i915_gem_gtt.c 105.2 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_scatterlist.h"
40
#include "i915_trace.h"
41
#include "i915_vgpu.h"
42
#include "intel_drv.h"
43
#include "intel_frontbuffer.h"
44

45
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
83 84 85
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

108 109 110
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

111 112
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
113 114
	/*
	 * Note that as an uncached mmio write, this will flush the
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

136 137 138
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
139
{
140
	u32 pte_flags;
141 142 143 144 145 146 147 148
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
149

150
	/* Applicable to VLV, and gen8+ */
151
	pte_flags = 0;
152
	if (i915_gem_object_is_readonly(vma->obj))
153 154
		pte_flags |= PTE_READ_ONLY;

155
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
156 157

	return 0;
158 159 160 161
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
162
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
163
}
164

165 166 167 168 169 170
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

171 172
	vma->page_sizes = vma->obj->mm.page_sizes;

173 174 175 176 177 178 179 180 181 182 183 184
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
185 186

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
187 188
}

189 190 191
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
192
{
193 194 195 196
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
197 198 199

	switch (level) {
	case I915_CACHE_NONE:
200
		pte |= PPAT_UNCACHED;
201 202
		break;
	case I915_CACHE_WT:
203
		pte |= PPAT_DISPLAY_ELLC;
204 205
		break;
	default:
206
		pte |= PPAT_CACHED;
207 208 209
		break;
	}

B
Ben Widawsky 已提交
210 211 212
	return pte;
}

213 214
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
215
{
216
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
217 218
	pde |= addr;
	if (level != I915_CACHE_NONE)
219
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
220
	else
221
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
222 223 224
	return pde;
}

225 226 227
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

228 229 230
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
231
{
232
	gen6_pte_t pte = GEN6_PTE_VALID;
233
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
234 235

	switch (level) {
236 237 238 239 240 241 242 243
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
244
		MISSING_CASE(level);
245 246 247 248 249
	}

	return pte;
}

250 251 252
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
253
{
254
	gen6_pte_t pte = GEN6_PTE_VALID;
255 256 257 258 259
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
260 261 262 263 264
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
265
		pte |= GEN6_PTE_UNCACHED;
266 267
		break;
	default:
268
		MISSING_CASE(level);
269 270
	}

271 272 273
	return pte;
}

274 275 276
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
277
{
278
	gen6_pte_t pte = GEN6_PTE_VALID;
279 280
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

281 282
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
283 284 285 286 287 288 289

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

290 291 292
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
293
{
294
	gen6_pte_t pte = GEN6_PTE_VALID;
295
	pte |= HSW_PTE_ADDR_ENCODE(addr);
296 297

	if (level != I915_CACHE_NONE)
298
		pte |= HSW_WB_LLC_AGE3;
299 300 301 302

	return pte;
}

303 304 305
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
306
{
307
	gen6_pte_t pte = GEN6_PTE_VALID;
308 309
	pte |= HSW_PTE_ADDR_ENCODE(addr);

310 311 312 313
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
314
		pte |= HSW_WT_ELLC_LLC_AGE3;
315 316
		break;
	default:
317
		pte |= HSW_WB_ELLC_LLC_AGE3;
318 319
		break;
	}
320 321 322 323

	return pte;
}

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
344
	unsigned int nr;
345 346 347

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

348
	nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
349 350 351 352 353 354 355 356 357 358
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

359
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
360
{
361 362
	struct pagevec stack;
	struct page *page;
363

364 365
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
366

367 368 369
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
370 371 372 373 374

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
375 376 377
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
378

379
	/*
380
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
381 382 383 384 385 386
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
387
	pagevec_init(&stack);
388 389
	do {
		struct page *page;
390

391 392 393 394
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

395 396
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
397

398 399
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
400

401
		/* Merge spare WC pages to the global stash */
402 403
		if (stack.nr)
			stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
404

405 406 407
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
408
	}
409

410 411 412 413 414 415 416
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
417 418
}

419 420
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
421
{
422 423
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
424

425
	lockdep_assert_held(&vm->free_pages.lock);
426
	GEM_BUG_ON(!pagevec_count(pvec));
427

428
	if (vm->pt_kmap_wc) {
429 430
		/*
		 * When we use WC, first fill up the global stash and then
431 432
		 * only if full immediately free the overflow.
		 */
433
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
434

435 436 437 438 439 440 441 442
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
443

444 445 446 447 448 449 450 451 452 453
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
454
		set_pages_array_wb(pvec->pages, pvec->nr);
455 456

		spin_lock(&vm->free_pages.lock);
457 458 459
	}

	__pagevec_release(pvec);
460 461 462 463
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
464 465 466 467 468 469 470 471
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
472
	spin_lock(&vm->free_pages.lock);
473
	while (!pagevec_space(&vm->free_pages.pvec))
474
		vm_free_pages_release(vm, false);
475 476
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
	pagevec_add(&vm->free_pages.pvec, page);
477 478 479
	spin_unlock(&vm->free_pages.lock);
}

480
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
481
{
482 483 484 485 486 487
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
488
	lockdep_set_subclass(&vm->mutex, subclass);
489
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
490

491 492 493 494 495 496 497
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->unbound_list);
498
	INIT_LIST_HEAD(&vm->bound_list);
499 500 501 502 503 504 505 506 507 508 509
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
510 511

	mutex_destroy(&vm->mutex);
512
}
513

514 515 516 517
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
518
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
519 520
	if (unlikely(!p->page))
		return -ENOMEM;
521

522 523 524
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
525
				      DMA_ATTR_SKIP_CPU_SYNC |
526
				      DMA_ATTR_NO_WARN);
527 528 529
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
530
	}
531 532

	return 0;
533 534
}

535
static int setup_page_dma(struct i915_address_space *vm,
536
			  struct i915_page_dma *p)
537
{
538
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
539 540
}

541
static void cleanup_page_dma(struct i915_address_space *vm,
542
			     struct i915_page_dma *p)
543
{
544 545
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
546 547
}

548
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
549

550 551
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
552 553
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
554

555 556 557
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
558
{
559
	u64 * const vaddr = kmap_atomic(p->page);
560

561
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
562

563
	kunmap_atomic(vaddr);
564 565
}

566 567 568
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
569
{
570
	fill_page_dma(vm, p, (u64)v << 32 | v);
571 572
}

573
static int
574
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
575
{
576
	unsigned long size;
577

578 579 580 581 582 583 584
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
585 586 587
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
588
	 */
589
	size = I915_GTT_PAGE_SIZE_4K;
590
	if (i915_vm_is_4lvl(vm) &&
591
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
592 593
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
594
	}
595 596 597 598 599 600
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
601

602
		page = alloc_pages(gfp, order);
603
		if (unlikely(!page))
604
			goto skip;
605

606 607 608
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
609
					  DMA_ATTR_SKIP_CPU_SYNC |
610
					  DMA_ATTR_NO_WARN);
611 612
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
613

614 615
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
616

617 618
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
619
		vm->scratch_order = order;
620 621 622 623 624 625 626 627 628 629 630 631 632
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
633 634
}

635
static void cleanup_scratch_page(struct i915_address_space *vm)
636
{
637
	struct i915_page_dma *p = &vm->scratch_page;
638
	int order = vm->scratch_order;
639

640
	dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
641
		       PCI_DMA_BIDIRECTIONAL);
642
	__free_pages(p->page, order);
643 644
}

645
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
646
{
647
	struct i915_page_table *pt;
648

649
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
650
	if (unlikely(!pt))
651 652
		return ERR_PTR(-ENOMEM);

653 654 655 656
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
657

658
	pt->used_ptes = 0;
659 660 661
	return pt;
}

662
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
663
{
664
	cleanup_px(vm, pt);
665 666 667 668 669 670
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
671
	fill_px(vm, pt, vm->scratch_pte);
672 673
}

674
static void gen6_initialize_pt(struct i915_address_space *vm,
675 676
			       struct i915_page_table *pt)
{
677
	fill32_px(vm, pt, vm->scratch_pte);
678 679
}

680
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
681
{
682
	struct i915_page_directory *pd;
683

684
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
685
	if (unlikely(!pd))
686 687
		return ERR_PTR(-ENOMEM);

688 689 690 691
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
692

693
	pd->used_pdes = 0;
694 695 696
	return pd;
}

697
static void free_pd(struct i915_address_space *vm,
698
		    struct i915_page_directory *pd)
699
{
700 701
	cleanup_px(vm, pd);
	kfree(pd);
702 703 704 705 706
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
707 708
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
709
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
710 711
}

712
static int __pdp_init(struct i915_address_space *vm,
713 714
		      struct i915_page_directory_pointer *pdp)
{
715
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
716

717
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
718
					    I915_GFP_ALLOW_FAIL);
719
	if (unlikely(!pdp->page_directory))
720 721
		return -ENOMEM;

722
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
723

724 725 726 727 728 729 730 731 732
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

733 734
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
735 736 737 738
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

739
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
740 741 742 743 744

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

745
	ret = __pdp_init(vm, pdp);
746 747 748
	if (ret)
		goto fail_bitmap;

749
	ret = setup_px(vm, pdp);
750 751 752 753 754 755 756 757 758 759 760 761 762
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

763
static void free_pdp(struct i915_address_space *vm,
764 765 766
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
767

768
	if (!i915_vm_is_4lvl(vm))
769 770 771 772
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
773 774
}

775 776 777 778 779 780 781
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

782
	fill_px(vm, pdp, scratch_pdpe);
783 784 785 786 787
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
788 789
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
790
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
791 792
}

793 794
/*
 * PDE TLBs are a pain to invalidate on GEN8+. When we modify
795 796 797 798 799 800
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
801
	ppgtt->pd_dirty_engines = ALL_ENGINES;
802 803
}

804 805 806
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
807
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
808
				struct i915_page_table *pt,
809
				u64 start, u64 length)
810
{
811
	unsigned int num_entries = gen8_pte_count(start, length);
812
	gen8_pte_t *vaddr;
813

814
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
815

816 817 818
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
819

820
	vaddr = kmap_atomic_px(pt);
821
	memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
822
	kunmap_atomic(vaddr);
823 824

	return false;
825
}
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

841
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
842
				struct i915_page_directory *pd,
843
				u64 start, u64 length)
844 845
{
	struct i915_page_table *pt;
846
	u32 pde;
847 848

	gen8_for_each_pde(pt, pd, start, length, pde) {
849 850
		GEM_BUG_ON(pt == vm->scratch_pt);

851 852
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
853

854
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
855
		GEM_BUG_ON(!pd->used_pdes);
856
		pd->used_pdes--;
857 858

		free_pt(vm, pt);
859 860
	}

861 862
	return !pd->used_pdes;
}
863

864 865 866 867 868 869 870 871
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
872
	if (!i915_vm_is_4lvl(vm))
873 874 875 876 877
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
878
}
879

880 881 882 883
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
884
				 struct i915_page_directory_pointer *pdp,
885
				 u64 start, u64 length)
886 887
{
	struct i915_page_directory *pd;
888
	unsigned int pdpe;
889

890
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
891 892
		GEM_BUG_ON(pd == vm->scratch_pd);

893 894
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
895

896
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
897
		GEM_BUG_ON(!pdp->used_pdpes);
898
		pdp->used_pdpes--;
899

900 901
		free_pd(vm, pd);
	}
902

903
	return !pdp->used_pdpes;
904
}
905

906 907 908 909 910 911
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

912 913 914 915 916 917 918 919 920 921 922 923 924
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

925 926 927 928
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
929 930
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
931
{
932 933
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
934
	struct i915_page_directory_pointer *pdp;
935
	unsigned int pml4e;
936

937
	GEM_BUG_ON(!i915_vm_is_4lvl(vm));
938

939
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
940 941
		GEM_BUG_ON(pdp == vm->scratch_pdp);

942 943
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
944

945 946 947
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
948 949 950
	}
}

951
static inline struct sgt_dma {
952 953
	struct scatterlist *sg;
	dma_addr_t dma, max;
954 955 956 957 958
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
959

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

977 978
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
979
			      struct i915_page_directory_pointer *pdp,
980
			      struct sgt_dma *iter,
981
			      struct gen8_insert_pte *idx,
982 983
			      enum i915_cache_level cache_level,
			      u32 flags)
984
{
985
	struct i915_page_directory *pd;
986
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
987 988
	gen8_pte_t *vaddr;
	bool ret;
989

990
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
991 992
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
993
	do {
994 995
		vaddr[idx->pte] = pte_encode | iter->dma;

996
		iter->dma += I915_GTT_PAGE_SIZE;
997 998 999 1000 1001 1002
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1003

1004 1005
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1006
		}
1007

1008 1009 1010 1011 1012 1013
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1014
				/* Limited by sg length for 3lvl */
1015 1016
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1017
					ret = true;
1018
					break;
1019 1020
				}

1021
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1022
				pd = pdp->page_directory[idx->pdpe];
1023
			}
1024

1025
			kunmap_atomic(vaddr);
1026
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1027
		}
1028
	} while (1);
1029
	kunmap_atomic(vaddr);
1030

1031
	return ret;
1032 1033
}

1034
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1035
				   struct i915_vma *vma,
1036
				   enum i915_cache_level cache_level,
1037
				   u32 flags)
1038
{
1039
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1040
	struct sgt_dma iter = sgt_dma(vma);
1041
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1042

1043
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1044
				      cache_level, flags);
1045 1046

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1047
}
1048

1049 1050 1051
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1052 1053
					   enum i915_cache_level cache_level,
					   u32 flags)
1054
{
1055
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1056 1057 1058 1059 1060 1061 1062 1063
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1064
		bool maybe_64K = false;
1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1086 1087 1088 1089
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1090
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1091 1092
				maybe_64K = true;

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1112 1113 1114
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1115
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1116 1117
					maybe_64K = false;

1118 1119 1120 1121 1122 1123
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1140
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1154
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1155 1156 1157 1158 1159 1160 1161
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1162
		}
1163 1164

		vma->page_sizes.gtt |= page_size;
1165 1166 1167
	} while (iter->sg);
}

1168
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1169
				   struct i915_vma *vma,
1170
				   enum i915_cache_level cache_level,
1171
				   u32 flags)
1172 1173
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1174
	struct sgt_dma iter = sgt_dma(vma);
1175
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1176

1177
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1178 1179
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1180 1181 1182 1183
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1184 1185
						     &iter, &idx, cache_level,
						     flags))
1186
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1187 1188

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1189
	}
1190 1191
}

1192
static void gen8_free_page_tables(struct i915_address_space *vm,
1193
				  struct i915_page_directory *pd)
1194 1195 1196
{
	int i;

1197 1198 1199
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1200
	}
B
Ben Widawsky 已提交
1201 1202
}

1203 1204
static int gen8_init_scratch(struct i915_address_space *vm)
{
1205
	int ret;
1206

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

1219
		vm->scratch_order = clone->scratch_order;
1220 1221 1222 1223 1224 1225 1226
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1227
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1228 1229
	if (ret)
		return ret;
1230

1231 1232 1233
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
1234
				vm->has_read_only);
1235

1236
	vm->scratch_pt = alloc_pt(vm);
1237
	if (IS_ERR(vm->scratch_pt)) {
1238 1239
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1240 1241
	}

1242
	vm->scratch_pd = alloc_pd(vm);
1243
	if (IS_ERR(vm->scratch_pd)) {
1244 1245
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1246 1247
	}

1248
	if (i915_vm_is_4lvl(vm)) {
1249
		vm->scratch_pdp = alloc_pdp(vm);
1250
		if (IS_ERR(vm->scratch_pdp)) {
1251 1252
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1253 1254 1255
		}
	}

1256 1257
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1258
	if (i915_vm_is_4lvl(vm))
1259
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1260 1261

	return 0;
1262 1263

free_pd:
1264
	free_pd(vm, vm->scratch_pd);
1265
free_pt:
1266
	free_pt(vm, vm->scratch_pt);
1267
free_scratch_page:
1268
	cleanup_scratch_page(vm);
1269 1270

	return ret;
1271 1272
}

1273 1274
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1275
	struct i915_address_space *vm = &ppgtt->vm;
1276
	struct drm_i915_private *dev_priv = vm->i915;
1277 1278 1279
	enum vgt_g2v_type msg;
	int i;

1280
	if (i915_vm_is_4lvl(vm)) {
1281
		const u64 daddr = px_dma(&ppgtt->pml4);
1282

1283 1284
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1285 1286 1287 1288

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1289
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1290
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1291

1292 1293
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1305 1306
static void gen8_free_scratch(struct i915_address_space *vm)
{
1307 1308 1309
	if (!vm->scratch_page.daddr)
		return;

1310
	if (i915_vm_is_4lvl(vm))
1311 1312 1313 1314
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1315 1316
}

1317
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1318
				    struct i915_page_directory_pointer *pdp)
1319
{
1320
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1321 1322
	int i;

1323
	for (i = 0; i < pdpes; i++) {
1324
		if (pdp->page_directory[i] == vm->scratch_pd)
1325 1326
			continue;

1327 1328
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1329
	}
1330

1331
	free_pdp(vm, pdp);
1332 1333 1334 1335 1336 1337
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1338
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1339
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1340 1341
			continue;

1342
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1343 1344
	}

1345
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1346 1347 1348 1349
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1350
	struct drm_i915_private *dev_priv = vm->i915;
1351
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1352

1353
	if (intel_vgpu_active(dev_priv))
1354 1355
		gen8_ppgtt_notify_vgt(ppgtt, false);

1356
	if (i915_vm_is_4lvl(vm))
1357
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1358
	else
1359
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1360

1361
	gen8_free_scratch(vm);
1362 1363
}

1364 1365 1366
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1367
{
1368
	struct i915_page_table *pt;
1369
	u64 from = start;
1370
	unsigned int pde;
1371

1372
	gen8_for_each_pde(pt, pd, start, length, pde) {
1373 1374
		int count = gen8_pte_count(start, length);

1375
		if (pt == vm->scratch_pt) {
1376 1377
			pd->used_pdes++;

1378
			pt = alloc_pt(vm);
1379 1380
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1381
				goto unwind;
1382
			}
1383

1384
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1385
				gen8_initialize_pt(vm, pt);
1386 1387

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1388
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1389
		}
1390

1391
		pt->used_ptes += count;
1392
	}
1393
	return 0;
1394

1395 1396
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1397
	return -ENOMEM;
1398 1399
}

1400 1401 1402
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1403
{
1404
	struct i915_page_directory *pd;
1405 1406
	u64 from = start;
	unsigned int pdpe;
1407 1408
	int ret;

1409
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1410
		if (pd == vm->scratch_pd) {
1411 1412
			pdp->used_pdpes++;

1413
			pd = alloc_pd(vm);
1414 1415
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1416
				goto unwind;
1417
			}
1418

1419
			gen8_initialize_pd(vm, pd);
1420
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1421
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1422 1423 1424
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1425 1426
		if (unlikely(ret))
			goto unwind_pd;
1427
	}
1428

B
Ben Widawsky 已提交
1429
	return 0;
1430

1431 1432 1433 1434 1435 1436 1437
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1438 1439 1440
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1441 1442
}

1443 1444
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1445
{
1446 1447 1448
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1449

1450 1451 1452 1453 1454 1455 1456 1457 1458
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1459

1460
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1461 1462 1463 1464
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1465

1466 1467 1468
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1469

1470
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1471 1472
		if (unlikely(ret))
			goto unwind_pdp;
1473 1474 1475 1476
	}

	return 0;

1477 1478 1479 1480 1481
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1482 1483 1484
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1485 1486
}

1487
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1488
{
1489
	struct i915_address_space *vm = &ppgtt->vm;
1490 1491
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1492
	u64 start = 0, length = ppgtt->vm.total;
1493 1494
	u64 from = start;
	unsigned int pdpe;
1495

1496 1497 1498 1499
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1500

1501 1502 1503 1504
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1505

1506 1507
	pdp->used_pdpes++; /* never remove */
	return 0;
1508

1509 1510 1511 1512 1513 1514 1515 1516
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1517 1518
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
static void ppgtt_init(struct drm_i915_private *i915,
		       struct i915_hw_ppgtt *ppgtt)
{
	kref_init(&ppgtt->ref);

	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
	ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);

	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);

	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;
}

1536
/*
1537 1538 1539 1540
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1541
 *
1542
 */
1543
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1544
{
1545 1546 1547 1548 1549 1550 1551
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1552
	ppgtt_init(i915, ppgtt);
1553

1554 1555 1556 1557 1558 1559 1560
	/*
	 * From bdw, there is hw support for read-only pages in the PPGTT.
	 *
	 * Gen11 has HSDES#:1807136187 unresolved. Disable ro support
	 * for now.
	 */
	ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
1561

1562 1563 1564
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1565
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1566
		ppgtt->vm.pt_kmap_wc = true;
1567

1568 1569 1570
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1571

1572
	if (i915_vm_is_4lvl(&ppgtt->vm)) {
1573 1574 1575
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1576

1577
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1578

1579 1580 1581
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1582
	} else {
1583 1584 1585
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1586

1587 1588 1589
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1590
				__pdp_fini(&ppgtt->pdp);
1591
				goto err_scratch;
1592
			}
1593
		}
1594

1595 1596 1597
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1598
	}
1599

1600
	if (intel_vgpu_active(i915))
1601 1602
		gen8_ppgtt_notify_vgt(ppgtt, true);

1603
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1604

1605
	return ppgtt;
1606

1607
err_scratch:
1608
	gen8_free_scratch(&ppgtt->vm);
1609 1610 1611
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1612 1613
}

1614
/* Write pde (index) from the page directory @pd to the page table @pt */
1615
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1616 1617
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1618
{
1619
	/* Caller needs to make sure the write completes if necessary */
1620 1621
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1622
}
B
Ben Widawsky 已提交
1623

1624
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1625
{
1626
	struct intel_engine_cs *engine;
1627
	u32 ecochk, ecobits;
1628
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1629

1630 1631
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1632

1633
	ecochk = I915_READ(GAM_ECOCHK);
1634
	if (IS_HASWELL(dev_priv)) {
1635 1636 1637 1638 1639 1640
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1641

1642
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1643
		/* GFX_MODE is per-ring on gen7+ */
1644
		I915_WRITE(RING_MODE_GEN7(engine),
1645
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1646
	}
1647
}
B
Ben Widawsky 已提交
1648

1649
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1650
{
1651
	u32 ecochk, gab_ctl, ecobits;
1652

1653 1654 1655
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1656

1657 1658 1659 1660 1661 1662
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1663 1664
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1665 1666
}

1667
/* PPGTT support for Sandybdrige/Gen6 and later */
1668
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1669
				   u64 start, u64 length)
1670
{
1671
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1672
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1673 1674
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1675
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1676
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1677

1678
	while (num_entries) {
1679
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
1680
		const unsigned int count = min(num_entries, GEN6_PTES - pte);
1681
		gen6_pte_t *vaddr;
1682

1683 1684 1685 1686 1687 1688 1689 1690
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1691

1692 1693
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1694 1695 1696 1697
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1698

1699
		vaddr = kmap_atomic_px(pt);
1700
		memset32(vaddr + pte, scratch_pte, count);
1701
		kunmap_atomic(vaddr);
1702

1703
		pte = 0;
1704
	}
1705 1706
}

1707
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1708
				      struct i915_vma *vma,
1709 1710
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1711
{
1712
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1713
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1714 1715
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1716
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1717
	struct sgt_dma iter = sgt_dma(vma);
1718 1719
	gen6_pte_t *vaddr;

1720 1721
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1722
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1723 1724
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1725

1726
		iter.dma += I915_GTT_PAGE_SIZE;
1727 1728 1729 1730
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1731

1732 1733 1734
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1735

1736
		if (++act_pte == GEN6_PTES) {
1737 1738
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1739
			act_pte = 0;
D
Daniel Vetter 已提交
1740
		}
1741
	} while (1);
1742
	kunmap_atomic(vaddr);
1743 1744

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1745 1746
}

1747
static int gen6_alloc_va_range(struct i915_address_space *vm,
1748
			       u64 start, u64 length)
1749
{
1750
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1751
	struct i915_page_table *pt;
1752 1753 1754
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1755

1756
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1757 1758
		const unsigned int count = gen6_pte_count(start, length);

1759 1760 1761 1762
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1763

1764
			gen6_initialize_pt(vm, pt);
1765
			ppgtt->base.pd.page_table[pde] = pt;
1766 1767 1768 1769 1770 1771

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1772 1773

			GEM_BUG_ON(pt->used_ptes);
1774
		}
1775 1776

		pt->used_ptes += count;
1777 1778
	}

1779
	if (flush) {
1780 1781
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1782 1783 1784
	}

	return 0;
1785 1786

unwind_out:
1787
	gen6_ppgtt_clear_range(vm, from, start - from);
1788
	return -ENOMEM;
1789 1790
}

1791
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1792
{
1793 1794 1795
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1796
	int ret;
1797

1798
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1799 1800
	if (ret)
		return ret;
1801

1802 1803 1804
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1805

1806
	vm->scratch_pt = alloc_pt(vm);
1807
	if (IS_ERR(vm->scratch_pt)) {
1808
		cleanup_scratch_page(vm);
1809 1810 1811
		return PTR_ERR(vm->scratch_pt);
	}

1812
	gen6_initialize_pt(vm, vm->scratch_pt);
1813 1814
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1815 1816 1817 1818

	return 0;
}

1819
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1820
{
1821 1822
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1823 1824
}

1825
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1826
{
1827
	struct i915_page_table *pt;
1828
	u32 pde;
1829

1830
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1831 1832 1833 1834
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
struct gen6_ppgtt_cleanup_work {
	struct work_struct base;
	struct i915_vma *vma;
};

static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
{
	struct gen6_ppgtt_cleanup_work *work =
		container_of(wrk, typeof(*work), base);
	/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
	struct drm_i915_private *i915 = work->vma->vm->i915;

	mutex_lock(&i915->drm.struct_mutex);
	i915_vma_destroy(work->vma);
	mutex_unlock(&i915->drm.struct_mutex);

	kfree(work);
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
static int nop_set_pages(struct i915_vma *vma)
{
	return -ENODEV;
}

static void nop_clear_pages(struct i915_vma *vma)
{
}

static int nop_bind(struct i915_vma *vma,
		    enum i915_cache_level cache_level,
		    u32 unused)
{
	return -ENODEV;
}

static void nop_unbind(struct i915_vma *vma)
{
}

static const struct i915_vma_ops nop_vma_ops = {
	.set_pages = nop_set_pages,
	.clear_pages = nop_clear_pages,
	.bind_vma = nop_bind,
	.unbind_vma = nop_unbind,
};

1881 1882 1883
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1884
	struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
1885

1886 1887 1888
	/* FIXME remove the struct_mutex to bring the locking under control */
	INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
	work->vma = ppgtt->vma;
1889
	work->vma->ops = &nop_vma_ops;
1890
	schedule_work(&work->base);
1891 1892 1893

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1894 1895
}

1896
static int pd_vma_set_pages(struct i915_vma *vma)
1897
{
1898 1899 1900
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1901

1902 1903 1904
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1905

1906 1907 1908 1909 1910 1911 1912 1913 1914
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1915
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1916 1917
	struct i915_page_table *pt;
	unsigned int pde;
1918

1919 1920
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1921

1922 1923
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1924

1925 1926
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1927

1928
	return 0;
1929
}
1930

1931
static void pd_vma_unbind(struct i915_vma *vma)
1932
{
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

1969
	vma = i915_vma_alloc();
1970 1971 1972
	if (!vma)
		return ERR_PTR(-ENOMEM);

1973
	i915_active_init(i915, &vma->active, NULL);
1974
	INIT_ACTIVE_REQUEST(&vma->last_fence);
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
1986 1987

	mutex_lock(&vma->vm->mutex);
1988
	list_add(&vma->vm_link, &vma->vm->unbound_list);
1989
	mutex_unlock(&vma->vm->mutex);
1990 1991 1992

	return vma;
}
1993

1994
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
1995 1996
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1997
	int err;
1998

1999 2000
	GEM_BUG_ON(ppgtt->base.vm.closed);

2001 2002 2003 2004 2005 2006 2007 2008 2009
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

2010 2011 2012 2013 2014
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
2026 2027
}

2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	if (!ppgtt->pin_count)
		return;

	ppgtt->pin_count = 0;
	i915_vma_unpin(ppgtt->vma);
}

2050
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
2051
{
2052
	struct i915_ggtt * const ggtt = &i915->ggtt;
2053
	struct gen6_hw_ppgtt *ppgtt;
2054 2055 2056 2057 2058 2059
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

2060
	ppgtt_init(i915, &ppgtt->base);
2061

2062
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2063 2064 2065
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2066

2067 2068
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2069
	ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
2070 2071
	if (!ppgtt->work) {
		err = -ENOMEM;
2072
		goto err_free;
2073
	}
2074

2075
	err = gen6_ppgtt_init_scratch(ppgtt);
2076
	if (err)
2077
		goto err_work;
2078

2079 2080 2081
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2082
		goto err_scratch;
2083
	}
2084

2085
	return &ppgtt->base;
2086

2087 2088
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2089 2090
err_work:
	kfree(ppgtt->work);
2091 2092 2093
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2094
}
2095

2096
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2097 2098 2099 2100 2101
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2102
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2103
	if (IS_BROADWELL(dev_priv))
2104
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2105
	else if (IS_CHERRYVIEW(dev_priv))
2106
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2107
	else if (IS_GEN9_LP(dev_priv))
2108
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2109 2110
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2128 2129
}

2130
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2131
{
2132
	gtt_write_workarounds(dev_priv);
2133

2134
	if (IS_GEN(dev_priv, 6))
2135
		gen6_ppgtt_enable(dev_priv);
2136
	else if (IS_GEN(dev_priv, 7))
2137
		gen7_ppgtt_enable(dev_priv);
2138

2139 2140
	return 0;
}
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2151
struct i915_hw_ppgtt *
2152
i915_ppgtt_create(struct drm_i915_private *i915)
2153 2154 2155
{
	struct i915_hw_ppgtt *ppgtt;

2156 2157 2158
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2159

2160
	trace_i915_ppgtt_create(&ppgtt->vm);
2161

2162 2163 2164
	return ppgtt;
}

2165
static void ppgtt_destroy_vma(struct i915_address_space *vm)
2166 2167
{
	struct list_head *phases[] = {
2168
		&vm->bound_list,
2169 2170 2171 2172 2173 2174 2175 2176 2177
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2178
			i915_vma_destroy(vma);
2179 2180 2181
	}
}

2182
void i915_ppgtt_release(struct kref *kref)
2183 2184 2185 2186
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2187
	trace_i915_ppgtt_release(&ppgtt->vm);
2188

2189
	ppgtt_destroy_vma(&ppgtt->vm);
2190

2191
	GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
2192
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2193

2194 2195
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2196 2197
	kfree(ppgtt);
}
2198

2199 2200 2201
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2202
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2203 2204 2205 2206
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2207
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2208 2209
}

2210
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2211
{
2212
	struct intel_engine_cs *engine;
2213
	enum intel_engine_id id;
2214
	u32 fault;
2215

2216
	for_each_engine(engine, dev_priv, id) {
2217 2218
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2219
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2220
					 "\tAddr: 0x%08lx\n"
2221 2222 2223
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2224 2225 2226 2227
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2228 2229
		}
	}
2230 2231
}

2232
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2233 2234 2235 2236
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2237 2238 2239 2240 2241 2242 2243 2244
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2245
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2246 2247
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2248 2249 2250
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2251 2252 2253
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2264
		gen8_check_faults(dev_priv);
2265
	else if (INTEL_GEN(dev_priv) >= 6)
2266
		gen6_check_faults(dev_priv);
2267 2268
	else
		return;
2269 2270

	i915_clear_error_registers(dev_priv);
2271 2272
}

2273
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2274
{
2275
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2276 2277 2278 2279

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2280
	if (INTEL_GEN(dev_priv) < 6)
2281 2282
		return;

2283
	i915_check_and_clear_faults(dev_priv);
2284

2285
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2286

2287
	i915_ggtt_invalidate(dev_priv);
2288 2289
}

2290 2291
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2292
{
2293
	do {
2294 2295 2296 2297
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2298 2299
			return 0;

2300 2301
		/*
		 * If the DMA remap fails, one cause can be that we have
2302 2303 2304 2305 2306 2307 2308
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2309
				 obj->base.size >> PAGE_SHIFT, NULL,
2310
				 I915_SHRINK_BOUND |
2311
				 I915_SHRINK_UNBOUND));
2312

2313
	return -ENOSPC;
2314 2315
}

2316
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2317 2318 2319 2320
{
	writeq(pte, addr);
}

2321 2322
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2323
				  u64 offset,
2324 2325 2326
				  enum i915_cache_level level,
				  u32 unused)
{
2327
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2328
	gen8_pte_t __iomem *pte =
2329
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2330

2331
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2332

2333
	ggtt->invalidate(vm->i915);
2334 2335
}

B
Ben Widawsky 已提交
2336
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2337
				     struct i915_vma *vma,
2338
				     enum i915_cache_level level,
2339
				     u32 flags)
B
Ben Widawsky 已提交
2340
{
2341
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2342 2343
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2344
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2345
	dma_addr_t addr;
2346

2347 2348 2349 2350
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2351

2352
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2353
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2354
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2355
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2356

2357 2358 2359
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2360
	 */
2361
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2362 2363
}

2364 2365
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2366
				  u64 offset,
2367 2368 2369
				  enum i915_cache_level level,
				  u32 flags)
{
2370
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2371
	gen6_pte_t __iomem *pte =
2372
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2373

2374
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2375

2376
	ggtt->invalidate(vm->i915);
2377 2378
}

2379 2380 2381 2382 2383 2384
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2385
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2386
				     struct i915_vma *vma,
2387 2388
				     enum i915_cache_level level,
				     u32 flags)
2389
{
2390
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2391
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2392
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2393
	struct sgt_iter iter;
2394
	dma_addr_t addr;
2395
	for_each_sgt_dma(addr, iter, vma->pages)
2396
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2397

2398 2399 2400
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2401
	 */
2402
	ggtt->invalidate(vm->i915);
2403 2404
}

2405
static void nop_clear_range(struct i915_address_space *vm,
2406
			    u64 start, u64 length)
2407 2408 2409
{
}

B
Ben Widawsky 已提交
2410
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2411
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2412
{
2413
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2414 2415
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2416
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2417
	gen8_pte_t __iomem *gtt_base =
2418 2419
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2475
	struct i915_vma *vma;
2476
	enum i915_cache_level level;
2477
	u32 flags;
2478 2479 2480 2481 2482 2483
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2484
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2485 2486 2487 2488 2489 2490
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2491
					     struct i915_vma *vma,
2492
					     enum i915_cache_level level,
2493
					     u32 flags)
2494
{
2495
	struct insert_entries arg = { vm, vma, level, flags };
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2525
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2526
				  u64 start, u64 length)
2527
{
2528
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2529 2530
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2531
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2532 2533
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2534 2535 2536 2537 2538 2539 2540
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2541
	scratch_pte = vm->scratch_pte;
2542

2543 2544 2545 2546
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2547 2548
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2549
				  u64 offset,
2550 2551 2552 2553 2554 2555 2556 2557 2558
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2559
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2560
				     struct i915_vma *vma,
2561 2562
				     enum i915_cache_level cache_level,
				     u32 unused)
2563 2564 2565 2566
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2567 2568
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2569 2570
}

2571
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2572
				  u64 start, u64 length)
2573
{
2574
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2575 2576
}

2577 2578 2579
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2580
{
2581
	struct drm_i915_private *i915 = vma->vm->i915;
2582
	struct drm_i915_gem_object *obj = vma->obj;
2583
	intel_wakeref_t wakeref;
2584
	u32 pte_flags;
2585

2586
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2587
	pte_flags = 0;
2588
	if (i915_gem_object_is_readonly(obj))
2589 2590
		pte_flags |= PTE_READ_ONLY;

2591 2592
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2593

2594 2595
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2596 2597 2598 2599 2600
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2601
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2602 2603 2604 2605

	return 0;
}

2606 2607 2608
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2609
	intel_wakeref_t wakeref;
2610

2611 2612
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2613 2614
}

2615 2616 2617
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2618
{
2619
	struct drm_i915_private *i915 = vma->vm->i915;
2620
	u32 pte_flags;
2621
	int ret;
2622

2623
	/* Currently applicable only to VLV */
2624
	pte_flags = 0;
2625
	if (i915_gem_object_is_readonly(vma->obj))
2626
		pte_flags |= PTE_READ_ONLY;
2627

2628 2629 2630
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2631
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2632 2633 2634
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2635
			if (ret)
2636
				return ret;
2637 2638
		}

2639 2640
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2641 2642
	}

2643
	if (flags & I915_VMA_GLOBAL_BIND) {
2644 2645
		intel_wakeref_t wakeref;

2646 2647 2648 2649
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2650
	}
2651

2652
	return 0;
2653 2654
}

2655
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2656
{
2657
	struct drm_i915_private *i915 = vma->vm->i915;
2658

2659
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2660
		struct i915_address_space *vm = vma->vm;
2661 2662
		intel_wakeref_t wakeref;

2663 2664
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2665
	}
2666

2667
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2668
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2669 2670 2671

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2672 2673
}

2674 2675
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2676
{
D
David Weinehall 已提交
2677 2678
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2679
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2680

2681
	if (unlikely(ggtt->do_idle_maps)) {
2682
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2683 2684 2685 2686 2687
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2688

2689
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2690
}
2691

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2702 2703
	vma->page_sizes = vma->obj->mm.page_sizes;

2704 2705 2706
	return 0;
}

C
Chris Wilson 已提交
2707
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2708
				  unsigned long color,
2709 2710
				  u64 *start,
				  u64 *end)
2711
{
2712
	if (node->allocated && node->color != color)
2713
		*start += I915_GTT_PAGE_SIZE;
2714

2715 2716 2717 2718 2719
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2720
	node = list_next_entry(node, node_list);
2721
	if (node->color != color)
2722
		*end -= I915_GTT_PAGE_SIZE;
2723
}
B
Ben Widawsky 已提交
2724

2725 2726 2727 2728 2729 2730
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2731
	ppgtt = i915_ppgtt_create(i915);
2732 2733
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2734

2735
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2736 2737 2738 2739
		err = -ENODEV;
		goto err_ppgtt;
	}

2740 2741 2742 2743 2744 2745 2746 2747 2748
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2749 2750

	i915->mm.aliasing_ppgtt = ppgtt;
2751

2752 2753
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2754

2755 2756
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2757

2758 2759 2760
	return 0;

err_ppgtt:
2761
	i915_ppgtt_put(ppgtt);
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2774
	i915_ppgtt_put(ppgtt);
2775

2776 2777
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2778 2779
}

2780
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2781
{
2782 2783 2784 2785 2786 2787 2788 2789 2790
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2791
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2792
	unsigned long hole_start, hole_end;
2793
	struct drm_mm_node *entry;
2794
	int ret;
2795

2796 2797 2798 2799 2800 2801 2802 2803 2804
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2805 2806 2807
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2808

2809
	/* Reserve a mappable slot for our lockless error capture */
2810
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2811 2812 2813
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2814 2815 2816
	if (ret)
		return ret;

2817 2818 2819 2820 2821 2822
	if (USES_GUC(dev_priv)) {
		ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
		if (ret)
			goto err_reserve;
	}

2823
	/* Clear any non-preallocated blocks */
2824
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2825 2826
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2827 2828
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2829 2830 2831
	}

	/* And finally clear the reserved guard page */
2832
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2833

2834
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2835
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2836
		if (ret)
2837
			goto err_appgtt;
2838 2839
	}

2840
	return 0;
2841

2842 2843 2844
err_appgtt:
	intel_guc_release_ggtt_top(&dev_priv->guc);
err_reserve:
2845 2846
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2847 2848
}

2849 2850
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2851
 * @dev_priv: i915 device
2852
 */
2853
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2854
{
2855
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2856
	struct i915_vma *vma, *vn;
2857
	struct pagevec *pvec;
2858

2859
	ggtt->vm.closed = true;
2860 2861

	mutex_lock(&dev_priv->drm.struct_mutex);
2862 2863
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2864
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
2865
		WARN_ON(i915_vma_unbind(vma));
2866

2867 2868 2869
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2870 2871
	intel_guc_release_ggtt_top(&dev_priv->guc);

2872
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2873
		intel_vgt_deballoon(dev_priv);
2874
		i915_address_space_fini(&ggtt->vm);
2875 2876
	}

2877
	ggtt->vm.cleanup(&ggtt->vm);
2878

2879
	pvec = &dev_priv->mm.wc_stash.pvec;
2880 2881 2882 2883 2884
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2885
	mutex_unlock(&dev_priv->drm.struct_mutex);
2886 2887

	arch_phys_wc_del(ggtt->mtrr);
2888
	io_mapping_fini(&ggtt->iomap);
2889

2890
	i915_gem_cleanup_stolen(dev_priv);
2891
}
2892

2893
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2894 2895 2896 2897 2898 2899
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2900
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2901 2902 2903 2904 2905
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2906 2907

#ifdef CONFIG_X86_32
2908
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2909 2910 2911 2912
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2913 2914 2915
	return bdw_gmch_ctl << 20;
}

2916
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2927
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2928
{
2929
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2930
	struct pci_dev *pdev = dev_priv->drm.pdev;
2931
	phys_addr_t phys_addr;
2932
	int ret;
B
Ben Widawsky 已提交
2933 2934

	/* For Modern GENs the PTEs and register space are split in the BAR */
2935
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2936

I
Imre Deak 已提交
2937
	/*
2938 2939 2940
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2941 2942 2943
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2944
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2945
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2946
	else
2947
		ggtt->gsm = ioremap_wc(phys_addr, size);
2948
	if (!ggtt->gsm) {
2949
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2950 2951 2952
		return -ENOMEM;
	}

2953
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2954
	if (ret) {
B
Ben Widawsky 已提交
2955 2956
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2957
		iounmap(ggtt->gsm);
2958
		return ret;
B
Ben Widawsky 已提交
2959 2960
	}

2961 2962 2963 2964
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2965
	return 0;
B
Ben Widawsky 已提交
2966 2967
}

2968 2969
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2970
{
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
3014
	struct intel_ppat_entry *entry = NULL;
3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
3037
		if (!entry)
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3114
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3152 3153
}

B
Ben Widawsky 已提交
3154 3155 3156
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3157
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3158
{
3159 3160 3161 3162
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3163

3164
	if (!HAS_PPGTT(ppat->i915)) {
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3178 3179 3180
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3181

3182 3183 3184 3185 3186 3187 3188 3189
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3190 3191
}

3192
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3193
{
3194 3195 3196 3197
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3198 3199 3200 3201 3202 3203 3204

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3216 3217
	 */

3218 3219 3220 3221 3222 3223 3224 3225
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3226 3227
}

3228 3229 3230 3231 3232
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3233
	cleanup_scratch_page(vm);
3234 3235
}

3236 3237
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3238 3239 3240 3241 3242
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3243
	if (INTEL_GEN(dev_priv) >= 10)
3244
		cnl_setup_private_ppat(ppat);
3245
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3246
		chv_setup_private_ppat(ppat);
3247
	else
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3259 3260
}

3261
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3262
{
3263
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3264
	struct pci_dev *pdev = dev_priv->drm.pdev;
3265
	unsigned int size;
B
Ben Widawsky 已提交
3266
	u16 snb_gmch_ctl;
3267
	int err;
B
Ben Widawsky 已提交
3268 3269

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3270 3271 3272 3273
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3274

3275 3276 3277 3278 3279
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3280

3281
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3282
	if (IS_CHERRYVIEW(dev_priv))
3283
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3284
	else
3285
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3286

3287
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3288 3289 3290
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3291
	if (intel_scanout_needs_vtd_wa(dev_priv))
3292
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3293

3294
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3295

3296
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3297 3298
	if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
	    IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
3299 3300 3301 3302
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3303 3304 3305 3306 3307

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3308 3309
	}

3310 3311
	ggtt->invalidate = gen6_ggtt_invalidate;

3312 3313 3314 3315 3316
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3317 3318
	ggtt->vm.pte_encode = gen8_pte_encode;

3319 3320
	setup_private_pat(dev_priv);

3321
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3322 3323
}

3324
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3325
{
3326
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3327
	struct pci_dev *pdev = dev_priv->drm.pdev;
3328
	unsigned int size;
3329
	u16 snb_gmch_ctl;
3330
	int err;
3331

3332 3333 3334 3335
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3336

3337 3338
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3339
	 */
3340
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3341
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3342
		return -ENXIO;
3343 3344
	}

3345 3346 3347 3348 3349
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3350
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3351

3352
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3353
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3354

3355 3356 3357
	ggtt->vm.clear_range = nop_clear_range;
	if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
		ggtt->vm.clear_range = gen6_ggtt_clear_range;
3358 3359 3360
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3361

3362 3363
	ggtt->invalidate = gen6_ggtt_invalidate;

3364
	if (HAS_EDRAM(dev_priv))
3365
		ggtt->vm.pte_encode = iris_pte_encode;
3366
	else if (IS_HASWELL(dev_priv))
3367
		ggtt->vm.pte_encode = hsw_pte_encode;
3368
	else if (IS_VALLEYVIEW(dev_priv))
3369
		ggtt->vm.pte_encode = byt_pte_encode;
3370
	else if (INTEL_GEN(dev_priv) >= 7)
3371
		ggtt->vm.pte_encode = ivb_pte_encode;
3372
	else
3373
		ggtt->vm.pte_encode = snb_pte_encode;
3374

3375 3376 3377 3378 3379
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3380
	return ggtt_probe_common(ggtt, size);
3381 3382
}

3383
static void i915_gmch_remove(struct i915_address_space *vm)
3384
{
3385
	intel_gmch_remove();
3386
}
3387

3388
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3389
{
3390
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3391
	phys_addr_t gmadr_base;
3392 3393
	int ret;

3394
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3395 3396 3397 3398 3399
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3400
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3401

3402 3403 3404 3405
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3406
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3407 3408 3409 3410
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3411

3412 3413
	ggtt->invalidate = gmch_ggtt_invalidate;

3414 3415 3416 3417 3418
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3419
	if (unlikely(ggtt->do_idle_maps))
3420 3421
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3422 3423 3424
	return 0;
}

3425
/**
3426
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3427
 * @dev_priv: i915 device
3428
 */
3429
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3430
{
3431
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3432 3433
	int ret;

3434 3435
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3436

3437 3438 3439 3440 3441 3442
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3443
	if (ret)
3444 3445
		return ret;

3446
	if ((ggtt->vm.total - 1) >> 32) {
3447
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3448
			  " of address space! Found %lldM!\n",
3449 3450 3451 3452
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3453 3454
	}

3455
	if (ggtt->mappable_end > ggtt->vm.total) {
3456
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3457
			  " aperture=%pa, total=%llx\n",
3458 3459
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3460 3461
	}

3462
	/* GMADR is the PCI mmio aperture into the global GTT. */
3463
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3464
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3465
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3466
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3467
	if (intel_vtd_active())
3468
		DRM_INFO("VT-d active for gfx access\n");
3469 3470

	return 0;
3471 3472 3473 3474
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3475
 * @dev_priv: i915 device
3476
 */
3477
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3478 3479 3480 3481
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3482 3483
	stash_init(&dev_priv->mm.wc_stash);

3484 3485 3486 3487
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3488
	 */
C
Chris Wilson 已提交
3489
	mutex_lock(&dev_priv->drm.struct_mutex);
3490
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3491

3492 3493
	ggtt->vm.is_ggtt = true;

3494 3495 3496
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3497
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3498
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3499
	mutex_unlock(&dev_priv->drm.struct_mutex);
3500

3501 3502
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3503
				dev_priv->ggtt.mappable_end)) {
3504 3505 3506 3507
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3508
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3509

3510 3511 3512 3513
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3514
	ret = i915_gem_init_stolen(dev_priv);
3515 3516 3517 3518
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3519 3520

out_gtt_cleanup:
3521
	ggtt->vm.cleanup(&ggtt->vm);
3522
	return ret;
3523
}
3524

3525
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3526
{
3527
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3528 3529 3530 3531 3532
		return -EIO;

	return 0;
}

3533 3534
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3535 3536
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3537
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3538 3539

	i915_ggtt_invalidate(i915);
3540 3541 3542 3543
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3544 3545 3546 3547
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3548 3549 3550 3551
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3552 3553

	i915_ggtt_invalidate(i915);
3554 3555
}

3556
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3557
{
3558
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3559
	struct i915_vma *vma, *vn;
3560

3561
	i915_check_and_clear_faults(dev_priv);
3562

3563 3564
	mutex_lock(&ggtt->vm.mutex);

3565
	/* First fill our portion of the GTT with scratch pages */
3566 3567
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3568 3569

	/* clflush objects bound into the GGTT and rebind them. */
3570
	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
3571
		struct drm_i915_gem_object *obj = vma->obj;
3572

3573 3574
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3575

3576 3577
		mutex_unlock(&ggtt->vm.mutex);

3578
		if (!i915_vma_unbind(vma))
3579
			goto lock;
3580

3581 3582 3583
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
3584 3585
		if (obj) {
			i915_gem_object_lock(obj);
3586
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3587 3588
			i915_gem_object_unlock(obj);
		}
3589 3590 3591

lock:
		mutex_lock(&ggtt->vm.mutex);
3592
	}
3593

3594
	ggtt->vm.closed = false;
3595
	i915_ggtt_invalidate(dev_priv);
3596

3597 3598
	mutex_unlock(&ggtt->vm.mutex);

3599
	if (INTEL_GEN(dev_priv) >= 8) {
3600
		struct intel_ppat *ppat = &dev_priv->ppat;
3601

3602 3603
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3604 3605 3606 3607
		return;
	}
}

3608
static struct scatterlist *
3609
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3610
	     unsigned int width, unsigned int height,
3611
	     unsigned int stride,
3612
	     struct sg_table *st, struct scatterlist *sg)
3613 3614 3615 3616 3617
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3618
		src_idx = stride * (height - 1) + column + offset;
3619 3620 3621 3622 3623 3624
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3625
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3626 3627
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3628
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3629
			sg = sg_next(sg);
3630
			src_idx -= stride;
3631 3632
		}
	}
3633 3634

	return sg;
3635 3636
}

3637 3638 3639
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3640
{
3641
	unsigned int size = intel_rotation_info_size(rot_info);
3642
	struct sg_table *st;
3643
	struct scatterlist *sg;
3644
	int ret = -ENOMEM;
3645
	int i;
3646 3647 3648 3649 3650 3651

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3652
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3653 3654 3655
	if (ret)
		goto err_sg_alloc;

3656 3657 3658
	st->nents = 0;
	sg = st->sgl;

3659
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3660
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3661 3662
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3663 3664
	}

3665 3666 3667 3668 3669 3670
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3671 3672
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3673

3674 3675
	return ERR_PTR(ret);
}
3676

3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
	    unsigned int width, unsigned int height,
	    unsigned int stride,
	    struct sg_table *st, struct scatterlist *sg)
{
	unsigned int row;

	for (row = 0; row < height; row++) {
		unsigned int left = width * I915_GTT_PAGE_SIZE;

		while (left) {
			dma_addr_t addr;
			unsigned int length;

			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */

			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);

			length = min(left, length);

			st->nents++;

			sg_set_page(sg, NULL, length, 0);
			sg_dma_address(sg) = addr;
			sg_dma_len(sg) = length;
			sg = sg_next(sg);

			offset += length / I915_GTT_PAGE_SIZE;
			left -= length;
		}

		offset += stride - width;
	}

	return sg;
}

static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
		  struct drm_i915_gem_object *obj)
{
	unsigned int size = intel_remapped_info_size(rem_info);
	struct sg_table *st;
	struct scatterlist *sg;
	int ret = -ENOMEM;
	int i;

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

	ret = sg_alloc_table(st, size, GFP_KERNEL);
	if (ret)
		goto err_sg_alloc;

	st->nents = 0;
	sg = st->sgl;

	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
		sg = remap_pages(obj, rem_info->plane[i].offset,
				 rem_info->plane[i].width, rem_info->plane[i].height,
				 rem_info->plane[i].stride, st, sg);
	}

	i915_sg_trim(st);

	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

	DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);

	return ERR_PTR(ret);
}

3760
static noinline struct sg_table *
3761 3762 3763 3764
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3765
	struct scatterlist *sg, *iter;
3766
	unsigned int count = view->partial.size;
3767
	unsigned int offset;
3768 3769 3770 3771 3772 3773
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3774
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3775 3776 3777
	if (ret)
		goto err_sg_alloc;

3778
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3779 3780
	GEM_BUG_ON(!iter);

3781 3782
	sg = st->sgl;
	st->nents = 0;
3783 3784
	do {
		unsigned int len;
3785

3786 3787 3788 3789 3790 3791
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3792 3793

		st->nents++;
3794 3795 3796
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3797 3798
			i915_sg_trim(st); /* Drop any unused tail entries. */

3799 3800
			return st;
		}
3801

3802 3803 3804 3805
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3806 3807 3808 3809 3810 3811 3812

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3813
static int
3814
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3815
{
3816
	int ret;
3817

3818 3819 3820 3821 3822 3823 3824
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3825
	switch (vma->ggtt_view.type) {
3826 3827 3828
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3829 3830
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3831 3832
		return 0;

3833
	case I915_GGTT_VIEW_ROTATED:
3834
		vma->pages =
3835 3836 3837
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

3838 3839 3840 3841 3842
	case I915_GGTT_VIEW_REMAPPED:
		vma->pages =
			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
		break;

3843
	case I915_GGTT_VIEW_PARTIAL:
3844
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3845 3846
		break;
	}
3847

3848
	ret = 0;
3849
	if (IS_ERR(vma->pages)) {
3850 3851
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3852 3853
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3854
	}
3855
	return ret;
3856 3857
}

3858 3859
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3894
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3895
	GEM_BUG_ON(drm_mm_node_allocated(node));
3896 3897 3898 3899 3900 3901 3902 3903 3904

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3905 3906 3907
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3908 3909 3910 3911 3912 3913 3914
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3940 3941
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3942 3943 3944 3945 3946 3947 3948 3949 3950
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3951
 *         must be #I915_GTT_PAGE_SIZE aligned
3952 3953 3954
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3955 3956 3957 3958 3959 3960
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3961 3962
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3979
	enum drm_mm_insert_mode mode;
3980
	u64 offset;
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3991
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3992
	GEM_BUG_ON(drm_mm_node_allocated(node));
3993 3994 3995 3996 3997 3998 3999

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

4000 4001
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
4002
		mode = DRM_MM_INSERT_HIGHEST;
4003 4004
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

4016 4017 4018
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
4019 4020 4021
	if (err != -ENOSPC)
		return err;

4022 4023 4024 4025 4026 4027 4028 4029 4030
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

4031 4032 4033
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
4063 4064 4065 4066 4067
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

4068 4069 4070
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
4071
}
4072 4073 4074

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
4075
#include "selftests/i915_gem_gtt.c"
4076
#endif