i915_gem_gtt.c 102.0 KB
Newer Older
1 2
/*
 * Copyright © 2010 Daniel Vetter
3
 * Copyright © 2011-2014 Intel Corporation
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

26 27 28
#include <linux/slab.h> /* fault-inject.h is not standalone! */

#include <linux/fault-inject.h>
29
#include <linux/log2.h>
30
#include <linux/random.h>
31
#include <linux/seq_file.h>
32
#include <linux/stop_machine.h>
33

L
Laura Abbott 已提交
34 35
#include <asm/set_memory.h>

36
#include <drm/i915_drm.h>
37

38
#include "i915_drv.h"
39
#include "i915_vgpu.h"
40 41
#include "i915_trace.h"
#include "intel_drv.h"
42
#include "intel_frontbuffer.h"
43

44
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
/**
 * DOC: Global GTT views
 *
 * Background and previous state
 *
 * Historically objects could exists (be bound) in global GTT space only as
 * singular instances with a view representing all of the object's backing pages
 * in a linear fashion. This view will be called a normal view.
 *
 * To support multiple views of the same object, where the number of mapped
 * pages is not equal to the backing store, or where the layout of the pages
 * is not linear, concept of a GGTT view was added.
 *
 * One example of an alternative view is a stereo display driven by a single
 * image. In this case we would have a framebuffer looking like this
 * (2x2 pages):
 *
 *    12
 *    34
 *
 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
 * rendering. In contrast, fed to the display engine would be an alternative
 * view which could look something like this:
 *
 *   1212
 *   3434
 *
 * In this example both the size and layout of pages in the alternative view is
 * different from the normal view.
 *
 * Implementation and usage
 *
 * GGTT views are implemented using VMAs and are distinguished via enum
 * i915_ggtt_view_type and struct i915_ggtt_view.
 *
 * A new flavour of core GEM functions which work with GGTT bound objects were
82 83 84
 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
 * renaming  in large amounts of code. They take the struct i915_ggtt_view
 * parameter encapsulating all metadata required to implement a view.
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
 *
 * As a helper for callers which are only interested in the normal view,
 * globally const i915_ggtt_view_normal singleton instance exists. All old core
 * GEM API functions, the ones not taking the view parameter, are operating on,
 * or with the normal GGTT view.
 *
 * Code wanting to add or use a new GGTT view needs to:
 *
 * 1. Add a new enum with a suitable name.
 * 2. Extend the metadata in the i915_ggtt_view structure if required.
 * 3. Add support to i915_get_vma_pages().
 *
 * New views are required to build a scatter-gather table from within the
 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
 * exists for the lifetime of an VMA.
 *
 * Core API is designed to have copy semantics which means that passed in
 * struct i915_ggtt_view does not need to be persistent (left around after
 * calling the core API functions).
 *
 */

107 108 109
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);

110 111
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
112 113
	/*
	 * Note that as an uncached mmio write, this will flush the
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
	 * WCB of the writes into the GGTT before it triggers the invalidate.
	 */
	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}

static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	gen6_ggtt_invalidate(dev_priv);
	I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}

static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
	intel_gtt_chipset_flush();
}

static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
	i915->ggtt.invalidate(i915);
}

135 136 137
static int ppgtt_bind_vma(struct i915_vma *vma,
			  enum i915_cache_level cache_level,
			  u32 unused)
138
{
139
	u32 pte_flags;
140 141 142 143 144 145 146 147
	int err;

	if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
		err = vma->vm->allocate_va_range(vma->vm,
						 vma->node.start, vma->size);
		if (err)
			return err;
	}
148

149
	/* Applicable to VLV, and gen8+ */
150
	pte_flags = 0;
151
	if (i915_gem_object_is_readonly(vma->obj))
152 153
		pte_flags |= PTE_READ_ONLY;

154
	vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
155 156

	return 0;
157 158 159 160
}

static void ppgtt_unbind_vma(struct i915_vma *vma)
{
161
	vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
162
}
163

164 165 166 167 168 169
static int ppgtt_set_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(vma->pages);

	vma->pages = vma->obj->mm.pages;

170 171
	vma->page_sizes = vma->obj->mm.page_sizes;

172 173 174 175 176 177 178 179 180 181 182 183
	return 0;
}

static void clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);

	if (vma->pages != vma->obj->mm.pages) {
		sg_free_table(vma->pages);
		kfree(vma->pages);
	}
	vma->pages = NULL;
184 185

	memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
186 187
}

188 189 190
static u64 gen8_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
B
Ben Widawsky 已提交
191
{
192 193 194 195
	gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;

	if (unlikely(flags & PTE_READ_ONLY))
		pte &= ~_PAGE_RW;
196 197 198

	switch (level) {
	case I915_CACHE_NONE:
199
		pte |= PPAT_UNCACHED;
200 201
		break;
	case I915_CACHE_WT:
202
		pte |= PPAT_DISPLAY_ELLC;
203 204
		break;
	default:
205
		pte |= PPAT_CACHED;
206 207 208
		break;
	}

B
Ben Widawsky 已提交
209 210 211
	return pte;
}

212 213
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
				  const enum i915_cache_level level)
B
Ben Widawsky 已提交
214
{
215
	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
B
Ben Widawsky 已提交
216 217
	pde |= addr;
	if (level != I915_CACHE_NONE)
218
		pde |= PPAT_CACHED_PDE;
B
Ben Widawsky 已提交
219
	else
220
		pde |= PPAT_UNCACHED;
B
Ben Widawsky 已提交
221 222 223
	return pde;
}

224 225 226
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode

227 228 229
static u64 snb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
230
{
231
	gen6_pte_t pte = GEN6_PTE_VALID;
232
	pte |= GEN6_PTE_ADDR_ENCODE(addr);
233 234

	switch (level) {
235 236 237 238 239 240 241 242
	case I915_CACHE_L3_LLC:
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
		pte |= GEN6_PTE_UNCACHED;
		break;
	default:
243
		MISSING_CASE(level);
244 245 246 247 248
	}

	return pte;
}

249 250 251
static u64 ivb_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
252
{
253
	gen6_pte_t pte = GEN6_PTE_VALID;
254 255 256 257 258
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

	switch (level) {
	case I915_CACHE_L3_LLC:
		pte |= GEN7_PTE_CACHE_L3_LLC;
259 260 261 262 263
		break;
	case I915_CACHE_LLC:
		pte |= GEN6_PTE_CACHE_LLC;
		break;
	case I915_CACHE_NONE:
264
		pte |= GEN6_PTE_UNCACHED;
265 266
		break;
	default:
267
		MISSING_CASE(level);
268 269
	}

270 271 272
	return pte;
}

273 274 275
static u64 byt_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
276
{
277
	gen6_pte_t pte = GEN6_PTE_VALID;
278 279
	pte |= GEN6_PTE_ADDR_ENCODE(addr);

280 281
	if (!(flags & PTE_READ_ONLY))
		pte |= BYT_PTE_WRITEABLE;
282 283 284 285 286 287 288

	if (level != I915_CACHE_NONE)
		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;

	return pte;
}

289 290 291
static u64 hsw_pte_encode(dma_addr_t addr,
			  enum i915_cache_level level,
			  u32 flags)
292
{
293
	gen6_pte_t pte = GEN6_PTE_VALID;
294
	pte |= HSW_PTE_ADDR_ENCODE(addr);
295 296

	if (level != I915_CACHE_NONE)
297
		pte |= HSW_WB_LLC_AGE3;
298 299 300 301

	return pte;
}

302 303 304
static u64 iris_pte_encode(dma_addr_t addr,
			   enum i915_cache_level level,
			   u32 flags)
305
{
306
	gen6_pte_t pte = GEN6_PTE_VALID;
307 308
	pte |= HSW_PTE_ADDR_ENCODE(addr);

309 310 311 312
	switch (level) {
	case I915_CACHE_NONE:
		break;
	case I915_CACHE_WT:
313
		pte |= HSW_WT_ELLC_LLC_AGE3;
314 315
		break;
	default:
316
		pte |= HSW_WB_ELLC_LLC_AGE3;
317 318
		break;
	}
319 320 321 322

	return pte;
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void stash_init(struct pagestash *stash)
{
	pagevec_init(&stash->pvec);
	spin_lock_init(&stash->lock);
}

static struct page *stash_pop_page(struct pagestash *stash)
{
	struct page *page = NULL;

	spin_lock(&stash->lock);
	if (likely(stash->pvec.nr))
		page = stash->pvec.pages[--stash->pvec.nr];
	spin_unlock(&stash->lock);

	return page;
}

static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
	int nr;

	spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);

	nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec));
	memcpy(stash->pvec.pages + stash->pvec.nr,
	       pvec->pages + pvec->nr - nr,
	       sizeof(pvec->pages[0]) * nr);
	stash->pvec.nr += nr;

	spin_unlock(&stash->lock);

	pvec->nr -= nr;
}

358
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
359
{
360 361
	struct pagevec stack;
	struct page *page;
362

363 364
	if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
		i915_gem_shrink_all(vm->i915);
365

366 367 368
	page = stash_pop_page(&vm->free_pages);
	if (page)
		return page;
369 370 371 372 373

	if (!vm->pt_kmap_wc)
		return alloc_page(gfp);

	/* Look in our global stash of WC pages... */
374 375 376
	page = stash_pop_page(&vm->i915->mm.wc_stash);
	if (page)
		return page;
377

378
	/*
379
	 * Otherwise batch allocate pages to amortize cost of set_pages_wc.
380 381 382 383 384 385
	 *
	 * We have to be careful as page allocation may trigger the shrinker
	 * (via direct reclaim) which will fill up the WC stash underneath us.
	 * So we add our WB pages into a temporary pvec on the stack and merge
	 * them into the WC stash after all the allocations are complete.
	 */
386
	pagevec_init(&stack);
387 388
	do {
		struct page *page;
389

390 391 392 393
		page = alloc_page(gfp);
		if (unlikely(!page))
			break;

394 395
		stack.pages[stack.nr++] = page;
	} while (pagevec_space(&stack));
396

397 398
	if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
		page = stack.pages[--stack.nr];
399

400 401
		/* Merge spare WC pages to the global stash */
		stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
402

403 404 405
		/* Push any surplus WC pages onto the local VM stash */
		if (stack.nr)
			stash_push_pagevec(&vm->free_pages, &stack);
406
	}
407

408 409 410 411 412 413 414
	/* Return unwanted leftovers */
	if (unlikely(stack.nr)) {
		WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
		__pagevec_release(&stack);
	}

	return page;
415 416
}

417 418
static void vm_free_pages_release(struct i915_address_space *vm,
				  bool immediate)
419
{
420 421
	struct pagevec *pvec = &vm->free_pages.pvec;
	struct pagevec stack;
422

423
	lockdep_assert_held(&vm->free_pages.lock);
424
	GEM_BUG_ON(!pagevec_count(pvec));
425

426
	if (vm->pt_kmap_wc) {
427 428
		/*
		 * When we use WC, first fill up the global stash and then
429 430
		 * only if full immediately free the overflow.
		 */
431
		stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
432

433 434 435 436 437 438 439 440
		/*
		 * As we have made some room in the VM's free_pages,
		 * we can wait for it to fill again. Unless we are
		 * inside i915_address_space_fini() and must
		 * immediately release the pages!
		 */
		if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
			return;
441

442 443 444 445 446 447 448 449 450 451
		/*
		 * We have to drop the lock to allow ourselves to sleep,
		 * so take a copy of the pvec and clear the stash for
		 * others to use it as we sleep.
		 */
		stack = *pvec;
		pagevec_reinit(pvec);
		spin_unlock(&vm->free_pages.lock);

		pvec = &stack;
452
		set_pages_array_wb(pvec->pages, pvec->nr);
453 454

		spin_lock(&vm->free_pages.lock);
455 456 457
	}

	__pagevec_release(pvec);
458 459 460 461
}

static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
462 463 464 465 466 467 468 469
	/*
	 * On !llc, we need to change the pages back to WB. We only do so
	 * in bulk, so we rarely need to change the page attributes here,
	 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
	 * To make detection of the possible sleep more likely, use an
	 * unconditional might_sleep() for everybody.
	 */
	might_sleep();
470 471
	spin_lock(&vm->free_pages.lock);
	if (!pagevec_add(&vm->free_pages.pvec, page))
472
		vm_free_pages_release(vm, false);
473 474 475
	spin_unlock(&vm->free_pages.lock);
}

476
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
477
{
478 479 480 481 482 483
	/*
	 * The vm->mutex must be reclaim safe (for use in the shrinker).
	 * Do a dummy acquire now under fs_reclaim so that any allocation
	 * attempt holding the lock is immediately reported by lockdep.
	 */
	mutex_init(&vm->mutex);
484
	lockdep_set_subclass(&vm->mutex, subclass);
485
	i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	GEM_BUG_ON(!vm->total);
	drm_mm_init(&vm->mm, 0, vm->total);
	vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;

	stash_init(&vm->free_pages);

	INIT_LIST_HEAD(&vm->active_list);
	INIT_LIST_HEAD(&vm->inactive_list);
	INIT_LIST_HEAD(&vm->unbound_list);
}

static void i915_address_space_fini(struct i915_address_space *vm)
{
	spin_lock(&vm->free_pages.lock);
	if (pagevec_count(&vm->free_pages.pvec))
		vm_free_pages_release(vm, true);
	GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
	spin_unlock(&vm->free_pages.lock);

	drm_mm_takedown(&vm->mm);
507 508

	mutex_destroy(&vm->mutex);
509
}
510

511 512 513 514
static int __setup_page_dma(struct i915_address_space *vm,
			    struct i915_page_dma *p,
			    gfp_t gfp)
{
515
	p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
516 517
	if (unlikely(!p->page))
		return -ENOMEM;
518

519 520 521
	p->daddr = dma_map_page_attrs(vm->dma,
				      p->page, 0, PAGE_SIZE,
				      PCI_DMA_BIDIRECTIONAL,
522
				      DMA_ATTR_SKIP_CPU_SYNC |
523
				      DMA_ATTR_NO_WARN);
524 525 526
	if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
		vm_free_page(vm, p->page);
		return -ENOMEM;
527
	}
528 529

	return 0;
530 531
}

532
static int setup_page_dma(struct i915_address_space *vm,
533
			  struct i915_page_dma *p)
534
{
535
	return __setup_page_dma(vm, p, __GFP_HIGHMEM);
536 537
}

538
static void cleanup_page_dma(struct i915_address_space *vm,
539
			     struct i915_page_dma *p)
540
{
541 542
	dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
	vm_free_page(vm, p->page);
543 544
}

545
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
546

547 548
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
549 550
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
551

552 553 554
static void fill_page_dma(struct i915_address_space *vm,
			  struct i915_page_dma *p,
			  const u64 val)
555
{
556
	u64 * const vaddr = kmap_atomic(p->page);
557

558
	memset64(vaddr, val, PAGE_SIZE / sizeof(val));
559

560
	kunmap_atomic(vaddr);
561 562
}

563 564 565
static void fill_page_dma_32(struct i915_address_space *vm,
			     struct i915_page_dma *p,
			     const u32 v)
566
{
567
	fill_page_dma(vm, p, (u64)v << 32 | v);
568 569
}

570
static int
571
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
572
{
573
	unsigned long size;
574

575 576 577 578 579 580 581
	/*
	 * In order to utilize 64K pages for an object with a size < 2M, we will
	 * need to support a 64K scratch page, given that every 16th entry for a
	 * page-table operating in 64K mode must point to a properly aligned 64K
	 * region, including any PTEs which happen to point to scratch.
	 *
	 * This is only relevant for the 48b PPGTT where we support
582 583 584
	 * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
	 * scratch (read-only) between all vm, we create one 64k scratch page
	 * for all.
585
	 */
586
	size = I915_GTT_PAGE_SIZE_4K;
587 588
	if (i915_vm_is_48bit(vm) &&
	    HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
589 590
		size = I915_GTT_PAGE_SIZE_64K;
		gfp |= __GFP_NOWARN;
591
	}
592 593 594 595 596 597
	gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;

	do {
		int order = get_order(size);
		struct page *page;
		dma_addr_t addr;
598

599
		page = alloc_pages(gfp, order);
600
		if (unlikely(!page))
601
			goto skip;
602

603 604 605
		addr = dma_map_page_attrs(vm->dma,
					  page, 0, size,
					  PCI_DMA_BIDIRECTIONAL,
606
					  DMA_ATTR_SKIP_CPU_SYNC |
607
					  DMA_ATTR_NO_WARN);
608 609
		if (unlikely(dma_mapping_error(vm->dma, addr)))
			goto free_page;
610

611 612
		if (unlikely(!IS_ALIGNED(addr, size)))
			goto unmap_page;
613

614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
		vm->scratch_page.page = page;
		vm->scratch_page.daddr = addr;
		vm->scratch_page.order = order;
		return 0;

unmap_page:
		dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
		__free_pages(page, order);
skip:
		if (size == I915_GTT_PAGE_SIZE_4K)
			return -ENOMEM;

		size = I915_GTT_PAGE_SIZE_4K;
		gfp &= ~__GFP_NOWARN;
	} while (1);
630 631
}

632
static void cleanup_scratch_page(struct i915_address_space *vm)
633
{
634 635
	struct i915_page_dma *p = &vm->scratch_page;

636 637 638
	dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
		       PCI_DMA_BIDIRECTIONAL);
	__free_pages(p->page, p->order);
639 640
}

641
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
642
{
643
	struct i915_page_table *pt;
644

645
	pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
646
	if (unlikely(!pt))
647 648
		return ERR_PTR(-ENOMEM);

649 650 651 652
	if (unlikely(setup_px(vm, pt))) {
		kfree(pt);
		return ERR_PTR(-ENOMEM);
	}
653

654
	pt->used_ptes = 0;
655 656 657
	return pt;
}

658
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
659
{
660
	cleanup_px(vm, pt);
661 662 663 664 665 666
	kfree(pt);
}

static void gen8_initialize_pt(struct i915_address_space *vm,
			       struct i915_page_table *pt)
{
667
	fill_px(vm, pt, vm->scratch_pte);
668 669
}

670
static void gen6_initialize_pt(struct i915_address_space *vm,
671 672
			       struct i915_page_table *pt)
{
673
	fill32_px(vm, pt, vm->scratch_pte);
674 675
}

676
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
677
{
678
	struct i915_page_directory *pd;
679

680
	pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
681
	if (unlikely(!pd))
682 683
		return ERR_PTR(-ENOMEM);

684 685 686 687
	if (unlikely(setup_px(vm, pd))) {
		kfree(pd);
		return ERR_PTR(-ENOMEM);
	}
688

689
	pd->used_pdes = 0;
690 691 692
	return pd;
}

693
static void free_pd(struct i915_address_space *vm,
694
		    struct i915_page_directory *pd)
695
{
696 697
	cleanup_px(vm, pd);
	kfree(pd);
698 699 700 701 702
}

static void gen8_initialize_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd)
{
703 704
	fill_px(vm, pd,
		gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
705
	memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
706 707
}

708
static int __pdp_init(struct i915_address_space *vm,
709 710
		      struct i915_page_directory_pointer *pdp)
{
711
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
712

713
	pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
714
					    I915_GFP_ALLOW_FAIL);
715
	if (unlikely(!pdp->page_directory))
716 717
		return -ENOMEM;

718
	memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
719

720 721 722 723 724 725 726 727 728
	return 0;
}

static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
	kfree(pdp->page_directory);
	pdp->page_directory = NULL;
}

729 730 731 732 733
static inline bool use_4lvl(const struct i915_address_space *vm)
{
	return i915_vm_is_48bit(vm);
}

734 735
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
736 737 738 739
{
	struct i915_page_directory_pointer *pdp;
	int ret = -ENOMEM;

740
	GEM_BUG_ON(!use_4lvl(vm));
741 742 743 744 745

	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
	if (!pdp)
		return ERR_PTR(-ENOMEM);

746
	ret = __pdp_init(vm, pdp);
747 748 749
	if (ret)
		goto fail_bitmap;

750
	ret = setup_px(vm, pdp);
751 752 753 754 755 756 757 758 759 760 761 762 763
	if (ret)
		goto fail_page_m;

	return pdp;

fail_page_m:
	__pdp_fini(pdp);
fail_bitmap:
	kfree(pdp);

	return ERR_PTR(ret);
}

764
static void free_pdp(struct i915_address_space *vm,
765 766 767
		     struct i915_page_directory_pointer *pdp)
{
	__pdp_fini(pdp);
768 769 770 771 772 773

	if (!use_4lvl(vm))
		return;

	cleanup_px(vm, pdp);
	kfree(pdp);
774 775
}

776 777 778 779 780 781 782
static void gen8_initialize_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp)
{
	gen8_ppgtt_pdpe_t scratch_pdpe;

	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);

783
	fill_px(vm, pdp, scratch_pdpe);
784 785 786 787 788
}

static void gen8_initialize_pml4(struct i915_address_space *vm,
				 struct i915_pml4 *pml4)
{
789 790
	fill_px(vm, pml4,
		gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
791
	memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
792 793
}

794 795 796 797 798 799 800
/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
 * the page table structures, we mark them dirty so that
 * context switching/execlist queuing code takes extra steps
 * to ensure that tlbs are flushed.
 */
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
801
	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask;
802 803
}

804 805 806
/* Removes entries from a single page table, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries.
 */
807
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
808
				struct i915_page_table *pt,
809
				u64 start, u64 length)
810
{
811
	unsigned int num_entries = gen8_pte_count(start, length);
M
Mika Kuoppala 已提交
812 813
	unsigned int pte = gen8_pte_index(start);
	unsigned int pte_end = pte + num_entries;
814
	gen8_pte_t *vaddr;
815

816
	GEM_BUG_ON(num_entries > pt->used_ptes);
M
Mika Kuoppala 已提交
817

818 819 820
	pt->used_ptes -= num_entries;
	if (!pt->used_ptes)
		return true;
821

822
	vaddr = kmap_atomic_px(pt);
M
Mika Kuoppala 已提交
823
	while (pte < pte_end)
824
		vaddr[pte++] = vm->scratch_pte;
825
	kunmap_atomic(vaddr);
826 827

	return false;
828
}
829

830 831 832 833 834 835 836 837 838 839 840 841 842 843
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       struct i915_page_table *pt,
			       unsigned int pde)
{
	gen8_pde_t *vaddr;

	pd->page_table[pde] = pt;

	vaddr = kmap_atomic_px(pd);
	vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

844
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
845
				struct i915_page_directory *pd,
846
				u64 start, u64 length)
847 848
{
	struct i915_page_table *pt;
849
	u32 pde;
850 851

	gen8_for_each_pde(pt, pd, start, length, pde) {
852 853
		GEM_BUG_ON(pt == vm->scratch_pt);

854 855
		if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
			continue;
856

857
		gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
858
		GEM_BUG_ON(!pd->used_pdes);
859
		pd->used_pdes--;
860 861

		free_pt(vm, pt);
862 863
	}

864 865
	return !pd->used_pdes;
}
866

867 868 869 870 871 872 873 874
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				struct i915_page_directory *pd,
				unsigned int pdpe)
{
	gen8_ppgtt_pdpe_t *vaddr;

	pdp->page_directory[pdpe] = pd;
875
	if (!use_4lvl(vm))
876 877 878 879 880
		return;

	vaddr = kmap_atomic_px(pdp);
	vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
881
}
882

883 884 885 886
/* Removes entries from a single page dir pointer, releasing it if it's empty.
 * Caller can use the return value to update higher-level entries
 */
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
887
				 struct i915_page_directory_pointer *pdp,
888
				 u64 start, u64 length)
889 890
{
	struct i915_page_directory *pd;
891
	unsigned int pdpe;
892

893
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
894 895
		GEM_BUG_ON(pd == vm->scratch_pd);

896 897
		if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
			continue;
898

899
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
900
		GEM_BUG_ON(!pdp->used_pdpes);
901
		pdp->used_pdpes--;
902

903 904
		free_pd(vm, pd);
	}
905

906
	return !pdp->used_pdpes;
907
}
908

909 910 911 912 913 914
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
{
	gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}

915 916 917 918 919 920 921 922 923 924 925 926 927
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
				 struct i915_page_directory_pointer *pdp,
				 unsigned int pml4e)
{
	gen8_ppgtt_pml4e_t *vaddr;

	pml4->pdps[pml4e] = pdp;

	vaddr = kmap_atomic_px(pml4);
	vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
	kunmap_atomic(vaddr);
}

928 929 930 931
/* Removes entries from a single pml4.
 * This is the top-level structure in 4-level page tables used on gen8+.
 * Empty entries are always scratch pml4e.
 */
932 933
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
				  u64 start, u64 length)
934
{
935 936
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
937
	struct i915_page_directory_pointer *pdp;
938
	unsigned int pml4e;
939

940
	GEM_BUG_ON(!use_4lvl(vm));
941

942
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
943 944
		GEM_BUG_ON(pdp == vm->scratch_pdp);

945 946
		if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
			continue;
947

948 949 950
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);

		free_pdp(vm, pdp);
951 952 953
	}
}

954
static inline struct sgt_dma {
955 956
	struct scatterlist *sg;
	dma_addr_t dma, max;
957 958 959 960 961
} sgt_dma(struct i915_vma *vma) {
	struct scatterlist *sg = vma->pages->sgl;
	dma_addr_t addr = sg_dma_address(sg);
	return (struct sgt_dma) { sg, addr, addr + sg->length };
}
962

963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
struct gen8_insert_pte {
	u16 pml4e;
	u16 pdpe;
	u16 pde;
	u16 pte;
};

static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
	return (struct gen8_insert_pte) {
		 gen8_pml4e_index(start),
		 gen8_pdpe_index(start),
		 gen8_pde_index(start),
		 gen8_pte_index(start),
	};
}

980 981
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
982
			      struct i915_page_directory_pointer *pdp,
983
			      struct sgt_dma *iter,
984
			      struct gen8_insert_pte *idx,
985 986
			      enum i915_cache_level cache_level,
			      u32 flags)
987
{
988
	struct i915_page_directory *pd;
989
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
990 991
	gen8_pte_t *vaddr;
	bool ret;
992

993
	GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
994 995
	pd = pdp->page_directory[idx->pdpe];
	vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
996
	do {
997 998
		vaddr[idx->pte] = pte_encode | iter->dma;

999
		iter->dma += I915_GTT_PAGE_SIZE;
1000 1001 1002 1003 1004 1005
		if (iter->dma >= iter->max) {
			iter->sg = __sg_next(iter->sg);
			if (!iter->sg) {
				ret = false;
				break;
			}
1006

1007 1008
			iter->dma = sg_dma_address(iter->sg);
			iter->max = iter->dma + iter->sg->length;
B
Ben Widawsky 已提交
1009
		}
1010

1011 1012 1013 1014 1015 1016
		if (++idx->pte == GEN8_PTES) {
			idx->pte = 0;

			if (++idx->pde == I915_PDES) {
				idx->pde = 0;

1017
				/* Limited by sg length for 3lvl */
1018 1019
				if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
					idx->pdpe = 0;
1020
					ret = true;
1021
					break;
1022 1023
				}

1024
				GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
1025
				pd = pdp->page_directory[idx->pdpe];
1026
			}
1027

1028
			kunmap_atomic(vaddr);
1029
			vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1030
		}
1031
	} while (1);
1032
	kunmap_atomic(vaddr);
1033

1034
	return ret;
1035 1036
}

1037
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1038
				   struct i915_vma *vma,
1039
				   enum i915_cache_level cache_level,
1040
				   u32 flags)
1041
{
1042
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1043
	struct sgt_dma iter = sgt_dma(vma);
1044
	struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1045

1046
	gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1047
				      cache_level, flags);
1048 1049

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1050
}
1051

1052 1053 1054
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
					   struct i915_page_directory_pointer **pdps,
					   struct sgt_dma *iter,
1055 1056
					   enum i915_cache_level cache_level,
					   u32 flags)
1057
{
1058
	const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
1059 1060 1061 1062 1063 1064 1065 1066
	u64 start = vma->node.start;
	dma_addr_t rem = iter->sg->length;

	do {
		struct gen8_insert_pte idx = gen8_insert_pte(start);
		struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
		struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
		unsigned int page_size;
1067
		bool maybe_64K = false;
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
		gen8_pte_t encode = pte_encode;
		gen8_pte_t *vaddr;
		u16 index, max;

		if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
		    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
		    rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
			index = idx.pde;
			max = I915_PDES;
			page_size = I915_GTT_PAGE_SIZE_2M;

			encode |= GEN8_PDE_PS_2M;

			vaddr = kmap_atomic_px(pd);
		} else {
			struct i915_page_table *pt = pd->page_table[idx.pde];

			index = idx.pte;
			max = GEN8_PTES;
			page_size = I915_GTT_PAGE_SIZE;

1089 1090 1091 1092
			if (!index &&
			    vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
			    IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
			    (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1093
			     rem >= (max - index) * I915_GTT_PAGE_SIZE))
1094 1095
				maybe_64K = true;

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
			vaddr = kmap_atomic_px(pt);
		}

		do {
			GEM_BUG_ON(iter->sg->length < page_size);
			vaddr[index++] = encode | iter->dma;

			start += page_size;
			iter->dma += page_size;
			rem -= page_size;
			if (iter->dma >= iter->max) {
				iter->sg = __sg_next(iter->sg);
				if (!iter->sg)
					break;

				rem = iter->sg->length;
				iter->dma = sg_dma_address(iter->sg);
				iter->max = iter->dma + rem;

1115 1116 1117
				if (maybe_64K && index < max &&
				    !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
				      (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1118
				       rem >= (max - index) * I915_GTT_PAGE_SIZE)))
1119 1120
					maybe_64K = false;

1121 1122 1123 1124 1125 1126
				if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
					break;
			}
		} while (rem >= page_size && index < max);

		kunmap_atomic(vaddr);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142

		/*
		 * Is it safe to mark the 2M block as 64K? -- Either we have
		 * filled whole page-table with 64K entries, or filled part of
		 * it and have reached the end of the sg table and we have
		 * enough padding.
		 */
		if (maybe_64K &&
		    (index == max ||
		     (i915_vm_has_scratch_64K(vma->vm) &&
		      !iter->sg && IS_ALIGNED(vma->node.start +
					      vma->node.size,
					      I915_GTT_PAGE_SIZE_2M)))) {
			vaddr = kmap_atomic_px(pd);
			vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
			kunmap_atomic(vaddr);
1143
			page_size = I915_GTT_PAGE_SIZE_64K;
M
Matthew Auld 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

			/*
			 * We write all 4K page entries, even when using 64K
			 * pages. In order to verify that the HW isn't cheating
			 * by using the 4K PTE instead of the 64K PTE, we want
			 * to remove all the surplus entries. If the HW skipped
			 * the 64K PTE, it will read/write into the scratch page
			 * instead - which we detect as missing results during
			 * selftests.
			 */
			if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
				u16 i;

1157
				encode = vma->vm->scratch_pte;
M
Matthew Auld 已提交
1158 1159 1160 1161 1162 1163 1164
				vaddr = kmap_atomic_px(pd->page_table[idx.pde]);

				for (i = 1; i < index; i += 16)
					memset64(vaddr + i, encode, 15);

				kunmap_atomic(vaddr);
			}
1165
		}
1166 1167

		vma->page_sizes.gtt |= page_size;
1168 1169 1170
	} while (iter->sg);
}

1171
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1172
				   struct i915_vma *vma,
1173
				   enum i915_cache_level cache_level,
1174
				   u32 flags)
1175 1176
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1177
	struct sgt_dma iter = sgt_dma(vma);
1178
	struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1179

1180
	if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1181 1182
		gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
					       flags);
1183 1184 1185 1186
	} else {
		struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);

		while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1187 1188
						     &iter, &idx, cache_level,
						     flags))
1189
			GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1190 1191

		vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1192
	}
1193 1194
}

1195
static void gen8_free_page_tables(struct i915_address_space *vm,
1196
				  struct i915_page_directory *pd)
1197 1198 1199
{
	int i;

1200 1201 1202
	for (i = 0; i < I915_PDES; i++) {
		if (pd->page_table[i] != vm->scratch_pt)
			free_pt(vm, pd->page_table[i]);
1203
	}
B
Ben Widawsky 已提交
1204 1205
}

1206 1207
static int gen8_init_scratch(struct i915_address_space *vm)
{
1208
	int ret;
1209

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	/*
	 * If everybody agrees to not to write into the scratch page,
	 * we can reuse it for all vm, keeping contexts and processes separate.
	 */
	if (vm->has_read_only &&
	    vm->i915->kernel_context &&
	    vm->i915->kernel_context->ppgtt) {
		struct i915_address_space *clone =
			&vm->i915->kernel_context->ppgtt->vm;

		GEM_BUG_ON(!clone->has_read_only);

		vm->scratch_page.order = clone->scratch_page.order;
		vm->scratch_pte = clone->scratch_pte;
		vm->scratch_pt  = clone->scratch_pt;
		vm->scratch_pd  = clone->scratch_pd;
		vm->scratch_pdp = clone->scratch_pdp;
		return 0;
	}

1230
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1231 1232
	if (ret)
		return ret;
1233

1234 1235 1236 1237 1238
	vm->scratch_pte =
		gen8_pte_encode(vm->scratch_page.daddr,
				I915_CACHE_LLC,
				PTE_READ_ONLY);

1239
	vm->scratch_pt = alloc_pt(vm);
1240
	if (IS_ERR(vm->scratch_pt)) {
1241 1242
		ret = PTR_ERR(vm->scratch_pt);
		goto free_scratch_page;
1243 1244
	}

1245
	vm->scratch_pd = alloc_pd(vm);
1246
	if (IS_ERR(vm->scratch_pd)) {
1247 1248
		ret = PTR_ERR(vm->scratch_pd);
		goto free_pt;
1249 1250
	}

1251
	if (use_4lvl(vm)) {
1252
		vm->scratch_pdp = alloc_pdp(vm);
1253
		if (IS_ERR(vm->scratch_pdp)) {
1254 1255
			ret = PTR_ERR(vm->scratch_pdp);
			goto free_pd;
1256 1257 1258
		}
	}

1259 1260
	gen8_initialize_pt(vm, vm->scratch_pt);
	gen8_initialize_pd(vm, vm->scratch_pd);
1261
	if (use_4lvl(vm))
1262
		gen8_initialize_pdp(vm, vm->scratch_pdp);
1263 1264

	return 0;
1265 1266

free_pd:
1267
	free_pd(vm, vm->scratch_pd);
1268
free_pt:
1269
	free_pt(vm, vm->scratch_pt);
1270
free_scratch_page:
1271
	cleanup_scratch_page(vm);
1272 1273

	return ret;
1274 1275
}

1276 1277
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
1278
	struct i915_address_space *vm = &ppgtt->vm;
1279
	struct drm_i915_private *dev_priv = vm->i915;
1280 1281 1282
	enum vgt_g2v_type msg;
	int i;

1283 1284
	if (use_4lvl(vm)) {
		const u64 daddr = px_dma(&ppgtt->pml4);
1285

1286 1287
		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1288 1289 1290 1291

		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
	} else {
1292
		for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1293
			const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1294

1295 1296
			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		}

		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
	}

	I915_WRITE(vgtif_reg(g2v_notify), msg);

	return 0;
}

1308 1309
static void gen8_free_scratch(struct i915_address_space *vm)
{
1310 1311 1312
	if (!vm->scratch_page.daddr)
		return;

1313
	if (use_4lvl(vm))
1314 1315 1316 1317
		free_pdp(vm, vm->scratch_pdp);
	free_pd(vm, vm->scratch_pd);
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1318 1319
}

1320
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1321
				    struct i915_page_directory_pointer *pdp)
1322
{
1323
	const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1324 1325
	int i;

1326
	for (i = 0; i < pdpes; i++) {
1327
		if (pdp->page_directory[i] == vm->scratch_pd)
1328 1329
			continue;

1330 1331
		gen8_free_page_tables(vm, pdp->page_directory[i]);
		free_pd(vm, pdp->page_directory[i]);
1332
	}
1333

1334
	free_pdp(vm, pdp);
1335 1336 1337 1338 1339 1340
}

static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
	int i;

1341
	for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1342
		if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
1343 1344
			continue;

1345
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
1346 1347
	}

1348
	cleanup_px(&ppgtt->vm, &ppgtt->pml4);
1349 1350 1351 1352
}

static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
1353
	struct drm_i915_private *dev_priv = vm->i915;
1354
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1355

1356
	if (intel_vgpu_active(dev_priv))
1357 1358
		gen8_ppgtt_notify_vgt(ppgtt, false);

1359
	if (use_4lvl(vm))
1360
		gen8_ppgtt_cleanup_4lvl(ppgtt);
1361
	else
1362
		gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
1363

1364
	gen8_free_scratch(vm);
1365 1366
}

1367 1368 1369
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
			       struct i915_page_directory *pd,
			       u64 start, u64 length)
1370
{
1371
	struct i915_page_table *pt;
1372
	u64 from = start;
1373
	unsigned int pde;
1374

1375
	gen8_for_each_pde(pt, pd, start, length, pde) {
1376 1377
		int count = gen8_pte_count(start, length);

1378
		if (pt == vm->scratch_pt) {
1379 1380
			pd->used_pdes++;

1381
			pt = alloc_pt(vm);
1382 1383
			if (IS_ERR(pt)) {
				pd->used_pdes--;
1384
				goto unwind;
1385
			}
1386

1387
			if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1388
				gen8_initialize_pt(vm, pt);
1389 1390

			gen8_ppgtt_set_pde(vm, pd, pt, pde);
1391
			GEM_BUG_ON(pd->used_pdes > I915_PDES);
1392
		}
1393

1394
		pt->used_ptes += count;
1395
	}
1396
	return 0;
1397

1398 1399
unwind:
	gen8_ppgtt_clear_pd(vm, pd, from, start - from);
B
Ben Widawsky 已提交
1400
	return -ENOMEM;
1401 1402
}

1403 1404 1405
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
				struct i915_page_directory_pointer *pdp,
				u64 start, u64 length)
1406
{
1407
	struct i915_page_directory *pd;
1408 1409
	u64 from = start;
	unsigned int pdpe;
1410 1411
	int ret;

1412
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1413
		if (pd == vm->scratch_pd) {
1414 1415
			pdp->used_pdpes++;

1416
			pd = alloc_pd(vm);
1417 1418
			if (IS_ERR(pd)) {
				pdp->used_pdpes--;
1419
				goto unwind;
1420
			}
1421

1422
			gen8_initialize_pd(vm, pd);
1423
			gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1424
			GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1425 1426 1427
		}

		ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1428 1429
		if (unlikely(ret))
			goto unwind_pd;
1430
	}
1431

B
Ben Widawsky 已提交
1432
	return 0;
1433

1434 1435 1436 1437 1438 1439 1440
unwind_pd:
	if (!pd->used_pdes) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		GEM_BUG_ON(!pdp->used_pdpes);
		pdp->used_pdpes--;
		free_pd(vm, pd);
	}
1441 1442 1443
unwind:
	gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
	return -ENOMEM;
1444 1445
}

1446 1447
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
1448
{
1449 1450 1451
	return gen8_ppgtt_alloc_pdp(vm,
				    &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
1452

1453 1454 1455 1456 1457 1458 1459 1460 1461
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
				 u64 start, u64 length)
{
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
	struct i915_pml4 *pml4 = &ppgtt->pml4;
	struct i915_page_directory_pointer *pdp;
	u64 from = start;
	u32 pml4e;
	int ret;
1462

1463
	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1464 1465 1466 1467
		if (pml4->pdps[pml4e] == vm->scratch_pdp) {
			pdp = alloc_pdp(vm);
			if (IS_ERR(pdp))
				goto unwind;
1468

1469 1470 1471
			gen8_initialize_pdp(vm, pdp);
			gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
		}
1472

1473
		ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1474 1475
		if (unlikely(ret))
			goto unwind_pdp;
1476 1477 1478 1479
	}

	return 0;

1480 1481 1482 1483 1484
unwind_pdp:
	if (!pdp->used_pdpes) {
		gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
		free_pdp(vm, pdp);
	}
1485 1486 1487
unwind:
	gen8_ppgtt_clear_4lvl(vm, from, start - from);
	return -ENOMEM;
1488 1489
}

1490
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1491
{
1492
	struct i915_address_space *vm = &ppgtt->vm;
1493 1494
	struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
	struct i915_page_directory *pd;
1495
	u64 start = 0, length = ppgtt->vm.total;
1496 1497
	u64 from = start;
	unsigned int pdpe;
1498

1499 1500 1501 1502
	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
		pd = alloc_pd(vm);
		if (IS_ERR(pd))
			goto unwind;
1503

1504 1505 1506 1507
		gen8_initialize_pd(vm, pd);
		gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
		pdp->used_pdpes++;
	}
1508

1509 1510
	pdp->used_pdpes++; /* never remove */
	return 0;
1511

1512 1513 1514 1515 1516 1517 1518 1519
unwind:
	start -= from;
	gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
		gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
		free_pd(vm, pd);
	}
	pdp->used_pdpes = 0;
	return -ENOMEM;
1520 1521
}

1522
/*
1523 1524 1525 1526
 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
 * with a net effect resembling a 2-level page table in normal x86 terms. Each
 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
 * space.
B
Ben Widawsky 已提交
1527
 *
1528
 */
1529
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
B
Ben Widawsky 已提交
1530
{
1531 1532 1533 1534 1535 1536 1537
	struct i915_hw_ppgtt *ppgtt;
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1538 1539
	kref_init(&ppgtt->ref);

1540 1541
	ppgtt->vm.i915 = i915;
	ppgtt->vm.dma = &i915->drm.pdev->dev;
1542

1543
	ppgtt->vm.total = HAS_FULL_48BIT_PPGTT(i915) ?
1544 1545 1546
		1ULL << 48 :
		1ULL << 32;

1547 1548
	/* From bdw, there is support for read-only pages in the PPGTT. */
	ppgtt->vm.has_read_only = true;
1549

1550
	i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
1551

1552 1553 1554
	/* There are only few exceptions for gen >=6. chv and bxt.
	 * And we are not sure about the latter so play safe for now.
	 */
1555
	if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
1556
		ppgtt->vm.pt_kmap_wc = true;
1557

1558 1559 1560
	err = gen8_init_scratch(&ppgtt->vm);
	if (err)
		goto err_free;
1561

1562 1563 1564 1565
	if (use_4lvl(&ppgtt->vm)) {
		err = setup_px(&ppgtt->vm, &ppgtt->pml4);
		if (err)
			goto err_scratch;
1566

1567
		gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
1568

1569 1570 1571
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
1572
	} else {
1573 1574 1575
		err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
		if (err)
			goto err_scratch;
1576

1577 1578 1579
		if (intel_vgpu_active(i915)) {
			err = gen8_preallocate_top_level_pdp(ppgtt);
			if (err) {
1580
				__pdp_fini(&ppgtt->pdp);
1581
				goto err_scratch;
1582
			}
1583
		}
1584

1585 1586 1587
		ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
		ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
		ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
1588
	}
1589

1590
	if (intel_vgpu_active(i915))
1591 1592
		gen8_ppgtt_notify_vgt(ppgtt, true);

1593
	ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
1594

1595
	ppgtt->vm.vma_ops.bind_vma    = ppgtt_bind_vma;
1596 1597 1598 1599
	ppgtt->vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->vm.vma_ops.clear_pages = clear_pages;

1600
	return ppgtt;
1601

1602
err_scratch:
1603
	gen8_free_scratch(&ppgtt->vm);
1604 1605 1606
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
1607 1608
}

1609
/* Write pde (index) from the page directory @pd to the page table @pt */
1610
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
C
Chris Wilson 已提交
1611 1612
				  const unsigned int pde,
				  const struct i915_page_table *pt)
B
Ben Widawsky 已提交
1613
{
1614
	/* Caller needs to make sure the write completes if necessary */
1615 1616
	iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
		  ppgtt->pd_addr + pde);
1617
}
B
Ben Widawsky 已提交
1618

1619
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
B
Ben Widawsky 已提交
1620
{
1621
	struct intel_engine_cs *engine;
1622
	u32 ecochk, ecobits;
1623
	enum intel_engine_id id;
B
Ben Widawsky 已提交
1624

1625 1626
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1627

1628
	ecochk = I915_READ(GAM_ECOCHK);
1629
	if (IS_HASWELL(dev_priv)) {
1630 1631 1632 1633 1634 1635
		ecochk |= ECOCHK_PPGTT_WB_HSW;
	} else {
		ecochk |= ECOCHK_PPGTT_LLC_IVB;
		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
	}
	I915_WRITE(GAM_ECOCHK, ecochk);
1636

1637
	for_each_engine(engine, dev_priv, id) {
B
Ben Widawsky 已提交
1638
		/* GFX_MODE is per-ring on gen7+ */
1639
		I915_WRITE(RING_MODE_GEN7(engine),
1640
			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1641
	}
1642
}
B
Ben Widawsky 已提交
1643

1644
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1645
{
1646
	u32 ecochk, gab_ctl, ecobits;
1647

1648 1649 1650
	ecobits = I915_READ(GAC_ECO_BITS);
	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
		   ECOBITS_PPGTT_CACHE64B);
B
Ben Widawsky 已提交
1651

1652 1653 1654 1655 1656 1657
	gab_ctl = I915_READ(GAB_CTL);
	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);

	ecochk = I915_READ(GAM_ECOCHK);
	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);

1658 1659
	if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
		I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
B
Ben Widawsky 已提交
1660 1661
}

1662
/* PPGTT support for Sandybdrige/Gen6 and later */
1663
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1664
				   u64 start, u64 length)
1665
{
1666
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1667
	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
1668 1669
	unsigned int pde = first_entry / GEN6_PTES;
	unsigned int pte = first_entry % GEN6_PTES;
1670
	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
1671
	const gen6_pte_t scratch_pte = vm->scratch_pte;
1672

1673
	while (num_entries) {
1674 1675 1676
		struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
		const unsigned int end = min(pte + num_entries, GEN6_PTES);
		const unsigned int count = end - pte;
1677
		gen6_pte_t *vaddr;
1678

1679 1680 1681 1682 1683 1684 1685 1686
		GEM_BUG_ON(pt == vm->scratch_pt);

		num_entries -= count;

		GEM_BUG_ON(count > pt->used_ptes);
		pt->used_ptes -= count;
		if (!pt->used_ptes)
			ppgtt->scan_for_unused_pt = true;
1687

1688 1689
		/*
		 * Note that the hw doesn't support removing PDE on the fly
1690 1691 1692 1693
		 * (they are cached inside the context with no means to
		 * invalidate the cache), so we can only reset the PTE
		 * entries back to scratch.
		 */
1694

1695 1696 1697 1698 1699
		vaddr = kmap_atomic_px(pt);
		do {
			vaddr[pte++] = scratch_pte;
		} while (pte < end);
		kunmap_atomic(vaddr);
1700

1701
		pte = 0;
1702
	}
1703 1704
}

1705
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1706
				      struct i915_vma *vma,
1707 1708
				      enum i915_cache_level cache_level,
				      u32 flags)
D
Daniel Vetter 已提交
1709
{
1710
	struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1711
	unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
1712 1713
	unsigned act_pt = first_entry / GEN6_PTES;
	unsigned act_pte = first_entry % GEN6_PTES;
1714
	const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1715
	struct sgt_dma iter = sgt_dma(vma);
1716 1717
	gen6_pte_t *vaddr;

1718 1719
	GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);

1720
	vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1721 1722
	do {
		vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1723

1724
		iter.dma += I915_GTT_PAGE_SIZE;
1725 1726 1727 1728
		if (iter.dma == iter.max) {
			iter.sg = __sg_next(iter.sg);
			if (!iter.sg)
				break;
1729

1730 1731 1732
			iter.dma = sg_dma_address(iter.sg);
			iter.max = iter.dma + iter.sg->length;
		}
1733

1734
		if (++act_pte == GEN6_PTES) {
1735 1736
			kunmap_atomic(vaddr);
			vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1737
			act_pte = 0;
D
Daniel Vetter 已提交
1738
		}
1739
	} while (1);
1740
	kunmap_atomic(vaddr);
1741 1742

	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
D
Daniel Vetter 已提交
1743 1744
}

1745
static int gen6_alloc_va_range(struct i915_address_space *vm,
1746
			       u64 start, u64 length)
1747
{
1748
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1749
	struct i915_page_table *pt;
1750 1751 1752
	u64 from = start;
	unsigned int pde;
	bool flush = false;
1753

1754
	gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
1755 1756
		const unsigned int count = gen6_pte_count(start, length);

1757 1758 1759 1760
		if (pt == vm->scratch_pt) {
			pt = alloc_pt(vm);
			if (IS_ERR(pt))
				goto unwind_out;
1761

1762
			gen6_initialize_pt(vm, pt);
1763
			ppgtt->base.pd.page_table[pde] = pt;
1764 1765 1766 1767 1768 1769

			if (i915_vma_is_bound(ppgtt->vma,
					      I915_VMA_GLOBAL_BIND)) {
				gen6_write_pde(ppgtt, pde, pt);
				flush = true;
			}
1770 1771

			GEM_BUG_ON(pt->used_ptes);
1772
		}
1773 1774

		pt->used_ptes += count;
1775 1776
	}

1777
	if (flush) {
1778 1779
		mark_tlbs_dirty(&ppgtt->base);
		gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1780 1781 1782
	}

	return 0;
1783 1784

unwind_out:
1785
	gen6_ppgtt_clear_range(vm, from, start - from);
1786
	return -ENOMEM;
1787 1788
}

1789
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
1790
{
1791 1792 1793
	struct i915_address_space * const vm = &ppgtt->base.vm;
	struct i915_page_table *unused;
	u32 pde;
1794
	int ret;
1795

1796
	ret = setup_scratch_page(vm, __GFP_HIGHMEM);
1797 1798
	if (ret)
		return ret;
1799

1800 1801 1802
	vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
					 I915_CACHE_NONE,
					 PTE_READ_ONLY);
1803

1804
	vm->scratch_pt = alloc_pt(vm);
1805
	if (IS_ERR(vm->scratch_pt)) {
1806
		cleanup_scratch_page(vm);
1807 1808 1809
		return PTR_ERR(vm->scratch_pt);
	}

1810
	gen6_initialize_pt(vm, vm->scratch_pt);
1811 1812
	gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
		ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
1813 1814 1815 1816

	return 0;
}

1817
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
1818
{
1819 1820
	free_pt(vm, vm->scratch_pt);
	cleanup_scratch_page(vm);
1821 1822
}

1823
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
1824
{
1825
	struct i915_page_table *pt;
1826
	u32 pde;
1827

1828
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
1829 1830 1831 1832 1833 1834 1835
		if (pt != ppgtt->base.vm.scratch_pt)
			free_pt(&ppgtt->base.vm, pt);
}

static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
1836

1837
	i915_vma_destroy(ppgtt->vma);
1838 1839 1840

	gen6_ppgtt_free_pd(ppgtt);
	gen6_ppgtt_free_scratch(vm);
1841 1842
}

1843
static int pd_vma_set_pages(struct i915_vma *vma)
1844
{
1845 1846 1847
	vma->pages = ERR_PTR(-ENODEV);
	return 0;
}
1848

1849 1850 1851
static void pd_vma_clear_pages(struct i915_vma *vma)
{
	GEM_BUG_ON(!vma->pages);
1852

1853 1854 1855 1856 1857 1858 1859 1860 1861
	vma->pages = NULL;
}

static int pd_vma_bind(struct i915_vma *vma,
		       enum i915_cache_level cache_level,
		       u32 unused)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
	struct gen6_hw_ppgtt *ppgtt = vma->private;
1862
	u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
1863 1864
	struct i915_page_table *pt;
	unsigned int pde;
1865

1866 1867
	ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
	ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
1868

1869 1870
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
		gen6_write_pde(ppgtt, pde, pt);
1871

1872 1873
	mark_tlbs_dirty(&ppgtt->base);
	gen6_ggtt_invalidate(ppgtt->base.vm.i915);
1874

1875
	return 0;
1876
}
1877

1878
static void pd_vma_unbind(struct i915_vma *vma)
1879
{
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
	struct gen6_hw_ppgtt *ppgtt = vma->private;
	struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
	struct i915_page_table *pt;
	unsigned int pde;

	if (!ppgtt->scan_for_unused_pt)
		return;

	/* Free all no longer used page tables */
	gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
		if (pt->used_ptes || pt == scratch_pt)
			continue;

		free_pt(&ppgtt->base.vm, pt);
		ppgtt->base.pd.page_table[pde] = scratch_pt;
	}

	ppgtt->scan_for_unused_pt = false;
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
}

static const struct i915_vma_ops pd_vma_ops = {
	.set_pages = pd_vma_set_pages,
	.clear_pages = pd_vma_clear_pages,
	.bind_vma = pd_vma_bind,
	.unbind_vma = pd_vma_unbind,
};

static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
	struct drm_i915_private *i915 = ppgtt->base.vm.i915;
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_vma *vma;

	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(size > ggtt->vm.total);

	vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL);
	if (!vma)
		return ERR_PTR(-ENOMEM);

	init_request_active(&vma->last_fence, NULL);

	vma->vm = &ggtt->vm;
	vma->ops = &pd_vma_ops;
	vma->private = ppgtt;

1926 1927
	vma->active = RB_ROOT;

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
	vma->size = size;
	vma->fence_size = size;
	vma->flags = I915_VMA_GGTT;
	vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */

	INIT_LIST_HEAD(&vma->obj_link);
	list_add(&vma->vm_link, &vma->vm->unbound_list);

	return vma;
}
1938

1939
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
1940 1941
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
1942
	int err;
1943

1944 1945 1946 1947 1948 1949 1950 1951 1952
	/*
	 * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
	 * which will be pinned into every active context.
	 * (When vma->pin_count becomes atomic, I expect we will naturally
	 * need a larger, unpacked, type and kill this redundancy.)
	 */
	if (ppgtt->pin_count++)
		return 0;

1953 1954 1955 1956 1957
	/*
	 * PPGTT PDEs reside in the GGTT and consists of 512 entries. The
	 * allocator works in address space sizes, so it's multiplied by page
	 * size. We allocate at the top of the GTT to avoid fragmentation.
	 */
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
	err = i915_vma_pin(ppgtt->vma,
			   0, GEN6_PD_ALIGN,
			   PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto unpin;

	return 0;

unpin:
	ppgtt->pin_count = 0;
	return err;
1969 1970
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
	struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);

	GEM_BUG_ON(!ppgtt->pin_count);
	if (--ppgtt->pin_count)
		return;

	i915_vma_unpin(ppgtt->vma);
}

1982
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
1983
{
1984
	struct i915_ggtt * const ggtt = &i915->ggtt;
1985
	struct gen6_hw_ppgtt *ppgtt;
1986 1987 1988 1989 1990 1991
	int err;

	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
	if (!ppgtt)
		return ERR_PTR(-ENOMEM);

1992 1993
	kref_init(&ppgtt->base.ref);

1994 1995
	ppgtt->base.vm.i915 = i915;
	ppgtt->base.vm.dma = &i915->drm.pdev->dev;
1996

1997
	ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE;
1998

1999
	i915_address_space_init(&ppgtt->base.vm, VM_CLASS_PPGTT);
2000

2001
	ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
2002 2003 2004
	ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
	ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
	ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
2005

2006
	ppgtt->base.vm.vma_ops.bind_vma    = ppgtt_bind_vma;
2007 2008 2009
	ppgtt->base.vm.vma_ops.unbind_vma  = ppgtt_unbind_vma;
	ppgtt->base.vm.vma_ops.set_pages   = ppgtt_set_pages;
	ppgtt->base.vm.vma_ops.clear_pages = clear_pages;
2010

2011 2012
	ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;

2013
	err = gen6_ppgtt_init_scratch(ppgtt);
2014 2015 2016
	if (err)
		goto err_free;

2017 2018 2019
	ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
	if (IS_ERR(ppgtt->vma)) {
		err = PTR_ERR(ppgtt->vma);
2020
		goto err_scratch;
2021
	}
2022

2023
	return &ppgtt->base;
2024

2025 2026
err_scratch:
	gen6_ppgtt_free_scratch(&ppgtt->base.vm);
2027 2028 2029
err_free:
	kfree(ppgtt);
	return ERR_PTR(err);
2030
}
2031

2032
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2033 2034 2035 2036 2037
{
	/* This function is for gtt related workarounds. This function is
	 * called on driver load and after a GPU reset, so you can place
	 * workarounds here even if they get overwritten by GPU reset.
	 */
2038
	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
2039
	if (IS_BROADWELL(dev_priv))
2040
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2041
	else if (IS_CHERRYVIEW(dev_priv))
2042
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2043
	else if (IS_GEN9_LP(dev_priv))
2044
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2045 2046
	else if (INTEL_GEN(dev_priv) >= 9)
		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063

	/*
	 * To support 64K PTEs we need to first enable the use of the
	 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
	 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
	 * shouldn't be needed after GEN10.
	 *
	 * 64K pages were first introduced from BDW+, although technically they
	 * only *work* from gen9+. For pre-BDW we instead have the option for
	 * 32K pages, but we don't currently have any support for it in our
	 * driver.
	 */
	if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
	    INTEL_GEN(dev_priv) <= 10)
		I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
			   I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
			   GAMW_ECO_ENABLE_64K_IPS_FIELD);
2064 2065
}

2066
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2067
{
2068
	gtt_write_workarounds(dev_priv);
2069

2070
	if (IS_GEN(dev_priv, 6))
2071
		gen6_ppgtt_enable(dev_priv);
2072
	else if (IS_GEN(dev_priv, 7))
2073
		gen7_ppgtt_enable(dev_priv);
2074

2075 2076
	return 0;
}
2077

2078 2079 2080 2081 2082 2083 2084 2085 2086
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) < 8)
		return gen6_ppgtt_create(i915);
	else
		return gen8_ppgtt_create(i915);
}

2087
struct i915_hw_ppgtt *
2088
i915_ppgtt_create(struct drm_i915_private *i915,
2089
		  struct drm_i915_file_private *fpriv)
2090 2091 2092
{
	struct i915_hw_ppgtt *ppgtt;

2093 2094 2095
	ppgtt = __hw_ppgtt_create(i915);
	if (IS_ERR(ppgtt))
		return ppgtt;
2096

2097
	ppgtt->vm.file = fpriv;
2098

2099
	trace_i915_ppgtt_create(&ppgtt->vm);
2100

2101 2102 2103
	return ppgtt;
}

2104
void i915_ppgtt_close(struct i915_address_space *vm)
2105 2106 2107 2108 2109 2110
{
	GEM_BUG_ON(vm->closed);
	vm->closed = true;
}

static void ppgtt_destroy_vma(struct i915_address_space *vm)
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
{
	struct list_head *phases[] = {
		&vm->active_list,
		&vm->inactive_list,
		&vm->unbound_list,
		NULL,
	}, **phase;

	vm->closed = true;
	for (phase = phases; *phase; phase++) {
		struct i915_vma *vma, *vn;

		list_for_each_entry_safe(vma, vn, *phase, vm_link)
2124
			i915_vma_destroy(vma);
2125 2126 2127
	}
}

2128
void i915_ppgtt_release(struct kref *kref)
2129 2130 2131 2132
{
	struct i915_hw_ppgtt *ppgtt =
		container_of(kref, struct i915_hw_ppgtt, ref);

2133
	trace_i915_ppgtt_release(&ppgtt->vm);
2134

2135
	ppgtt_destroy_vma(&ppgtt->vm);
2136

2137 2138 2139
	GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list));
	GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
2140

2141 2142
	ppgtt->vm.cleanup(&ppgtt->vm);
	i915_address_space_fini(&ppgtt->vm);
2143 2144
	kfree(ppgtt);
}
2145

2146 2147 2148
/* Certain Gen5 chipsets require require idling the GPU before
 * unmapping anything from the GTT when VT-d is enabled.
 */
2149
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2150 2151 2152 2153
{
	/* Query intel_iommu to see if we need the workaround. Presumably that
	 * was loaded first.
	 */
2154
	return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
2155 2156
}

2157
static void gen6_check_faults(struct drm_i915_private *dev_priv)
2158
{
2159
	struct intel_engine_cs *engine;
2160
	enum intel_engine_id id;
2161
	u32 fault;
2162

2163
	for_each_engine(engine, dev_priv, id) {
2164 2165
		fault = I915_READ(RING_FAULT_REG(engine));
		if (fault & RING_FAULT_VALID) {
2166
			DRM_DEBUG_DRIVER("Unexpected fault\n"
2167
					 "\tAddr: 0x%08lx\n"
2168 2169 2170
					 "\tAddress space: %s\n"
					 "\tSource ID: %d\n"
					 "\tType: %d\n",
2171 2172 2173 2174
					 fault & PAGE_MASK,
					 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
					 RING_FAULT_SRCID(fault),
					 RING_FAULT_FAULT_TYPE(fault));
2175 2176
		}
	}
2177 2178
}

2179
static void gen8_check_faults(struct drm_i915_private *dev_priv)
2180 2181 2182 2183
{
	u32 fault = I915_READ(GEN8_RING_FAULT_REG);

	if (fault & RING_FAULT_VALID) {
2184 2185 2186 2187 2188 2189 2190 2191
		u32 fault_data0, fault_data1;
		u64 fault_addr;

		fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
		fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
			     ((u64)fault_data0 << 12);

2192
		DRM_DEBUG_DRIVER("Unexpected fault\n"
2193 2194
				 "\tAddr: 0x%08x_%08x\n"
				 "\tAddress space: %s\n"
2195 2196 2197
				 "\tEngine ID: %d\n"
				 "\tSource ID: %d\n"
				 "\tType: %d\n",
2198 2199 2200
				 upper_32_bits(fault_addr),
				 lower_32_bits(fault_addr),
				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
				 GEN8_RING_FAULT_ENGINE_ID(fault),
				 RING_FAULT_SRCID(fault),
				 RING_FAULT_FAULT_TYPE(fault));
	}
}

void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
	if (INTEL_GEN(dev_priv) >= 8)
2211
		gen8_check_faults(dev_priv);
2212
	else if (INTEL_GEN(dev_priv) >= 6)
2213
		gen6_check_faults(dev_priv);
2214 2215
	else
		return;
2216 2217

	i915_clear_error_registers(dev_priv);
2218 2219
}

2220
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2221
{
2222
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2223 2224 2225 2226

	/* Don't bother messing with faults pre GEN6 as we have little
	 * documentation supporting that it's a good idea.
	 */
2227
	if (INTEL_GEN(dev_priv) < 6)
2228 2229
		return;

2230
	i915_check_and_clear_faults(dev_priv);
2231

2232
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
2233

2234
	i915_ggtt_invalidate(dev_priv);
2235 2236
}

2237 2238
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2239
{
2240
	do {
2241 2242 2243 2244
		if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
				     pages->sgl, pages->nents,
				     PCI_DMA_BIDIRECTIONAL,
				     DMA_ATTR_NO_WARN))
2245 2246
			return 0;

2247 2248
		/*
		 * If the DMA remap fails, one cause can be that we have
2249 2250 2251 2252 2253 2254 2255
		 * too many objects pinned in a small remapping table,
		 * such as swiotlb. Incrementally purge all other objects and
		 * try again - if there are no more pages to remove from
		 * the DMA remapper, i915_gem_shrink will return 0.
		 */
		GEM_BUG_ON(obj->mm.pages == pages);
	} while (i915_gem_shrink(to_i915(obj->base.dev),
2256
				 obj->base.size >> PAGE_SHIFT, NULL,
2257
				 I915_SHRINK_BOUND |
2258
				 I915_SHRINK_UNBOUND));
2259

2260
	return -ENOSPC;
2261 2262
}

2263
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
B
Ben Widawsky 已提交
2264 2265 2266 2267
{
	writeq(pte, addr);
}

2268 2269
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2270
				  u64 offset,
2271 2272 2273
				  enum i915_cache_level level,
				  u32 unused)
{
2274
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2275
	gen8_pte_t __iomem *pte =
2276
		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2277

2278
	gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
2279

2280
	ggtt->invalidate(vm->i915);
2281 2282
}

B
Ben Widawsky 已提交
2283
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2284
				     struct i915_vma *vma,
2285
				     enum i915_cache_level level,
2286
				     u32 flags)
B
Ben Widawsky 已提交
2287
{
2288
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2289 2290
	struct sgt_iter sgt_iter;
	gen8_pte_t __iomem *gtt_entries;
2291
	const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
2292
	dma_addr_t addr;
2293

2294 2295 2296 2297
	/*
	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
	 * not to allow the user to override access to a read only page.
	 */
2298

2299
	gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2300
	gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
2301
	for_each_sgt_dma(addr, sgt_iter, vma->pages)
2302
		gen8_set_pte(gtt_entries++, pte_encode | addr);
2303

2304 2305 2306
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
B
Ben Widawsky 已提交
2307
	 */
2308
	ggtt->invalidate(vm->i915);
B
Ben Widawsky 已提交
2309 2310
}

2311 2312
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2313
				  u64 offset,
2314 2315 2316
				  enum i915_cache_level level,
				  u32 flags)
{
2317
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2318
	gen6_pte_t __iomem *pte =
2319
		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
2320

2321
	iowrite32(vm->pte_encode(addr, level, flags), pte);
2322

2323
	ggtt->invalidate(vm->i915);
2324 2325
}

2326 2327 2328 2329 2330 2331
/*
 * Binds an object into the global gtt with the specified cache level. The object
 * will be accessible to the GPU via commands whose operands reference offsets
 * within the global GTT as well as accessible by the GPU through the GMADR
 * mapped BAR (dev_priv->mm.gtt->gtt).
 */
2332
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2333
				     struct i915_vma *vma,
2334 2335
				     enum i915_cache_level level,
				     u32 flags)
2336
{
2337
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2338
	gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2339
	unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
2340
	struct sgt_iter iter;
2341
	dma_addr_t addr;
2342
	for_each_sgt_dma(addr, iter, vma->pages)
2343
		iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2344

2345 2346 2347
	/*
	 * We want to flush the TLBs only after we're certain all the PTE
	 * updates have finished.
2348
	 */
2349
	ggtt->invalidate(vm->i915);
2350 2351
}

2352
static void nop_clear_range(struct i915_address_space *vm,
2353
			    u64 start, u64 length)
2354 2355 2356
{
}

B
Ben Widawsky 已提交
2357
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2358
				  u64 start, u64 length)
B
Ben Widawsky 已提交
2359
{
2360
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2361 2362
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2363
	const gen8_pte_t scratch_pte = vm->scratch_pte;
2364
	gen8_pte_t __iomem *gtt_base =
2365 2366
		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
B
Ben Widawsky 已提交
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

	for (i = 0; i < num_entries; i++)
		gen8_set_pte(&gtt_base[i], scratch_pte);
}

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
	struct drm_i915_private *dev_priv = vm->i915;

	/*
	 * Make sure the internal GAM fifo has been cleared of all GTT
	 * writes before exiting stop_machine(). This guarantees that
	 * any aperture accesses waiting to start in another process
	 * cannot back up behind the GTT writes causing a hang.
	 * The register can be any arbitrary GAM register.
	 */
	POSTING_READ(GFX_FLSH_CNTL_GEN6);
}

struct insert_page {
	struct i915_address_space *vm;
	dma_addr_t addr;
	u64 offset;
	enum i915_cache_level level;
};

static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
	struct insert_page *arg = _arg;

	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
					  dma_addr_t addr,
					  u64 offset,
					  enum i915_cache_level level,
					  u32 unused)
{
	struct insert_page arg = { vm, addr, offset, level };

	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}

struct insert_entries {
	struct i915_address_space *vm;
2422
	struct i915_vma *vma;
2423
	enum i915_cache_level level;
2424
	u32 flags;
2425 2426 2427 2428 2429 2430
};

static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
	struct insert_entries *arg = _arg;

2431
	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
2432 2433 2434 2435 2436 2437
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2438
					     struct i915_vma *vma,
2439
					     enum i915_cache_level level,
2440
					     u32 flags)
2441
{
2442
	struct insert_entries arg = { vm, vma, level, flags };
2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471

	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}

struct clear_range {
	struct i915_address_space *vm;
	u64 start;
	u64 length;
};

static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
	struct clear_range *arg = _arg;

	gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
	bxt_vtd_ggtt_wa(arg->vm);

	return 0;
}

static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
					  u64 start,
					  u64 length)
{
	struct clear_range arg = { vm, start, length };

	stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}

2472
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2473
				  u64 start, u64 length)
2474
{
2475
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2476 2477
	unsigned first_entry = start / I915_GTT_PAGE_SIZE;
	unsigned num_entries = length / I915_GTT_PAGE_SIZE;
2478
	gen6_pte_t scratch_pte, __iomem *gtt_base =
2479 2480
		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2481 2482 2483 2484 2485 2486 2487
	int i;

	if (WARN(num_entries > max_entries,
		 "First entry = %d; Num entries = %d (max=%d)\n",
		 first_entry, num_entries, max_entries))
		num_entries = max_entries;

2488
	scratch_pte = vm->scratch_pte;
2489

2490 2491 2492 2493
	for (i = 0; i < num_entries; i++)
		iowrite32(scratch_pte, &gtt_base[i]);
}

2494 2495
static void i915_ggtt_insert_page(struct i915_address_space *vm,
				  dma_addr_t addr,
2496
				  u64 offset,
2497 2498 2499 2500 2501 2502 2503 2504 2505
				  enum i915_cache_level cache_level,
				  u32 unused)
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}

2506
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2507
				     struct i915_vma *vma,
2508 2509
				     enum i915_cache_level cache_level,
				     u32 unused)
2510 2511 2512 2513
{
	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;

2514 2515
	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
				    flags);
2516 2517
}

2518
static void i915_ggtt_clear_range(struct i915_address_space *vm,
2519
				  u64 start, u64 length)
2520
{
2521
	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2522 2523
}

2524 2525 2526
static int ggtt_bind_vma(struct i915_vma *vma,
			 enum i915_cache_level cache_level,
			 u32 flags)
2527
{
2528
	struct drm_i915_private *i915 = vma->vm->i915;
2529
	struct drm_i915_gem_object *obj = vma->obj;
2530
	intel_wakeref_t wakeref;
2531
	u32 pte_flags;
2532

2533
	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
2534
	pte_flags = 0;
2535
	if (i915_gem_object_is_readonly(obj))
2536 2537
		pte_flags |= PTE_READ_ONLY;

2538 2539
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2540

2541 2542
	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;

2543 2544 2545 2546 2547
	/*
	 * Without aliasing PPGTT there's no difference between
	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
	 * upgrade to both bound if we bind either to avoid double-binding.
	 */
2548
	vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2549 2550 2551 2552

	return 0;
}

2553 2554 2555
static void ggtt_unbind_vma(struct i915_vma *vma)
{
	struct drm_i915_private *i915 = vma->vm->i915;
2556
	intel_wakeref_t wakeref;
2557

2558 2559
	with_intel_runtime_pm(i915, wakeref)
		vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2560 2561
}

2562 2563 2564
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
				 enum i915_cache_level cache_level,
				 u32 flags)
2565
{
2566
	struct drm_i915_private *i915 = vma->vm->i915;
2567
	u32 pte_flags;
2568
	int ret;
2569

2570
	/* Currently applicable only to VLV */
2571
	pte_flags = 0;
2572
	if (i915_gem_object_is_readonly(vma->obj))
2573
		pte_flags |= PTE_READ_ONLY;
2574

2575 2576 2577
	if (flags & I915_VMA_LOCAL_BIND) {
		struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;

2578
		if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
2579 2580 2581
			ret = appgtt->vm.allocate_va_range(&appgtt->vm,
							   vma->node.start,
							   vma->size);
2582
			if (ret)
2583
				return ret;
2584 2585
		}

2586 2587
		appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
					  pte_flags);
2588 2589
	}

2590
	if (flags & I915_VMA_GLOBAL_BIND) {
2591 2592
		intel_wakeref_t wakeref;

2593 2594 2595 2596
		with_intel_runtime_pm(i915, wakeref) {
			vma->vm->insert_entries(vma->vm, vma,
						cache_level, pte_flags);
		}
2597
	}
2598

2599
	return 0;
2600 2601
}

2602
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2603
{
2604
	struct drm_i915_private *i915 = vma->vm->i915;
2605

2606
	if (vma->flags & I915_VMA_GLOBAL_BIND) {
2607
		struct i915_address_space *vm = vma->vm;
2608 2609
		intel_wakeref_t wakeref;

2610 2611
		with_intel_runtime_pm(i915, wakeref)
			vm->clear_range(vm, vma->node.start, vma->size);
2612
	}
2613

2614
	if (vma->flags & I915_VMA_LOCAL_BIND) {
2615
		struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
2616 2617 2618

		vm->clear_range(vm, vma->node.start, vma->size);
	}
2619 2620
}

2621 2622
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
2623
{
D
David Weinehall 已提交
2624 2625
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct device *kdev = &dev_priv->drm.pdev->dev;
2626
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
B
Ben Widawsky 已提交
2627

2628
	if (unlikely(ggtt->do_idle_maps)) {
2629
		if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
2630 2631 2632 2633 2634
			DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
			/* Wait a bit, in hopes it avoids the hang */
			udelay(10);
		}
	}
B
Ben Widawsky 已提交
2635

2636
	dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2637
}
2638

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
static int ggtt_set_pages(struct i915_vma *vma)
{
	int ret;

	GEM_BUG_ON(vma->pages);

	ret = i915_get_ggtt_vma_pages(vma);
	if (ret)
		return ret;

2649 2650
	vma->page_sizes = vma->obj->mm.page_sizes;

2651 2652 2653
	return 0;
}

C
Chris Wilson 已提交
2654
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2655
				  unsigned long color,
2656 2657
				  u64 *start,
				  u64 *end)
2658
{
2659
	if (node->allocated && node->color != color)
2660
		*start += I915_GTT_PAGE_SIZE;
2661

2662 2663 2664 2665 2666
	/* Also leave a space between the unallocated reserved node after the
	 * GTT and any objects within the GTT, i.e. we use the color adjustment
	 * to insert a guard page to prevent prefetches crossing over the
	 * GTT boundary.
	 */
2667
	node = list_next_entry(node, node_list);
2668
	if (node->color != color)
2669
		*end -= I915_GTT_PAGE_SIZE;
2670
}
B
Ben Widawsky 已提交
2671

2672 2673 2674 2675 2676 2677
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;
	int err;

2678
	ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM));
2679 2680
	if (IS_ERR(ppgtt))
		return PTR_ERR(ppgtt);
2681

2682
	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
2683 2684 2685 2686
		err = -ENODEV;
		goto err_ppgtt;
	}

2687 2688 2689 2690 2691 2692 2693 2694 2695
	/*
	 * Note we only pre-allocate as far as the end of the global
	 * GTT. On 48b / 4-level page-tables, the difference is very,
	 * very significant! We have to preallocate as GVT/vgpu does
	 * not like the page directory disappearing.
	 */
	err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
	if (err)
		goto err_ppgtt;
2696 2697

	i915->mm.aliasing_ppgtt = ppgtt;
2698

2699 2700
	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
2701

2702 2703
	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
2704

2705 2706 2707
	return 0;

err_ppgtt:
2708
	i915_ppgtt_put(ppgtt);
2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	return err;
}

void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct i915_hw_ppgtt *ppgtt;

	ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
	if (!ppgtt)
		return;

2721
	i915_ppgtt_put(ppgtt);
2722

2723 2724
	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
2725 2726
}

2727
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2728
{
2729 2730 2731 2732 2733 2734 2735 2736 2737
	/* Let GEM Manage all of the aperture.
	 *
	 * However, leave one page at the end still bound to the scratch page.
	 * There are a number of places where the hardware apparently prefetches
	 * past the end of the object, and we've seen multiple hangs with the
	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
	 * aperture.  One page should be enough to keep any prefetching inside
	 * of the aperture.
	 */
2738
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2739
	unsigned long hole_start, hole_end;
2740
	struct drm_mm_node *entry;
2741
	int ret;
2742

2743 2744 2745 2746 2747 2748 2749 2750 2751
	/*
	 * GuC requires all resources that we're sharing with it to be placed in
	 * non-WOPCM memory. If GuC is not present or not in use we still need a
	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
	 * why.
	 */
	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
			       intel_guc_reserved_gtt_size(&dev_priv->guc));

2752 2753 2754
	ret = intel_vgt_balloon(dev_priv);
	if (ret)
		return ret;
2755

2756
	/* Reserve a mappable slot for our lockless error capture */
2757
	ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
2758 2759 2760
					  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
					  0, ggtt->mappable_end,
					  DRM_MM_INSERT_LOW);
2761 2762 2763
	if (ret)
		return ret;

2764
	/* Clear any non-preallocated blocks */
2765
	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
2766 2767
		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
			      hole_start, hole_end);
2768 2769
		ggtt->vm.clear_range(&ggtt->vm, hole_start,
				     hole_end - hole_start);
2770 2771 2772
	}

	/* And finally clear the reserved guard page */
2773
	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
2774

2775
	if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
2776
		ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2777
		if (ret)
2778
			goto err;
2779 2780
	}

2781
	return 0;
2782 2783 2784 2785

err:
	drm_mm_remove_node(&ggtt->error_capture);
	return ret;
2786 2787
}

2788 2789
/**
 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2790
 * @dev_priv: i915 device
2791
 */
2792
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2793
{
2794
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
2795
	struct i915_vma *vma, *vn;
2796
	struct pagevec *pvec;
2797

2798
	ggtt->vm.closed = true;
2799 2800

	mutex_lock(&dev_priv->drm.struct_mutex);
2801 2802
	i915_gem_fini_aliasing_ppgtt(dev_priv);

2803 2804
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link)
2805
		WARN_ON(i915_vma_unbind(vma));
2806

2807 2808 2809
	if (drm_mm_node_allocated(&ggtt->error_capture))
		drm_mm_remove_node(&ggtt->error_capture);

2810
	if (drm_mm_initialized(&ggtt->vm.mm)) {
2811
		intel_vgt_deballoon(dev_priv);
2812
		i915_address_space_fini(&ggtt->vm);
2813 2814
	}

2815
	ggtt->vm.cleanup(&ggtt->vm);
2816

2817
	pvec = &dev_priv->mm.wc_stash.pvec;
2818 2819 2820 2821 2822
	if (pvec->nr) {
		set_pages_array_wb(pvec->pages, pvec->nr);
		__pagevec_release(pvec);
	}

2823
	mutex_unlock(&dev_priv->drm.struct_mutex);
2824 2825

	arch_phys_wc_del(ggtt->mtrr);
2826
	io_mapping_fini(&ggtt->iomap);
2827

2828
	i915_gem_cleanup_stolen(dev_priv);
2829
}
2830

2831
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2832 2833 2834 2835 2836 2837
{
	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
	return snb_gmch_ctl << 20;
}

2838
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2839 2840 2841 2842 2843
{
	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
	if (bdw_gmch_ctl)
		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2844 2845

#ifdef CONFIG_X86_32
2846
	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
2847 2848 2849 2850
	if (bdw_gmch_ctl > 4)
		bdw_gmch_ctl = 4;
#endif

2851 2852 2853
	return bdw_gmch_ctl << 20;
}

2854
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864
{
	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
	gmch_ctrl &= SNB_GMCH_GGMS_MASK;

	if (gmch_ctrl)
		return 1 << (20 + gmch_ctrl);

	return 0;
}

2865
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
B
Ben Widawsky 已提交
2866
{
2867
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
2868
	struct pci_dev *pdev = dev_priv->drm.pdev;
2869
	phys_addr_t phys_addr;
2870
	int ret;
B
Ben Widawsky 已提交
2871 2872

	/* For Modern GENs the PTEs and register space are split in the BAR */
2873
	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
B
Ben Widawsky 已提交
2874

I
Imre Deak 已提交
2875
	/*
2876 2877 2878
	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
	 * will be dropped. For WC mappings in general we have 64 byte burst
	 * writes when the WC buffer is flushed, so we can't use it, but have to
I
Imre Deak 已提交
2879 2880 2881
	 * resort to an uncached mapping. The WC issue is easily caught by the
	 * readback check when writing GTT PTE entries.
	 */
2882
	if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2883
		ggtt->gsm = ioremap_nocache(phys_addr, size);
I
Imre Deak 已提交
2884
	else
2885
		ggtt->gsm = ioremap_wc(phys_addr, size);
2886
	if (!ggtt->gsm) {
2887
		DRM_ERROR("Failed to map the ggtt page table\n");
B
Ben Widawsky 已提交
2888 2889 2890
		return -ENOMEM;
	}

2891
	ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
2892
	if (ret) {
B
Ben Widawsky 已提交
2893 2894
		DRM_ERROR("Scratch setup failed\n");
		/* iounmap will also get called at remove, but meh */
2895
		iounmap(ggtt->gsm);
2896
		return ret;
B
Ben Widawsky 已提交
2897 2898
	}

2899 2900 2901 2902
	ggtt->vm.scratch_pte =
		ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
				    I915_CACHE_NONE, 0);

2903
	return 0;
B
Ben Widawsky 已提交
2904 2905
}

2906 2907
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
R
Rodrigo Vivi 已提交
2908
{
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951
	struct intel_ppat_entry *entry = &ppat->entries[index];

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(test_bit(index, ppat->used));

	entry->ppat = ppat;
	entry->value = value;
	kref_init(&entry->ref);
	set_bit(index, ppat->used);
	set_bit(index, ppat->dirty);

	return entry;
}

static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(index >= ppat->max_entries);
	GEM_BUG_ON(!test_bit(index, ppat->used));

	entry->value = ppat->clear_value;
	clear_bit(index, ppat->used);
	set_bit(index, ppat->dirty);
}

/**
 * intel_ppat_get - get a usable PPAT entry
 * @i915: i915 device instance
 * @value: the PPAT value required by the caller
 *
 * The function tries to search if there is an existing PPAT entry which
 * matches with the required value. If perfectly matched, the existing PPAT
 * entry will be used. If only partially matched, it will try to check if
 * there is any available PPAT index. If yes, it will allocate a new PPAT
 * index for the required entry and update the HW. If not, the partially
 * matched entry will be used.
 */
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
	struct intel_ppat *ppat = &i915->ppat;
2952
	struct intel_ppat_entry *entry = NULL;
2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	unsigned int scanned, best_score;
	int i;

	GEM_BUG_ON(!ppat->max_entries);

	scanned = best_score = 0;
	for_each_set_bit(i, ppat->used, ppat->max_entries) {
		unsigned int score;

		score = ppat->match(ppat->entries[i].value, value);
		if (score > best_score) {
			entry = &ppat->entries[i];
			if (score == INTEL_PPAT_PERFECT_MATCH) {
				kref_get(&entry->ref);
				return entry;
			}
			best_score = score;
		}
		scanned++;
	}

	if (scanned == ppat->max_entries) {
2975
		if (!entry)
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
			return ERR_PTR(-ENOSPC);

		kref_get(&entry->ref);
		return entry;
	}

	i = find_first_zero_bit(ppat->used, ppat->max_entries);
	entry = __alloc_ppat_entry(ppat, i, value);
	ppat->update_hw(i915);
	return entry;
}

static void release_ppat(struct kref *kref)
{
	struct intel_ppat_entry *entry =
		container_of(kref, struct intel_ppat_entry, ref);
	struct drm_i915_private *i915 = entry->ppat->i915;

	__free_ppat_entry(entry);
	entry->ppat->update_hw(i915);
}

/**
 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
 * @entry: an intel PPAT entry
 *
 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
 * entry is dynamically allocated, its reference count will be decreased. Once
 * the reference count becomes into zero, the PPAT index becomes free again.
 */
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
	struct intel_ppat *ppat = entry->ppat;
	unsigned int index = entry - ppat->entries;

	GEM_BUG_ON(!ppat->max_entries);

	kref_put(&ppat->entries[index].ref, release_ppat);
}

static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
		I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
		clear_bit(i, ppat->dirty);
	}
}

static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
	struct intel_ppat *ppat = &dev_priv->ppat;
	u64 pat = 0;
	int i;

	for (i = 0; i < ppat->max_entries; i++)
		pat |= GEN8_PPAT(i, ppat->entries[i].value);

	bitmap_clear(ppat->dirty, 0, ppat->max_entries);

	I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
	I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}

static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
	unsigned int score = 0;
	enum {
		AGE_MATCH = BIT(0),
		TC_MATCH = BIT(1),
		CA_MATCH = BIT(2),
	};

	/* Cache attribute has to be matched. */
3052
	if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
		return 0;

	score |= CA_MATCH;

	if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
		score |= TC_MATCH;

	if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
		score |= AGE_MATCH;

	if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
		return INTEL_PPAT_PERFECT_MATCH;

	return score;
}

static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
	return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
		INTEL_PPAT_PERFECT_MATCH : 0;
}

static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
	ppat->max_entries = 8;
	ppat->update_hw = cnl_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);

	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
R
Rodrigo Vivi 已提交
3090 3091
}

B
Ben Widawsky 已提交
3092 3093 3094
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
 * bits. When using advanced contexts each context stores its own PAT, but
 * writing this data shouldn't be harmful even in those cases. */
3095
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
B
Ben Widawsky 已提交
3096
{
3097 3098 3099 3100
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = bdw_private_pat_match;
	ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
B
Ben Widawsky 已提交
3101

3102
	if (!HAS_PPGTT(ppat->i915)) {
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
		 * so RTL will always use the value corresponding to
		 * pat_sel = 000".
		 * So let's disable cache for GGTT to avoid screen corruptions.
		 * MOCS still can be used though.
		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
		 * before this patch, i.e. the same uncached + snooping access
		 * like on gen6/7 seems to be in effect.
		 * - So this just fixes blitter/render access. Again it looks
		 * like it's not just uncached access, but uncached + snooping.
		 * So we can still hold onto all our assumptions wrt cpu
		 * clflushing on LLC machines.
		 */
3116 3117 3118
		__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
		return;
	}
3119

3120 3121 3122 3123 3124 3125 3126 3127
	__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);      /* for normal objects, no eLLC */
	__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);  /* for something pointing to ptes? */
	__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);  /* for scanout with eLLC */
	__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);                      /* Uncached objects, mostly for scanout */
	__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
	__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
	__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
	__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
B
Ben Widawsky 已提交
3128 3129
}

3130
static void chv_setup_private_ppat(struct intel_ppat *ppat)
3131
{
3132 3133 3134 3135
	ppat->max_entries = 8;
	ppat->update_hw = bdw_private_pat_update_hw;
	ppat->match = chv_private_pat_match;
	ppat->clear_value = CHV_PPAT_SNOOP;
3136 3137 3138 3139 3140 3141 3142

	/*
	 * Map WB on BDW to snooped on CHV.
	 *
	 * Only the snoop bit has meaning for CHV, the rest is
	 * ignored.
	 *
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
	 * The hardware will never snoop for certain types of accesses:
	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
	 * - PPGTT page tables
	 * - some other special cycles
	 *
	 * As with BDW, we also need to consider the following for GT accesses:
	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
	 * so RTL will always use the value corresponding to
	 * pat_sel = 000".
	 * Which means we must set the snoop bit in PAT entry 0
	 * in order to keep the global status page working.
3154 3155
	 */

3156 3157 3158 3159 3160 3161 3162 3163
	__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 1, 0);
	__alloc_ppat_entry(ppat, 2, 0);
	__alloc_ppat_entry(ppat, 3, 0);
	__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
	__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3164 3165
}

3166 3167 3168 3169 3170
static void gen6_gmch_remove(struct i915_address_space *vm)
{
	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);

	iounmap(ggtt->gsm);
3171
	cleanup_scratch_page(vm);
3172 3173
}

3174 3175
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
3176 3177 3178 3179 3180
	struct intel_ppat *ppat = &dev_priv->ppat;
	int i;

	ppat->i915 = dev_priv;

3181
	if (INTEL_GEN(dev_priv) >= 10)
3182
		cnl_setup_private_ppat(ppat);
3183
	else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3184
		chv_setup_private_ppat(ppat);
3185
	else
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
		bdw_setup_private_ppat(ppat);

	GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);

	for_each_clear_bit(i, ppat->used, ppat->max_entries) {
		ppat->entries[i].value = ppat->clear_value;
		ppat->entries[i].ppat = ppat;
		set_bit(i, ppat->dirty);
	}

	ppat->update_hw(dev_priv);
3197 3198
}

3199
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
B
Ben Widawsky 已提交
3200
{
3201
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3202
	struct pci_dev *pdev = dev_priv->drm.pdev;
3203
	unsigned int size;
B
Ben Widawsky 已提交
3204
	u16 snb_gmch_ctl;
3205
	int err;
B
Ben Widawsky 已提交
3206 3207

	/* TODO: We're not aware of mappable constraints on gen8 yet */
3208 3209 3210 3211
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
B
Ben Widawsky 已提交
3212

3213 3214 3215 3216 3217
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
B
Ben Widawsky 已提交
3218

3219
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3220
	if (IS_CHERRYVIEW(dev_priv))
3221
		size = chv_get_total_gtt_size(snb_gmch_ctl);
3222
	else
3223
		size = gen8_get_total_gtt_size(snb_gmch_ctl);
B
Ben Widawsky 已提交
3224

3225
	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
3226 3227 3228
	ggtt->vm.cleanup = gen6_gmch_remove;
	ggtt->vm.insert_page = gen8_ggtt_insert_page;
	ggtt->vm.clear_range = nop_clear_range;
3229
	if (intel_scanout_needs_vtd_wa(dev_priv))
3230
		ggtt->vm.clear_range = gen8_ggtt_clear_range;
3231

3232
	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
3233

3234 3235
	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
	if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3236 3237 3238 3239
		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
		if (ggtt->vm.clear_range != nop_clear_range)
			ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3240 3241 3242 3243 3244

		/* Prevent recursively calling stop_machine() and deadlocks. */
		dev_info(dev_priv->drm.dev,
			 "Disabling error capture for VT-d workaround\n");
		i915_disable_error_state(dev_priv, -ENODEV);
3245 3246
	}

3247 3248
	ggtt->invalidate = gen6_ggtt_invalidate;

3249 3250 3251 3252 3253
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3254 3255
	ggtt->vm.pte_encode = gen8_pte_encode;

3256 3257
	setup_private_pat(dev_priv);

3258
	return ggtt_probe_common(ggtt, size);
B
Ben Widawsky 已提交
3259 3260
}

3261
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3262
{
3263
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3264
	struct pci_dev *pdev = dev_priv->drm.pdev;
3265
	unsigned int size;
3266
	u16 snb_gmch_ctl;
3267
	int err;
3268

3269 3270 3271 3272
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
						 pci_resource_len(pdev, 2));
	ggtt->mappable_end = resource_size(&ggtt->gmadr);
3273

3274 3275
	/* 64/512MB is the current min/max we actually know of, but this is just
	 * a coarse sanity check.
3276
	 */
3277
	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3278
		DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3279
		return -ENXIO;
3280 3281
	}

3282 3283 3284 3285 3286
	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
	if (!err)
		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
	if (err)
		DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3287
	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3288

3289
	size = gen6_get_total_gtt_size(snb_gmch_ctl);
3290
	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
3291

3292 3293 3294 3295
	ggtt->vm.clear_range = gen6_ggtt_clear_range;
	ggtt->vm.insert_page = gen6_ggtt_insert_page;
	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
	ggtt->vm.cleanup = gen6_gmch_remove;
3296

3297 3298
	ggtt->invalidate = gen6_ggtt_invalidate;

3299
	if (HAS_EDRAM(dev_priv))
3300
		ggtt->vm.pte_encode = iris_pte_encode;
3301
	else if (IS_HASWELL(dev_priv))
3302
		ggtt->vm.pte_encode = hsw_pte_encode;
3303
	else if (IS_VALLEYVIEW(dev_priv))
3304
		ggtt->vm.pte_encode = byt_pte_encode;
3305
	else if (INTEL_GEN(dev_priv) >= 7)
3306
		ggtt->vm.pte_encode = ivb_pte_encode;
3307
	else
3308
		ggtt->vm.pte_encode = snb_pte_encode;
3309

3310 3311 3312 3313 3314
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3315
	return ggtt_probe_common(ggtt, size);
3316 3317
}

3318
static void i915_gmch_remove(struct i915_address_space *vm)
3319
{
3320
	intel_gmch_remove();
3321
}
3322

3323
static int i915_gmch_probe(struct i915_ggtt *ggtt)
3324
{
3325
	struct drm_i915_private *dev_priv = ggtt->vm.i915;
3326
	phys_addr_t gmadr_base;
3327 3328
	int ret;

3329
	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3330 3331 3332 3333 3334
	if (!ret) {
		DRM_ERROR("failed to set up gmch\n");
		return -EIO;
	}

3335
	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
3336

3337 3338 3339 3340
	ggtt->gmadr =
		(struct resource) DEFINE_RES_MEM(gmadr_base,
						 ggtt->mappable_end);

3341
	ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3342 3343 3344 3345
	ggtt->vm.insert_page = i915_ggtt_insert_page;
	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
	ggtt->vm.clear_range = i915_ggtt_clear_range;
	ggtt->vm.cleanup = i915_gmch_remove;
3346

3347 3348
	ggtt->invalidate = gmch_ggtt_invalidate;

3349 3350 3351 3352 3353
	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
	ggtt->vm.vma_ops.clear_pages = clear_pages;

3354
	if (unlikely(ggtt->do_idle_maps))
3355 3356
		DRM_INFO("applying Ironlake quirks for intel_iommu\n");

3357 3358 3359
	return 0;
}

3360
/**
3361
 * i915_ggtt_probe_hw - Probe GGTT hardware location
3362
 * @dev_priv: i915 device
3363
 */
3364
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3365
{
3366
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3367 3368
	int ret;

3369 3370
	ggtt->vm.i915 = dev_priv;
	ggtt->vm.dma = &dev_priv->drm.pdev->dev;
3371

3372 3373 3374 3375 3376 3377
	if (INTEL_GEN(dev_priv) <= 5)
		ret = i915_gmch_probe(ggtt);
	else if (INTEL_GEN(dev_priv) < 8)
		ret = gen6_gmch_probe(ggtt);
	else
		ret = gen8_gmch_probe(ggtt);
3378
	if (ret)
3379 3380
		return ret;

3381 3382 3383 3384 3385
	/* Trim the GGTT to fit the GuC mappable upper range (when enabled).
	 * This is easier than doing range restriction on the fly, as we
	 * currently don't have any bits spare to pass in this upper
	 * restriction!
	 */
3386
	if (USES_GUC(dev_priv)) {
3387 3388 3389
		ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP);
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3390 3391
	}

3392
	if ((ggtt->vm.total - 1) >> 32) {
3393
		DRM_ERROR("We never expected a Global GTT with more than 32bits"
3394
			  " of address space! Found %lldM!\n",
3395 3396 3397 3398
			  ggtt->vm.total >> 20);
		ggtt->vm.total = 1ULL << 32;
		ggtt->mappable_end =
			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
3399 3400
	}

3401
	if (ggtt->mappable_end > ggtt->vm.total) {
3402
		DRM_ERROR("mappable aperture extends past end of GGTT,"
3403
			  " aperture=%pa, total=%llx\n",
3404 3405
			  &ggtt->mappable_end, ggtt->vm.total);
		ggtt->mappable_end = ggtt->vm.total;
3406 3407
	}

3408
	/* GMADR is the PCI mmio aperture into the global GTT. */
3409
	DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
3410
	DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3411
	DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3412
			 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3413
	if (intel_vtd_active())
3414
		DRM_INFO("VT-d active for gfx access\n");
3415 3416

	return 0;
3417 3418 3419 3420
}

/**
 * i915_ggtt_init_hw - Initialize GGTT hardware
3421
 * @dev_priv: i915 device
3422
 */
3423
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3424 3425 3426 3427
{
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
	int ret;

3428 3429
	stash_init(&dev_priv->mm.wc_stash);

3430 3431 3432 3433
	/* Note that we use page colouring to enforce a guard page at the
	 * end of the address space. This is required as the CS may prefetch
	 * beyond the end of the batch buffer, across the page boundary,
	 * and beyond the end of the GTT if we do not provide a guard.
3434
	 */
C
Chris Wilson 已提交
3435
	mutex_lock(&dev_priv->drm.struct_mutex);
3436
	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
3437

3438 3439
	ggtt->vm.is_ggtt = true;

3440 3441 3442
	/* Only VLV supports read-only GGTT mappings */
	ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);

3443
	if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
3444
		ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
C
Chris Wilson 已提交
3445
	mutex_unlock(&dev_priv->drm.struct_mutex);
3446

3447 3448
	if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
				dev_priv->ggtt.gmadr.start,
3449
				dev_priv->ggtt.mappable_end)) {
3450 3451 3452 3453
		ret = -EIO;
		goto out_gtt_cleanup;
	}

3454
	ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3455

3456 3457 3458 3459
	/*
	 * Initialise stolen early so that we may reserve preallocated
	 * objects for the BIOS to KMS transition.
	 */
3460
	ret = i915_gem_init_stolen(dev_priv);
3461 3462 3463 3464
	if (ret)
		goto out_gtt_cleanup;

	return 0;
3465 3466

out_gtt_cleanup:
3467
	ggtt->vm.cleanup(&ggtt->vm);
3468
	return ret;
3469
}
3470

3471
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3472
{
3473
	if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3474 3475 3476 3477 3478
		return -EIO;

	return 0;
}

3479 3480
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
3481 3482
	GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);

3483
	i915->ggtt.invalidate = guc_ggtt_invalidate;
3484 3485

	i915_ggtt_invalidate(i915);
3486 3487 3488 3489
}

void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
3490 3491 3492 3493
	/* XXX Temporary pardon for error unload */
	if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
		return;

3494 3495 3496 3497
	/* We should only be called after i915_ggtt_enable_guc() */
	GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);

	i915->ggtt.invalidate = gen6_ggtt_invalidate;
3498 3499

	i915_ggtt_invalidate(i915);
3500 3501
}

3502
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3503
{
3504
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
3505
	struct i915_vma *vma, *vn;
3506

3507
	i915_check_and_clear_faults(dev_priv);
3508 3509

	/* First fill our portion of the GTT with scratch pages */
3510
	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
3511

3512
	ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
3513 3514

	/* clflush objects bound into the GGTT and rebind them. */
3515 3516
	GEM_BUG_ON(!list_empty(&ggtt->vm.active_list));
	list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) {
3517
		struct drm_i915_gem_object *obj = vma->obj;
3518

3519 3520
		if (!(vma->flags & I915_VMA_GLOBAL_BIND))
			continue;
3521

3522 3523
		if (!i915_vma_unbind(vma))
			continue;
3524

3525 3526 3527 3528 3529
		WARN_ON(i915_vma_bind(vma,
				      obj ? obj->cache_level : 0,
				      PIN_UPDATE));
		if (obj)
			WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3530
	}
3531

3532
	ggtt->vm.closed = false;
3533
	i915_ggtt_invalidate(dev_priv);
3534

3535
	if (INTEL_GEN(dev_priv) >= 8) {
3536
		struct intel_ppat *ppat = &dev_priv->ppat;
3537

3538 3539
		bitmap_set(ppat->dirty, 0, ppat->max_entries);
		dev_priv->ppat.update_hw(dev_priv);
3540 3541 3542 3543
		return;
	}
}

3544
static struct scatterlist *
3545
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
3546
	     unsigned int width, unsigned int height,
3547
	     unsigned int stride,
3548
	     struct sg_table *st, struct scatterlist *sg)
3549 3550 3551 3552 3553
{
	unsigned int column, row;
	unsigned int src_idx;

	for (column = 0; column < width; column++) {
3554
		src_idx = stride * (height - 1) + column + offset;
3555 3556 3557 3558 3559 3560
		for (row = 0; row < height; row++) {
			st->nents++;
			/* We don't need the pages, but need to initialize
			 * the entries so the sg list can be happily traversed.
			 * The only thing we need are DMA addresses.
			 */
3561
			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
3562 3563
			sg_dma_address(sg) =
				i915_gem_object_get_dma_address(obj, src_idx);
3564
			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
3565
			sg = sg_next(sg);
3566
			src_idx -= stride;
3567 3568
		}
	}
3569 3570

	return sg;
3571 3572
}

3573 3574 3575
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
		   struct drm_i915_gem_object *obj)
3576
{
3577
	unsigned int size = intel_rotation_info_size(rot_info);
3578
	struct sg_table *st;
3579
	struct scatterlist *sg;
3580
	int ret = -ENOMEM;
3581
	int i;
3582 3583 3584 3585 3586 3587

	/* Allocate target SG list. */
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3588
	ret = sg_alloc_table(st, size, GFP_KERNEL);
3589 3590 3591
	if (ret)
		goto err_sg_alloc;

3592 3593 3594
	st->nents = 0;
	sg = st->sgl;

3595
	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3596
		sg = rotate_pages(obj, rot_info->plane[i].offset,
3597 3598
				  rot_info->plane[i].width, rot_info->plane[i].height,
				  rot_info->plane[i].stride, st, sg);
3599 3600
	}

3601 3602 3603 3604 3605 3606
	return st;

err_sg_alloc:
	kfree(st);
err_st_alloc:

3607 3608
	DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
			 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3609

3610 3611
	return ERR_PTR(ret);
}
3612

3613
static noinline struct sg_table *
3614 3615 3616 3617
intel_partial_pages(const struct i915_ggtt_view *view,
		    struct drm_i915_gem_object *obj)
{
	struct sg_table *st;
3618
	struct scatterlist *sg, *iter;
3619
	unsigned int count = view->partial.size;
3620
	unsigned int offset;
3621 3622 3623 3624 3625 3626
	int ret = -ENOMEM;

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (!st)
		goto err_st_alloc;

3627
	ret = sg_alloc_table(st, count, GFP_KERNEL);
3628 3629 3630
	if (ret)
		goto err_sg_alloc;

3631
	iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3632 3633
	GEM_BUG_ON(!iter);

3634 3635
	sg = st->sgl;
	st->nents = 0;
3636 3637
	do {
		unsigned int len;
3638

3639 3640 3641 3642 3643 3644
		len = min(iter->length - (offset << PAGE_SHIFT),
			  count << PAGE_SHIFT);
		sg_set_page(sg, NULL, len, 0);
		sg_dma_address(sg) =
			sg_dma_address(iter) + (offset << PAGE_SHIFT);
		sg_dma_len(sg) = len;
3645 3646

		st->nents++;
3647 3648 3649
		count -= len >> PAGE_SHIFT;
		if (count == 0) {
			sg_mark_end(sg);
3650 3651
			i915_sg_trim(st); /* Drop any unused tail entries. */

3652 3653
			return st;
		}
3654

3655 3656 3657 3658
		sg = __sg_next(sg);
		iter = __sg_next(iter);
		offset = 0;
	} while (1);
3659 3660 3661 3662 3663 3664 3665

err_sg_alloc:
	kfree(st);
err_st_alloc:
	return ERR_PTR(ret);
}

3666
static int
3667
i915_get_ggtt_vma_pages(struct i915_vma *vma)
3668
{
3669
	int ret;
3670

3671 3672 3673 3674 3675 3676 3677
	/* The vma->pages are only valid within the lifespan of the borrowed
	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
	 * must be the vma->pages. A simple rule is that vma->pages must only
	 * be accessed when the obj->mm.pages are pinned.
	 */
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));

3678
	switch (vma->ggtt_view.type) {
3679 3680 3681
	default:
		GEM_BUG_ON(vma->ggtt_view.type);
		/* fall through */
3682 3683
	case I915_GGTT_VIEW_NORMAL:
		vma->pages = vma->obj->mm.pages;
3684 3685
		return 0;

3686
	case I915_GGTT_VIEW_ROTATED:
3687
		vma->pages =
3688 3689 3690 3691
			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
		break;

	case I915_GGTT_VIEW_PARTIAL:
3692
		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3693 3694
		break;
	}
3695

3696 3697
	ret = 0;
	if (unlikely(IS_ERR(vma->pages))) {
3698 3699
		ret = PTR_ERR(vma->pages);
		vma->pages = NULL;
3700 3701
		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
			  vma->ggtt_view.type, ret);
3702
	}
3703
	return ret;
3704 3705
}

3706 3707
/**
 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @offset: where to insert inside the GTT,
 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 *          (@offset + @size) must fit within the address space
 * @color: color to apply to node, if this node is not from a VMA,
 *         color must be #I915_COLOR_UNEVICTABLE
 * @flags: control search and eviction behaviour
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
 *
 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 * the address space (using @size and @color). If the @node does not fit, it
 * tries to evict any overlapping nodes from the GTT, including any
 * neighbouring nodes if the colors do not match (to ensure guard pages between
 * differing domains). See i915_gem_evict_for_node() for the gory details
 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 * evicting active overlapping objects, and any overlapping node that is pinned
 * or marked as unevictable will also result in failure.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_reserve(struct i915_address_space *vm,
			 struct drm_mm_node *node,
			 u64 size, u64 offset, unsigned long color,
			 unsigned int flags)
{
	int err;

	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(range_overflows(offset, size, vm->total));
3742
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3743
	GEM_BUG_ON(drm_mm_node_allocated(node));
3744 3745 3746 3747 3748 3749 3750 3751 3752

	node->size = size;
	node->start = offset;
	node->color = color;

	err = drm_mm_reserve_node(&vm->mm, node);
	if (err != -ENOSPC)
		return err;

3753 3754 3755
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3756 3757 3758 3759 3760 3761 3762
	err = i915_gem_evict_for_node(vm, node, flags);
	if (err == 0)
		err = drm_mm_reserve_node(&vm->mm, node);

	return err;
}

3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
	u64 range, addr;

	GEM_BUG_ON(range_overflows(start, len, end));
	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));

	range = round_down(end - len, align) - round_up(start, align);
	if (range) {
		if (sizeof(unsigned long) == sizeof(u64)) {
			addr = get_random_long();
		} else {
			addr = get_random_int();
			if (range > U32_MAX) {
				addr <<= 32;
				addr |= get_random_int();
			}
		}
		div64_u64_rem(addr, range, &addr);
		start += addr;
	}

	return round_up(start, align);
}

3788 3789
/**
 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3790 3791 3792 3793 3794 3795 3796 3797 3798
 * @vm: the &struct i915_address_space
 * @node: the &struct drm_mm_node (typically i915_vma.node)
 * @size: how much space to allocate inside the GTT,
 *        must be #I915_GTT_PAGE_SIZE aligned
 * @alignment: required alignment of starting offset, may be 0 but
 *             if specified, this must be a power-of-two and at least
 *             #I915_GTT_MIN_ALIGNMENT
 * @color: color to apply to node
 * @start: start of any range restriction inside GTT (0 for all),
3799
 *         must be #I915_GTT_PAGE_SIZE aligned
3800 3801 3802
 * @end: end of any range restriction inside GTT (U64_MAX for all),
 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
 * @flags: control search and eviction behaviour
3803 3804 3805 3806 3807 3808
 *
 * i915_gem_gtt_insert() first searches for an available hole into which
 * is can insert the node. The hole address is aligned to @alignment and
 * its @size must then fit entirely within the [@start, @end] bounds. The
 * nodes on either side of the hole must match @color, or else a guard page
 * will be inserted between the two nodes (or the node evicted). If no
3809 3810
 * suitable hole is found, first a victim is randomly selected and tested
 * for eviction, otherwise then the LRU list of objects within the GTT
3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
 * is scanned to find the first set of replacement nodes to create the hole.
 * Those old overlapping nodes are evicted from the GTT (and so must be
 * rebound before any future use). Any node that is currently pinned cannot
 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
 * active and #PIN_NONBLOCK is specified, that node is also skipped when
 * searching for an eviction candidate. See i915_gem_evict_something() for
 * the gory details on the eviction algorithm.
 *
 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 * asked to wait for eviction and interrupted.
 */
int i915_gem_gtt_insert(struct i915_address_space *vm,
			struct drm_mm_node *node,
			u64 size, u64 alignment, unsigned long color,
			u64 start, u64 end, unsigned int flags)
{
3827
	enum drm_mm_insert_mode mode;
3828
	u64 offset;
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838
	int err;

	lockdep_assert_held(&vm->i915->drm.struct_mutex);
	GEM_BUG_ON(!size);
	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
	GEM_BUG_ON(start >= end);
	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3839
	GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
3840
	GEM_BUG_ON(drm_mm_node_allocated(node));
3841 3842 3843 3844 3845 3846 3847

	if (unlikely(range_overflows(start, size, end)))
		return -ENOSPC;

	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
		return -ENOSPC;

3848 3849
	mode = DRM_MM_INSERT_BEST;
	if (flags & PIN_HIGH)
3850
		mode = DRM_MM_INSERT_HIGHEST;
3851 3852
	if (flags & PIN_MAPPABLE)
		mode = DRM_MM_INSERT_LOW;
3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863

	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
	 * so we know that we always have a minimum alignment of 4096.
	 * The drm_mm range manager is optimised to return results
	 * with zero alignment, so where possible use the optimal
	 * path.
	 */
	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
	if (alignment <= I915_GTT_MIN_ALIGNMENT)
		alignment = 0;

3864 3865 3866
	err = drm_mm_insert_node_in_range(&vm->mm, node,
					  size, alignment, color,
					  start, end, mode);
3867 3868 3869
	if (err != -ENOSPC)
		return err;

3870 3871 3872 3873 3874 3875 3876 3877 3878
	if (mode & DRM_MM_INSERT_ONCE) {
		err = drm_mm_insert_node_in_range(&vm->mm, node,
						  size, alignment, color,
						  start, end,
						  DRM_MM_INSERT_BEST);
		if (err != -ENOSPC)
			return err;
	}

3879 3880 3881
	if (flags & PIN_NOEVICT)
		return -ENOSPC;

3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
	/* No free space, pick a slot at random.
	 *
	 * There is a pathological case here using a GTT shared between
	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
	 *
	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
	 *         (64k objects)             (448k objects)
	 *
	 * Now imagine that the eviction LRU is ordered top-down (just because
	 * pathology meets real life), and that we need to evict an object to
	 * make room inside the aperture. The eviction scan then has to walk
	 * the 448k list before it finds one within range. And now imagine that
	 * it has to search for a new hole between every byte inside the memcpy,
	 * for several simultaneous clients.
	 *
	 * On a full-ppgtt system, if we have run out of available space, there
	 * will be lots and lots of objects in the eviction list! Again,
	 * searching that LRU list may be slow if we are also applying any
	 * range restrictions (e.g. restriction to low 4GiB) and so, for
	 * simplicity and similarilty between different GTT, try the single
	 * random replacement first.
	 */
	offset = random_offset(start, end,
			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
	err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
	if (err != -ENOSPC)
		return err;

	/* Randomly selected placement is pinned, do a search */
3911 3912 3913 3914 3915
	err = i915_gem_evict_something(vm, size, alignment, color,
				       start, end, flags);
	if (err)
		return err;

3916 3917 3918
	return drm_mm_insert_node_in_range(&vm->mm, node,
					   size, alignment, color,
					   start, end, DRM_MM_INSERT_EVICT);
3919
}
3920 3921 3922

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
3923
#include "selftests/i915_gem_gtt.c"
3924
#endif