777 778 779
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
780 781
}

782 783 784
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
785 786
	fill_px(vm, pdp,
		gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC));
787 788 789 790 791
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
792 793
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
794
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
795
	spin_lock_init(&pml4->lock);
796 797
}

798 799
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
800 801 802 803 804 805
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
806
	ppgtt->pd_dirty_engines = ALL_ENGINES;
807 808
}

809 810 811
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
812
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
813
				struct i915_page_table *pt,
814
				u64 start, u64 length)
815
{
816
	unsigned int num_entries = gen8_pte_count(start, length);
817
	gen8_pte_t *vaddr;
818

819
	vaddr = kmap_atomic_px(pt);
820
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
821
	kunmap_atomic(vaddr);
822

823 824
	GEM_BUG_ON(num_entries > atomic_read(&pt->used_ptes));
	return !atomic_sub_return(num_entries, &pt->used_ptes);
825
}
826

827 828 829 830 831 832 833 834 835 836 837 838
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

839
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
840
				struct i915_page_directory *pd,
841
				u64 start, u64 length)
842 843
{
	struct i915_page_table *pt;
844
	u32 pde;
845 846

	gen8_for_each_pde(pt, pd, start, length, pde) {
847 848
		bool free = false;

849 850
		GEM_BUG_ON(pt == vm->scratch_pt);

851 852
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
853

854 855 856 857
		spin_lock(&pd->lock);
		if (!atomic_read(&pt->used_ptes)) {
			gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
			pd->page_table[pde] = vm->scratch_pt;
858

859 860 861 862 863 864 865
			GEM_BUG_ON(!atomic_read(&pd->used_pdes));
			atomic_dec(&pd->used_pdes);
			free = true;
		}
		spin_unlock(&pd->lock);
		if (free)
			free_pt(vm, pt);
866 867
	}

868
	return !atomic_read(&pd->used_pdes);
869
}
870

871 872 873 874 875 876 877
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

878
	if (!i915_vm_is_4lvl(vm))
879 880 881 882 883
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
884
}
885

886 887 888 889
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
890
				 struct i915_page_directory_pointer *pdp,
891
				 u64 start, u64 length)
892 893
{
	struct i915_page_directory *pd;
894
	unsigned int pdpe;
895

896
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
897 898
		bool free = false;

899 900
		GEM_BUG_ON(pd == vm->scratch_pd);

901 902
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
903

904 905 906 907
		spin_lock(&pdp->lock);
		if (!atomic_read(&pd->used_pdes)) {
			gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
			pdp->page_directory[pdpe] = vm->scratch_pd;
908

909 910 911 912 913 914 915
			GEM_BUG_ON(!atomic_read(&pdp->used_pdpes));
			atomic_dec(&pdp->used_pdpes);
			free = true;
		}
		spin_unlock(&pdp->lock);
		if (free)
			free_pd(vm, pd);
916
	}
917

918
	return !atomic_read(&pdp->used_pdpes);
919
}
920

921 922 923 924 925 926
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

927 928 929 930 931 932 933 934 935 936 937
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

938 939 940 941
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
942 943
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
944
{
945 946
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
947
	struct i915_page_directory_pointer *pdp;
948
	unsigned int pml4e;
949

950
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
951

952
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
953
		bool free = false;
954 955
		GEM_BUG_ON(pdp == vm->scratch_pdp);

956 957
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
958

959 960 961 962 963 964 965 966 967
		spin_lock(&pml4->lock);
		if (!atomic_read(&pdp->used_pdpes)) {
			gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
			pml4->pdps[pml4e] = vm->scratch_pdp;
			free = true;
		}
		spin_unlock(&pml4->lock);
		if (free)
			free_pdp(vm, pdp);
968 969 970
	}
}

971
static inline struct sgt_dma {
972 973
	struct scatterlist *sg;
	dma_addr_t dma, max;
974 975 976 977 978
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
979

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

997 998
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
999
			      struct i915_page_directory_pointer *pdp,
1000
			      struct sgt_dma *iter,
1001
			      struct gen8_insert_pte *idx,
1002 1003
			      enum i915_cache_level cache_level,
			      u32 flags)
1004
{
1005
	struct i915_page_directory *pd;
1006
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1007 1008
	gen8_pte_t *vaddr;
	bool ret;
1009

1010
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1011 1012
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1013
	do {
1014 1015
		vaddr[idx->pte] = pte_encode | iter->dma;

1016
		iter->dma += I915_GTT_PAGE_SIZE;
1017 1018 1019 1020 1021 1022
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1023

1024 1025
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1026
		}
1027

1028 1029 1030 1031 1032 1033
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1034
				/* Limited by sg length for 3lvl */
1035 1036
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1037
					ret = true;
1038
					break;
1039 1040
				}

1041
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1042
				pd = pdp->page_directory[idx->pdpe];
1043
			}
1044

1045
			kunmap_atomic(vaddr);
1046
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1047
		}
1048
	} while (1);
1049
	kunmap_atomic(vaddr);
1050

1051
	return ret;
1052 1053
}

1054
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1055
				   struct i915_vma *vma,
1056
				   enum i915_cache_level cache_level,
1057
				   u32 flags)
1058
{
1059
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1060
	struct sgt_dma iter = sgt_dma(vma);
1061
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1062

1063
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1064
				      cache_level, flags);
1065 1066

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1067
}
1068

1069 1070 1071
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1072 1073
					   enum i915_cache_level cache_level,
					   u32 flags)
1074
{
1075
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1076 1077 1078 1079 1080 1081 1082 1083
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1084
		bool maybe_64K = false;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1106 1107 1108 1109
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1110
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1111 1112
				maybe_64K = true;

1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1132 1133 1134
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1135
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1136 1137
					maybe_64K = false;

1138 1139 1140 1141 1142 1143
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1160
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1174
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1175 1176 1177 1178 1179 1180 1181
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1182
		}
1183 1184

		vma->page_sizes.gtt |= page_size;
1185 1186 1187
	} while (iter->sg);
}

1188
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1189
				   struct i915_vma *vma,
1190
				   enum i915_cache_level cache_level,
1191
				   u32 flags)
1192 1193
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1194
	struct sgt_dma iter = sgt_dma(vma);
1195
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1196

1197
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1198 1199
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1200 1201 1202 1203
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1204 1205
						     &iter, &idx, cache_level,
						     flags))
1206
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1207 1208

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1209
	}
1210 1211
}

1212
static void gen8_free_page_tables(struct i915_address_space *vm,
1213
				  struct i915_page_directory *pd)
1214 1215 1216
{
	int i;

1217 1218 1219
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1220
	}
B
Ben Widawsky 已提交
1221 1222
}

1223 1224
static int gen8_init_scratch(struct i915_address_space *vm)
{
1225
	int ret;
1226

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

1239
		vm->scratch_order = clone->scratch_order;
1240 1241 1242 1243 1244 1245 1246
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1247
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1248 1249
	if (ret)
		return ret;
1250

1251 1252 1253
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1254
				vm->has_read_only);
1255

1256
	vm->scratch_pt = alloc_pt(vm);
1257
	if (IS_ERR(vm->scratch_pt)) {
1258 1259
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1260 1261
	}

1262
	vm->scratch_pd = alloc_pd(vm);
1263
	if (IS_ERR(vm->scratch_pd)) {
1264 1265
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1266 1267
	}

1268
	if (i915_vm_is_4lvl(vm)) {
1269
		vm->scratch_pdp = alloc_pdp(vm);
1270
		if (IS_ERR(vm->scratch_pdp)) {
1271 1272
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1273 1274 1275
		}
	}

1276 1277
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1278
	if (i915_vm_is_4lvl(vm))
1279
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1280 1281

	return 0;
1282 1283

free_pd:
1284
	free_pd(vm, vm->scratch_pd);
1285
free_pt:
1286
	free_pt(vm, vm->scratch_pt);
1287
free_scratch_page:
1288
	cleanup_scratch_page(vm);
1289 1290

	return ret;
1291 1292
}

1293 1294
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1295
	struct i915_address_space *vm = &ppgtt->vm;
1296
	struct drm_i915_private *dev_priv = vm->i915;
1297 1298 1299
	enum vgt_g2v_type msg;
	int i;

1300
	if (i915_vm_is_4lvl(vm)) {
1301
		const u64 daddr = px_dma(&ppgtt->pml4);
1302

1303 1304
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1305 1306 1307 1308

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1309
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1310
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1311

1312 1313
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1325 1326
static void gen8_free_scratch(struct i915_address_space *vm)
{
1327 1328 1329
	if (!vm->scratch_page.daddr)
		return;

1330
	if (i915_vm_is_4lvl(vm))
1331 1332 1333 1334
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1335 1336
}

1337
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1338
				    struct i915_page_directory_pointer *pdp)
1339
{
1340
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1341 1342
	int i;

1343
	for (i = 0; i < pdpes; i++) {
1344
		if (pdp->page_directory[i] == vm->scratch_pd)
1345 1346
			continue;

1347 1348
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1349
	}
1350

1351
	free_pdp(vm, pdp);
1352 1353 1354 1355 1356 1357
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1358
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1359
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1360 1361
			continue;

1362
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1363 1364
	}

1365
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1366 1367 1368 1369
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1370
	struct drm_i915_private *i915 = vm->i915;
1371
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1372

1373
	if (intel_vgpu_active(i915))
1374 1375
		gen8_ppgtt_notify_vgt(ppgtt, false);

1376
	if (i915_vm_is_4lvl(vm))
1377
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1378
	else
1379
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1380

1381
	gen8_free_scratch(vm);
1382 1383
}

1384 1385 1386
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1387
{
1388
	struct i915_page_table *pt;
1389
	u64 from = start;
1390
	unsigned int pde;
1391

1392
	spin_lock(&pd->lock);
1393
	gen8_for_each_pde(pt, pd, start, length, pde) {
1394
		const int count = gen8_pte_count(start, length);
1395

1396
		if (pt == vm->scratch_pt) {
1397 1398 1399
			struct i915_page_table *old;

			spin_unlock(&pd->lock);
1400

1401
			pt = alloc_pt(vm);
1402
			if (IS_ERR(pt))
1403
				goto unwind;
1404

1405
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1406
				gen8_initialize_pt(vm, pt);
1407

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
			old = cmpxchg(&pd->page_table[pde], vm->scratch_pt, pt);
			if (old == vm->scratch_pt) {
				gen8_ppgtt_set_pde(vm, pd, pt, pde);
				atomic_inc(&pd->used_pdes);
			} else {
				free_pt(vm, pt);
				pt = old;
			}

			spin_lock(&pd->lock);
1418
		}
1419

1420
		atomic_add(count, &pt->used_ptes);
1421
	}
1422 1423
	spin_unlock(&pd->lock);

1424
	return 0;
1425

1426 1427
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1428
	return -ENOMEM;
1429 1430
}

1431 1432 1433
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1434
{
1435
	struct i915_page_directory *pd;
1436 1437
	u64 from = start;
	unsigned int pdpe;
1438 1439
	int ret;

1440
	spin_lock(&pdp->lock);
1441
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1442
		if (pd == vm->scratch_pd) {
1443 1444 1445
			struct i915_page_directory *old;

			spin_unlock(&pdp->lock);
1446

1447
			pd = alloc_pd(vm);
1448
			if (IS_ERR(pd))
1449
				goto unwind;
1450

1451
			gen8_initialize_pd(vm, pd);
1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463

			old = cmpxchg(&pdp->page_directory[pdpe],
				      vm->scratch_pd, pd);
			if (old == vm->scratch_pd) {
				gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
				atomic_inc(&pdp->used_pdpes);
			} else {
				free_pd(vm, pd);
				pd = old;
			}

			spin_lock(&pdp->lock);
1464
		}
1465 1466
		atomic_inc(&pd->used_pdes);
		spin_unlock(&pdp->lock);
1467 1468

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1469 1470
		if (unlikely(ret))
			goto unwind_pd;
1471 1472 1473

		spin_lock(&pdp->lock);
		atomic_dec(&pd->used_pdes);
1474
	}
1475
	spin_unlock(&pdp->lock);
1476

B
Ben Widawsky 已提交
1477
	return 0;
1478

1479
unwind_pd:
1480 1481
	spin_lock(&pdp->lock);
	if (atomic_dec_and_test(&pd->used_pdes)) {
1482
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1483 1484
		GEM_BUG_ON(!atomic_read(&pdp->used_pdpes));
		atomic_dec(&pdp->used_pdpes);
1485 1486
		free_pd(vm, pd);
	}
1487
	spin_unlock(&pdp->lock);
1488 1489 1490
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1491 1492
}

1493 1494
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1495
{
1496 1497 1498
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1509

1510
	spin_lock(&pml4->lock);
1511
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1512 1513 1514 1515 1516
		if (pdp == vm->scratch_pdp) {
			struct i915_page_directory_pointer *old;

			spin_unlock(&pml4->lock);

1517 1518 1519
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1520

1521
			gen8_initialize_pdp(vm, pdp);
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

			old = cmpxchg(&pml4->pdps[pml4e], vm->scratch_pdp, pdp);
			if (old == vm->scratch_pdp) {
				gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
			} else {
				free_pdp(vm, pdp);
				pdp = old;
			}

			spin_lock(&pml4->lock);
1532
		}
1533 1534
		atomic_inc(&pdp->used_pdpes);
		spin_unlock(&pml4->lock);
1535

1536
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1537 1538
		if (unlikely(ret))
			goto unwind_pdp;
1539 1540 1541

		spin_lock(&pml4->lock);
		atomic_dec(&pdp->used_pdpes);
1542
	}
1543
	spin_unlock(&pml4->lock);
1544 1545 1546

	return 0;

1547
unwind_pdp:
1548 1549
	spin_lock(&pml4->lock);
	if (atomic_dec_and_test(&pdp->used_pdpes)) {
1550 1551 1552
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1553
	spin_unlock(&pml4->lock);
1554 1555 1556
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1557 1558
}

1559
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1560
{
1561
	struct i915_address_space *vm = &ppgtt->vm;
1562 1563
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1564
	u64 start = 0, length = ppgtt->vm.total;
1565 1566
	u64 from = start;
	unsigned int pdpe;
1567

1568 1569 1570 1571
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1572

1573 1574
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1575
		atomic_inc(&pdp->used_pdpes);
1576
	}
1577

1578
	atomic_inc(&pdp->used_pdpes); /* never remove */
1579
	return 0;
1580

1581 1582 1583 1584 1585 1586
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
1587
	atomic_set(&pdp->used_pdpes, 0);
1588
	return -ENOMEM;
1589 1590
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static void ppgtt_init(struct drm_i915_private *i915,
		       struct i915_hw_ppgtt *ppgtt)
{
	kref_init(&ppgtt->ref);

	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1608
/*
1609 1610 1611 1612
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1613
 *
1614
 */
1615
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1616
{
1617 1618 1619 1620 1621 1622 1623
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1624
	ppgtt_init(i915, ppgtt);
1625

1626 1627 1628 1629 1630 1631 1632
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1633

1634 1635 1636
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1637
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1638
		ppgtt->vm.pt_kmap_wc = true;
1639

1640 1641 1642
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1643

1644
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1645 1646 1647
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1648

1649
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1650

1651 1652 1653
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1654
	} else {
1655 1656 1657
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1658

1659 1660 1661
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1662
				__pdp_fini(&ppgtt->pdp);
1663
				goto err_scratch;
1664
			}
1665
		}
1666

1667 1668 1669
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1670
	}
1671

1672
	if (intel_vgpu_active(i915))
1673 1674
		gen8_ppgtt_notify_vgt(ppgtt, true);

1675
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1676

1677
	return ppgtt;
1678

1679
err_scratch:
1680
	gen8_free_scratch(&ppgtt->vm);
1681 1682 1683
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1684 1685
}

1686
/* Write pde (index) from the page directory @pd to the page table @pt */
1687
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1688 1689
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1690
{
1691
	/* Caller needs to make sure the write completes if necessary */
1692 1693
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1694
}
B
Ben Widawsky 已提交
1695

1696
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1697
{
1698
	struct intel_engine_cs *engine;
1699
	u32 ecochk, ecobits;
1700
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1701

1702 1703
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1704

1705
	ecochk = I915_READ(GAM_ECOCHK);
1706
	if (IS_HASWELL(dev_priv)) {
1707 1708 1709 1710 1711 1712
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1713

1714
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1715
		/* GFX_MODE is per-ring on gen7+ */
1716 1717 1718
		ENGINE_WRITE(engine,
			     RING_MODE_GEN7,
			     _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1719
	}
1720
}
B
Ben Widawsky 已提交
1721

1722
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1723
{
1724
	u32 ecochk, gab_ctl, ecobits;
1725

1726 1727 1728
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1729

1730 1731 1732 1733 1734 1735
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1736 1737
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1738 1739
}

1740
/* PPGTT support for Sandybdrige/Gen6 and later */
1741
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1742
				   u64 start, u64 length)
1743
{
1744
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1745
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1746 1747
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1748
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1749
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1750

1751
	while (num_entries) {
1752
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1753
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1754
		gen6_pte_t *vaddr;
1755

1756 1757 1758 1759
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

1760 1761
		GEM_BUG_ON(count > atomic_read(&pt->used_ptes));
		if (!atomic_sub_return(count, &pt->used_ptes))
1762
			ppgtt->scan_for_unused_pt = true;
1763

1764 1765
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1766 1767 1768 1769
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1770

1771
		vaddr = kmap_atomic_px(pt);
1772
		memset32(vaddr + pte, scratch_pte, count);
1773
		kunmap_atomic(vaddr);
1774

1775
		pte = 0;
1776
	}
1777 1778
}

1779
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1780
				      struct i915_vma *vma,
1781 1782
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1783
{
1784
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1785
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1786 1787
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1788
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1789
	struct sgt_dma iter = sgt_dma(vma);
1790 1791
	gen6_pte_t *vaddr;

1792 1793
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1794
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1795 1796
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1797

1798
		iter.dma += I915_GTT_PAGE_SIZE;
1799 1800 1801 1802
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1803

1804 1805 1806
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1807

1808
		if (++act_pte == GEN6_PTES) {
1809 1810
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1811
			act_pte = 0;
D
Daniel Vetter 已提交
1812
		}
1813
	} while (1);
1814
	kunmap_atomic(vaddr);
1815 1816

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1817 1818
}

1819
static int gen6_alloc_va_range(struct i915_address_space *vm,
1820
			       u64 start, u64 length)
1821
{
1822
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1823
	struct i915_page_table *pt;
1824
	intel_wakeref_t wakeref;
1825 1826 1827
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1828

1829 1830
	wakeref = intel_runtime_pm_get(vm->i915);

1831
	spin_lock(&ppgtt->base.pd.lock);
1832
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1833 1834
		const unsigned int count = gen6_pte_count(start, length);

1835
		if (pt == vm->scratch_pt) {
1836 1837 1838 1839
			struct i915_page_table *old;

			spin_unlock(&ppgtt->base.pd.lock);

1840 1841 1842
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1843

1844
			gen6_initialize_pt(vm, pt);
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
			old = cmpxchg(&ppgtt->base.pd.page_table[pde],
				      vm->scratch_pt, pt);
			if (old == vm->scratch_pt) {
				ppgtt->base.pd.page_table[pde] = pt;
				if (i915_vma_is_bound(ppgtt->vma,
						      I915_VMA_GLOBAL_BIND)) {
					gen6_write_pde(ppgtt, pde, pt);
					flush = true;
				}
			} else {
				free_pt(vm, pt);
				pt = old;
1858
			}
1859

1860
			spin_lock(&ppgtt->base.pd.lock);
1861
		}
1862

1863
		atomic_add(count, &pt->used_ptes);
1864
	}
1865
	spin_unlock(&ppgtt->base.pd.lock);
1866

1867
	if (flush) {
1868
		mark_tlbs_dirty(&ppgtt->base);
1869
		gen6_ggtt_invalidate(vm->i915);
1870 1871
	}

1872 1873
	intel_runtime_pm_put(vm->i915, wakeref);

1874
	return 0;
1875 1876

unwind_out:
1877
	intel_runtime_pm_put(vm->i915, wakeref);
1878
	gen6_ppgtt_clear_range(vm, from, start - from);
1879
	return -ENOMEM;
1880 1881
}

1882
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1883
{
1884 1885 1886
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1887
	int ret;
1888

1889
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1890 1891
	if (ret)
		return ret;
1892

1893 1894 1895
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1896

1897
	vm->scratch_pt = alloc_pt(vm);
1898
	if (IS_ERR(vm->scratch_pt)) {
1899
		cleanup_scratch_page(vm);
1900 1901 1902
		return PTR_ERR(vm->scratch_pt);
	}

1903
	gen6_initialize_pt(vm, vm->scratch_pt);
1904 1905
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1906
	spin_lock_init(&ppgtt->base.pd.lock);
1907 1908 1909 1910

	return 0;
}

1911
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1912
{
1913 1914
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1915 1916
}

1917
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1918
{
1919
	struct i915_page_table *pt;
1920
	u32 pde;
1921

1922
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1923 1924 1925 1926
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
struct gen6_ppgtt_cleanup_work {
	struct work_struct base;
	struct i915_vma *vma;
};

static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
{
	struct gen6_ppgtt_cleanup_work *work =
		container_of(wrk, typeof(*work), base);
	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
	struct drm_i915_private *i915 = work->vma->vm->i915;

	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(work->vma);
	mutex_unlock(&i915->drm.struct_mutex);

	kfree(work);
}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
static int nop_set_pages(struct i915_vma *vma)
{
	return -ENODEV;
}

static void nop_clear_pages(struct i915_vma *vma)
{
}

static int nop_bind(struct i915_vma *vma,
		    enum i915_cache_level cache_level,
		    u32 unused)
{
	return -ENODEV;
}

static void nop_unbind(struct i915_vma *vma)
{
}

static const struct i915_vma_ops nop_vma_ops = {
	.set_pages = nop_set_pages,
	.clear_pages = nop_clear_pages,
	.bind_vma = nop_bind,
	.unbind_vma = nop_unbind,
};

1973 1974 1975
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1976
	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1977

1978 1979 1980
	/* FIXME remove the struct_mutex to bring the locking under control */
	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
	work->vma = ppgtt->vma;
1981
	work->vma->ops = &nop_vma_ops;
1982
	schedule_work(&work->base);
1983 1984 1985

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1986 1987
}

1988
static int pd_vma_set_pages(struct i915_vma *vma)
1989
{
1990 1991 1992
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1993

1994 1995 1996
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1997

1998 1999 2000 2001 2002 2003 2004 2005 2006
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
2007
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
2008 2009
	struct i915_page_table *pt;
	unsigned int pde;
2010

2011 2012
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
2013

2014 2015
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
2016

2017 2018
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
2019

2020
	return 0;
2021
}
2022

2023
static void pd_vma_unbind(struct i915_vma *vma)
2024
{
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
2035
		if (atomic_read(&pt->used_ptes) || pt == scratch_pt)
2036 2037 2038 2039 2040 2041 2042
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

2061
	vma = i915_vma_alloc();
2062 2063 2064
	if (!vma)
		return ERR_PTR(-ENOMEM);

2065
	i915_active_init(i915, &vma->active, NULL);
2066
	INIT_ACTIVE_REQUEST(&vma->last_fence);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
2078
	INIT_LIST_HEAD(&vma->closed_link);
2079 2080

	mutex_lock(&vma->vm->mutex);
2081
	list_add(&vma->vm_link, &vma->vm->unbound_list);
2082
	mutex_unlock(&vma->vm->mutex);
2083 2084 2085

	return vma;
}
2086

2087
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
2088 2089
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
2090
	int err;
2091

2092 2093
	GEM_BUG_ON(ppgtt->base.vm.closed);

2094 2095 2096 2097 2098 2099 2100 2101 2102
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2103 2104 2105 2106 2107
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2143
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2144
{
2145
	struct i915_ggtt * const ggtt = &i915->ggtt;
2146
	struct gen6_hw_ppgtt *ppgtt;
2147 2148 2149 2150 2151 2152
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2153
	ppgtt_init(i915, &ppgtt->base);
2154

2155
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2156 2157 2158
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2159

2160 2161
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2162
	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2163 2164
	if (!ppgtt->work) {
		err = -ENOMEM;
2165
		goto err_free;
2166
	}
2167

2168
	err = gen6_ppgtt_init_scratch(ppgtt);
2169
	if (err)
2170
		goto err_work;
2171

2172 2173 2174
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2175
		goto err_scratch;
2176
	}
2177

2178
	return &ppgtt->base;
2179

2180 2181
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2182 2183
err_work:
	kfree(ppgtt->work);
2184 2185 2186
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2187
}
2188

2189
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2190 2191 2192 2193 2194
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2195
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2196
	if (IS_BROADWELL(dev_priv))
2197
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2198
	else if (IS_CHERRYVIEW(dev_priv))
2199
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2200
	else if (IS_GEN9_LP(dev_priv))
2201
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2202 2203
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2221 2222
}

2223
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2224
{
2225
	gtt_write_workarounds(dev_priv);
2226

2227
	if (IS_GEN(dev_priv, 6))
2228
		gen6_ppgtt_enable(dev_priv);
2229
	else if (IS_GEN(dev_priv, 7))
2230
		gen7_ppgtt_enable(dev_priv);
2231

2232 2233
	return 0;
}
2234

2235 2236 2237 2238 2239 2240 2241 2242 2243
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2244
struct i915_hw_ppgtt *
2245
i915_ppgtt_create(struct drm_i915_private *i915)
2246 2247 2248
{
	struct i915_hw_ppgtt *ppgtt;

2249 2250 2251
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2252

2253
	trace_i915_ppgtt_create(&ppgtt->vm);
2254

2255 2256 2257
	return ppgtt;
}

2258
static void ppgtt_destroy_vma(struct i915_address_space *vm)
2259 2260
{
	struct list_head *phases[] = {
2261
		&vm->bound_list,
2262 2263 2264 2265 2266 2267 2268 2269 2270
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2271
			i915_vma_destroy(vma);
2272 2273 2274
	}
}

2275
void i915_ppgtt_release(struct kref *kref)
2276 2277 2278 2279
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2280
	trace_i915_ppgtt_release(&ppgtt->vm);
2281

2282
	ppgtt_destroy_vma(&ppgtt->vm);
2283

2284
	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2285
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2286

2287 2288
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2289 2290
	kfree(ppgtt);
}
2291

2292 2293 2294
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2295
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2296 2297 2298 2299
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2300
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2301 2302
}

2303
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2304
{
2305
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2306 2307 2308 2309

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2310
	if (INTEL_GEN(dev_priv) < 6)
2311 2312
		return;

2313
	i915_check_and_clear_faults(dev_priv);
2314

2315
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2316

2317
	i915_ggtt_invalidate(dev_priv);
2318 2319
}

2320 2321
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2322
{
2323
	do {
2324 2325 2326 2327
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2328 2329
			return 0;

2330 2331
		/*
		 * If the DMA remap fails, one cause can be that we have
2332 2333 2334 2335 2336 2337 2338
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2339
				 obj->base.size >> PAGE_SHIFT, NULL,
2340
				 I915_SHRINK_BOUND |
2341
				 I915_SHRINK_UNBOUND));
2342

2343
	return -ENOSPC;
2344 2345
}

2346
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2347 2348 2349 2350
{
	writeq(pte, addr);
}

2351 2352
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2353
				  u64 offset,
2354 2355 2356
				  enum i915_cache_level level,
				  u32 unused)
{
2357
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2358
	gen8_pte_t __iomem *pte =
2359
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2360

2361
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2362

2363
	ggtt->invalidate(vm->i915);
2364 2365
}

B
Ben Widawsky 已提交
2366
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2367
				     struct i915_vma *vma,
2368
				     enum i915_cache_level level,
2369
				     u32 flags)
B
Ben Widawsky 已提交
2370
{
2371
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2372 2373
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2374
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2375
	dma_addr_t addr;
2376

2377 2378 2379 2380
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2381

2382
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2383
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2384
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2385
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2386

2387 2388 2389
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2390
	 */
2391
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2392 2393
}

2394 2395
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2396
				  u64 offset,
2397 2398 2399
				  enum i915_cache_level level,
				  u32 flags)
{
2400
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2401
	gen6_pte_t __iomem *pte =
2402
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2403

2404
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2405

2406
	ggtt->invalidate(vm->i915);
2407 2408
}

2409 2410 2411 2412 2413 2414
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2415
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2416
				     struct i915_vma *vma,
2417 2418
				     enum i915_cache_level level,
				     u32 flags)
2419
{
2420
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2421
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2422
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2423
	struct sgt_iter iter;
2424
	dma_addr_t addr;
2425
	for_each_sgt_dma(addr, iter, vma->pages)
2426
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2427

2428 2429 2430
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2431
	 */
2432
	ggtt->invalidate(vm->i915);
2433 2434
}

2435
static void nop_clear_range(struct i915_address_space *vm,
2436
			    u64 start, u64 length)
2437 2438 2439
{
}

B
Ben Widawsky 已提交
2440
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2441
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2442
{
2443
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2444 2445
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2446
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2447
	gen8_pte_t __iomem *gtt_base =
2448 2449
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2505
	struct i915_vma *vma;
2506
	enum i915_cache_level level;
2507
	u32 flags;
2508 2509 2510 2511 2512 2513
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2514
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2515 2516 2517 2518 2519 2520
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2521
					     struct i915_vma *vma,
2522
					     enum i915_cache_level level,
2523
					     u32 flags)
2524
{
2525
	struct insert_entries arg = { vm, vma, level, flags };
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2555
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2556
				  u64 start, u64 length)
2557
{
2558
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2559 2560
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2561
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2562 2563
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2564 2565 2566 2567 2568 2569 2570
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2571
	scratch_pte = vm->scratch_pte;
2572

2573 2574 2575 2576
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2577 2578
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2579
				  u64 offset,
2580 2581 2582 2583 2584 2585 2586 2587 2588
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2589
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2590
				     struct i915_vma *vma,
2591 2592
				     enum i915_cache_level cache_level,
				     u32 unused)
2593 2594 2595 2596
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2597 2598
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2599 2600
}

2601
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2602
				  u64 start, u64 length)
2603
{
2604
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2605 2606
}

2607 2608 2609
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2610
{
2611
	struct drm_i915_private *i915 = vma->vm->i915;
2612
	struct drm_i915_gem_object *obj = vma->obj;
2613
	intel_wakeref_t wakeref;
2614
	u32 pte_flags;
2615

2616
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2617
	pte_flags = 0;
2618
	if (i915_gem_object_is_readonly(obj))
2619 2620
		pte_flags |= PTE_READ_ONLY;

2621 2622
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2623

2624 2625
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2626 2627 2628 2629 2630
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2631
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2632 2633 2634 2635

	return 0;
}

2636 2637 2638
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2639
	intel_wakeref_t wakeref;
2640

2641 2642
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2643 2644
}

2645 2646 2647
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2648
{
2649
	struct drm_i915_private *i915 = vma->vm->i915;
2650
	u32 pte_flags;
2651
	int ret;
2652

2653
	/* Currently applicable only to VLV */
2654
	pte_flags = 0;
2655
	if (i915_gem_object_is_readonly(vma->obj))
2656
		pte_flags |= PTE_READ_ONLY;
2657

2658 2659 2660
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2661
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2662 2663 2664
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2665
			if (ret)
2666
				return ret;
2667 2668
		}

2669 2670
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2671 2672
	}

2673
	if (flags & I915_VMA_GLOBAL_BIND) {
2674 2675
		intel_wakeref_t wakeref;

2676 2677 2678 2679
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2680
	}
2681

2682
	return 0;
2683 2684
}

2685
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2686
{
2687
	struct drm_i915_private *i915 = vma->vm->i915;
2688

2689
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2690
		struct i915_address_space *vm = vma->vm;
2691 2692
		intel_wakeref_t wakeref;

2693 2694
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2695
	}
2696

2697
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2698
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2699 2700 2701

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2702 2703
}

2704 2705
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2706
{
D
David Weinehall 已提交
2707 2708
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2709
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2710

2711
	if (unlikely(ggtt->do_idle_maps)) {
2712
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2713 2714 2715 2716 2717
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2718

2719
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2720
}
2721

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2732 2733
	vma->page_sizes = vma->obj->mm.page_sizes;

2734 2735 2736
	return 0;
}

C
Chris Wilson 已提交
2737
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2738
				  unsigned long color,
2739 2740
				  u64 *start,
				  u64 *end)
2741
{
2742
	if (node->allocated && node->color != color)
2743
		*start += I915_GTT_PAGE_SIZE;
2744

2745 2746 2747 2748 2749
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2750
	node = list_next_entry(node, node_list);
2751
	if (node->color != color)
2752
		*end -= I915_GTT_PAGE_SIZE;
2753
}
B
Ben Widawsky 已提交
2754

2755
static int init_aliasing_ppgtt(struct drm_i915_private *i915)
2756 2757 2758 2759 2760
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2761
	ppgtt = i915_ppgtt_create(i915);
2762 2763
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2764

2765
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2766 2767 2768 2769
		err = -ENODEV;
		goto err_ppgtt;
	}

2770 2771 2772 2773 2774 2775 2776 2777 2778
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2779 2780

	i915->mm.aliasing_ppgtt = ppgtt;
2781

2782 2783
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2784

2785 2786
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2787

2788 2789 2790
	return 0;

err_ppgtt:
2791
	i915_ppgtt_put(ppgtt);
2792 2793 2794
	return err;
}

2795
static void fini_aliasing_ppgtt(struct drm_i915_private *i915)
2796 2797 2798 2799 2800 2801 2802 2803
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2804
	i915_ppgtt_put(ppgtt);
2805

2806 2807
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2808 2809
}

2810
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2811
{
2812 2813 2814 2815 2816 2817 2818 2819 2820
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2821
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2822
	unsigned long hole_start, hole_end;
2823
	struct drm_mm_node *entry;
2824
	int ret;
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2835 2836 2837
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2838

2839
	/* Reserve a mappable slot for our lockless error capture */
2840
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2841 2842 2843
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2844 2845 2846
	if (ret)
		return ret;

2847 2848 2849 2850 2851 2852
	if (USES_GUC(dev_priv)) {
		ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
		if (ret)
			goto err_reserve;
	}

2853
	/* Clear any non-preallocated blocks */
2854
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2855 2856
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2857 2858
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2859 2860 2861
	}

	/* And finally clear the reserved guard page */
2862
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2863

2864
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2865
		ret = init_aliasing_ppgtt(dev_priv);
2866
		if (ret)
2867
			goto err_appgtt;
2868 2869
	}

2870
	return 0;
2871

2872 2873 2874
err_appgtt:
	intel_guc_release_ggtt_top(&dev_priv->guc);
err_reserve:
2875 2876
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2877 2878
}

2879 2880
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2881
 * @dev_priv: i915 device
2882
 */
2883
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2884
{
2885
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2886
	struct i915_vma *vma, *vn;
2887
	struct pagevec *pvec;
2888

2889
	ggtt->vm.closed = true;
2890 2891

	mutex_lock(&dev_priv->drm.struct_mutex);
2892
	fini_aliasing_ppgtt(dev_priv);
2893

2894
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2895
		WARN_ON(i915_vma_unbind(vma));
2896

2897 2898 2899
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2900 2901
	intel_guc_release_ggtt_top(&dev_priv->guc);

2902
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2903
		intel_vgt_deballoon(dev_priv);
2904
		i915_address_space_fini(&ggtt->vm);
2905 2906
	}

2907
	ggtt->vm.cleanup(&ggtt->vm);
2908

2909
	pvec = &dev_priv->mm.wc_stash.pvec;
2910 2911 2912 2913 2914
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2915
	mutex_unlock(&dev_priv->drm.struct_mutex);
2916 2917

	arch_phys_wc_del(ggtt->mtrr);
2918
	io_mapping_fini(&ggtt->iomap);
2919

2920
	i915_gem_cleanup_stolen(dev_priv);
2921
}
2922

2923
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2924 2925 2926 2927 2928 2929
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2930
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2931 2932 2933 2934 2935
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2936 2937

#ifdef CONFIG_X86_32
2938
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2939 2940 2941 2942
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2943 2944 2945
	return bdw_gmch_ctl << 20;
}

2946
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2957
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2958
{
2959
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2960
	struct pci_dev *pdev = dev_priv->drm.pdev;
2961
	phys_addr_t phys_addr;
2962
	int ret;
B
Ben Widawsky 已提交
2963 2964

	/* For Modern GENs the PTEs and register space are split in the BAR */
2965
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2966

I
Imre Deak 已提交
2967
	/*
2968 2969 2970
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2971 2972 2973
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2974
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2975
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2976
	else
2977
		ggtt->gsm = ioremap_wc(phys_addr, size);
2978
	if (!ggtt->gsm) {
2979
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2980 2981 2982
		return -ENOMEM;
	}

2983
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2984
	if (ret) {
B
Ben Widawsky 已提交
2985 2986
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2987
		iounmap(ggtt->gsm);
2988
		return ret;
B
Ben Widawsky 已提交
2989 2990
	}

2991 2992 2993 2994
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2995
	return 0;
B
Ben Widawsky 已提交
2996 2997
}

2998 2999
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
3000
{
3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3044
	struct intel_ppat_entry *entry = NULL;
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3067
		if (!entry)
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3144
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3182 3183
}

B
Ben Widawsky 已提交
3184 3185 3186
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3187
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3188
{
3189 3190 3191 3192
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3193

3194
	if (!HAS_PPGTT(ppat->i915)) {
3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3208 3209 3210
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3211

3212 3213 3214 3215 3216 3217 3218 3219
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3220 3221
}

3222
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3223
{
3224 3225 3226 3227
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3228 3229 3230 3231 3232 3233 3234

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3246 3247
	 */

3248 3249 3250 3251 3252 3253 3254 3255
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3256 3257
}

3258 3259 3260 3261 3262
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3263
	cleanup_scratch_page(vm);
3264 3265
}

3266 3267
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3268 3269 3270 3271 3272
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3273
	if (INTEL_GEN(dev_priv) >= 10)
3274
		cnl_setup_private_ppat(ppat);
3275
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3276
		chv_setup_private_ppat(ppat);
3277
	else
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3289 3290
}

3291
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3292
{
3293
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3294
	struct pci_dev *pdev = dev_priv->drm.pdev;
3295
	unsigned int size;
B
Ben Widawsky 已提交
3296
	u16 snb_gmch_ctl;
3297
	int err;
B
Ben Widawsky 已提交
3298 3299

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3300 3301 3302 3303
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3304

3305 3306 3307 3308 3309
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3310

3311
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3312
	if (IS_CHERRYVIEW(dev_priv))
3313
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3314
	else
3315
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3316

3317
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3318 3319 3320
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3321
	if (intel_scanout_needs_vtd_wa(dev_priv))
3322
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3323

3324
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3325

3326
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3327 3328
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3329 3330 3331 3332
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3333 3334 3335 3336 3337

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3338 3339
	}

3340 3341
	ggtt->invalidate = gen6_ggtt_invalidate;

3342 3343 3344 3345 3346
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3347 3348
	ggtt->vm.pte_encode = gen8_pte_encode;

3349 3350
	setup_private_pat(dev_priv);

3351
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3352 3353
}

3354
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3355
{
3356
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3357
	struct pci_dev *pdev = dev_priv->drm.pdev;
3358
	unsigned int size;
3359
	u16 snb_gmch_ctl;
3360
	int err;
3361

3362 3363 3364 3365
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3366

3367 3368
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3369
	 */
3370
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3371
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3372
		return -ENXIO;
3373 3374
	}

3375 3376 3377 3378 3379
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3380
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3381

3382
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3383
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3384

3385 3386 3387
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3388 3389 3390
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3391

3392 3393
	ggtt->invalidate = gen6_ggtt_invalidate;

3394
	if (HAS_EDRAM(dev_priv))
3395
		ggtt->vm.pte_encode = iris_pte_encode;
3396
	else if (IS_HASWELL(dev_priv))
3397
		ggtt->vm.pte_encode = hsw_pte_encode;
3398
	else if (IS_VALLEYVIEW(dev_priv))
3399
		ggtt->vm.pte_encode = byt_pte_encode;
3400
	else if (INTEL_GEN(dev_priv) >= 7)
3401
		ggtt->vm.pte_encode = ivb_pte_encode;
3402
	else
3403
		ggtt->vm.pte_encode = snb_pte_encode;
3404

3405 3406 3407 3408 3409
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3410
	return ggtt_probe_common(ggtt, size);
3411 3412
}

3413
static void i915_gmch_remove(struct i915_address_space *vm)
3414
{
3415
	intel_gmch_remove();
3416
}
3417

3418
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3419
{
3420
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3421
	phys_addr_t gmadr_base;
3422 3423
	int ret;

3424
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3425 3426 3427 3428 3429
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3430
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3431

3432 3433 3434 3435
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3436
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3437 3438 3439 3440
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3441

3442 3443
	ggtt->invalidate = gmch_ggtt_invalidate;

3444 3445 3446 3447 3448
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3449
	if (unlikely(ggtt->do_idle_maps))
3450 3451
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3452 3453 3454
	return 0;
}

3455
/**
3456
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3457
 * @dev_priv: i915 device
3458
 */
3459
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3460
{
3461
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3462 3463
	int ret;

3464 3465
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3466

3467 3468 3469 3470 3471 3472
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3473
	if (ret)
3474 3475
		return ret;

3476
	if ((ggtt->vm.total - 1) >> 32) {
3477
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3478
			  " of address space! Found %lldM!\n",
3479 3480 3481 3482
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3483 3484
	}

3485
	if (ggtt->mappable_end > ggtt->vm.total) {
3486
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3487
			  " aperture=%pa, total=%llx\n",
3488 3489
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3490 3491
	}

3492
	/* GMADR is the PCI mmio aperture into the global GTT. */
3493
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3494
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3495
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3496
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3497
	if (intel_vtd_active())
3498
		DRM_INFO("VT-d active for gfx access\n");
3499 3500

	return 0;
3501 3502 3503 3504
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3505
 * @dev_priv: i915 device
3506
 */
3507
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3508 3509 3510 3511
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3512 3513
	stash_init(&dev_priv->mm.wc_stash);

3514 3515 3516 3517
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3518
	 */
C
Chris Wilson 已提交
3519
	mutex_lock(&dev_priv->drm.struct_mutex);
3520
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3521

3522 3523
	ggtt->vm.is_ggtt = true;

3524 3525 3526
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3527
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3528
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3529
	mutex_unlock(&dev_priv->drm.struct_mutex);
3530

3531 3532
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3533
				dev_priv->ggtt.mappable_end)) {
3534 3535 3536 3537
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3538
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3539

3540 3541 3542 3543
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3544
	ret = i915_gem_init_stolen(dev_priv);
3545 3546 3547 3548
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3549 3550

out_gtt_cleanup:
3551
	ggtt->vm.cleanup(&ggtt->vm);
3552
	return ret;
3553
}
3554

3555
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3556
{
3557
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3558 3559 3560 3561 3562
		return -EIO;

	return 0;
}

3563 3564
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3565 3566
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3567
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3568 3569

	i915_ggtt_invalidate(i915);
3570 3571 3572 3573
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3574 3575 3576 3577
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3578 3579 3580 3581
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3582 3583

	i915_ggtt_invalidate(i915);
3584 3585
}

3586
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3587
{
3588
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3589
	struct i915_vma *vma, *vn;
3590

3591
	i915_check_and_clear_faults(dev_priv);
3592

3593 3594
	mutex_lock(&ggtt->vm.mutex);

3595
	/* First fill our portion of the GTT with scratch pages */
3596 3597
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3598 3599

	/* clflush objects bound into the GGTT and rebind them. */
3600
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3601
		struct drm_i915_gem_object *obj = vma->obj;
3602

3603 3604
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3605

3606 3607
		mutex_unlock(&ggtt->vm.mutex);

3608
		if (!i915_vma_unbind(vma))
3609
			goto lock;
3610

3611 3612 3613
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3614 3615
		if (obj) {
			i915_gem_object_lock(obj);
3616
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3617 3618
			i915_gem_object_unlock(obj);
		}
3619 3620 3621

lock:
		mutex_lock(&ggtt->vm.mutex);
3622
	}
3623

3624
	ggtt->vm.closed = false;
3625
	i915_ggtt_invalidate(dev_priv);
3626

3627 3628
	mutex_unlock(&ggtt->vm.mutex);

3629
	if (INTEL_GEN(dev_priv) >= 8) {
3630
		struct intel_ppat *ppat = &dev_priv->ppat;
3631

3632 3633
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3634 3635 3636 3637
		return;
	}
}

3638
static struct scatterlist *
3639
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3640
	     unsigned int width, unsigned int height,
3641
	     unsigned int stride,
3642
	     struct sg_table *st, struct scatterlist *sg)
3643 3644 3645 3646 3647
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3648
		src_idx = stride * (height - 1) + column + offset;
3649 3650 3651 3652 3653 3654
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3655
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3656 3657
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3658
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3659
			sg = sg_next(sg);
3660
			src_idx -= stride;
3661 3662
		}
	}
3663 3664

	return sg;
3665 3666
}

3667 3668 3669
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3670
{
3671
	unsigned int size = intel_rotation_info_size(rot_info);
3672
	struct sg_table *st;
3673
	struct scatterlist *sg;
3674
	int ret = -ENOMEM;
3675
	int i;
3676 3677 3678 3679 3680 3681

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3682
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3683 3684 3685
	if (ret)
		goto err_sg_alloc;

3686 3687 3688
	st->nents = 0;
	sg = st->sgl;

3689
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3690
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3691 3692
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3693 3694
	}

3695 3696 3697 3698 3699 3700
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3701 3702
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3703

3704 3705
	return ERR_PTR(ret);
}
3706

3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3790
static noinline struct sg_table *
3791 3792 3793 3794
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3795
	struct scatterlist *sg, *iter;
3796
	unsigned int count = view->partial.size;
3797
	unsigned int offset;
3798 3799 3800 3801 3802 3803
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3804
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3805 3806 3807
	if (ret)
		goto err_sg_alloc;

3808
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3809 3810
	GEM_BUG_ON(!iter);

3811 3812
	sg = st->sgl;
	st->nents = 0;
3813 3814
	do {
		unsigned int len;
3815

3816 3817 3818 3819 3820 3821
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3822 3823

		st->nents++;
3824 3825 3826
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3827 3828
			i915_sg_trim(st); /* Drop any unused tail entries. */

3829 3830
			return st;
		}
3831

3832 3833 3834 3835
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3836 3837 3838 3839 3840 3841 3842

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3843
static int
3844
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3845
{
3846
	int ret;
3847

3848 3849 3850 3851 3852 3853 3854
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3855
	switch (vma->ggtt_view.type) {
3856 3857 3858
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3859 3860
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3861 3862
		return 0;

3863
	case I915_GGTT_VIEW_ROTATED:
3864
		vma->pages =
3865 3866 3867
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3868 3869 3870 3871 3872
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3873
	case I915_GGTT_VIEW_PARTIAL:
3874
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3875 3876
		break;
	}
3877

3878
	ret = 0;
3879
	if (IS_ERR(vma->pages)) {
3880 3881
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3882 3883
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3884
	}
3885
	return ret;
3886 3887
}

3888 3889
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3924
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3925
	GEM_BUG_ON(drm_mm_node_allocated(node));
3926 3927 3928 3929 3930 3931 3932 3933 3934

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3935 3936 3937
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3938 3939 3940 3941 3942 3943 3944
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3970 3971
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3972 3973 3974 3975 3976 3977 3978 3979 3980
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3981
 *         must be #I915_GTT_PAGE_SIZE aligned
3982 3983 3984
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3985 3986 3987 3988 3989 3990
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3991 3992
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
4009
	enum drm_mm_insert_mode mode;
4010
	u64 offset;
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
4021
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
4022
	GEM_BUG_ON(drm_mm_node_allocated(node));
4023 4024 4025 4026 4027 4028 4029

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4030 4031
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4032
		mode = DRM_MM_INSERT_HIGHEST;
4033 4034
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4046 4047 4048
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4049 4050 4051
	if (err != -ENOSPC)
		return err;

4052 4053 4054 4055 4056 4057 4058 4059 4060
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4061 4062 4063
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4093 4094 4095 4096 4097
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4098 4099 4100
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4101
}
4102 4103 4104

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4105
#include "selftests/i915_gem_gtt.c"
4106
#endif