intel_lrc.c 71.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
/*
 * Copyright © 2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Ben Widawsky <ben@bwidawsk.net>
 *    Michel Thierry <michel.thierry@intel.com>
 *    Thomas Daniel <thomas.daniel@intel.com>
 *    Oscar Mateo <oscar.mateo@intel.com>
 *
 */

31 32 33 34
/**
 * DOC: Logical Rings, Logical Ring Contexts and Execlists
 *
 * Motivation:
35 36 37 38
 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
 * These expanded contexts enable a number of new abilities, especially
 * "Execlists" (also implemented in this file).
 *
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 * One of the main differences with the legacy HW contexts is that logical
 * ring contexts incorporate many more things to the context's state, like
 * PDPs or ringbuffer control registers:
 *
 * The reason why PDPs are included in the context is straightforward: as
 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
 * instead, the GPU will do it for you on the context switch.
 *
 * But, what about the ringbuffer control registers (head, tail, etc..)?
 * shouldn't we just need a set of those per engine command streamer? This is
 * where the name "Logical Rings" starts to make sense: by virtualizing the
 * rings, the engine cs shifts to a new "ring buffer" with every context
 * switch. When you want to submit a workload to the GPU you: A) choose your
 * context, B) find its appropriate virtualized ring, C) write commands to it
 * and then, finally, D) tell the GPU to switch to that context.
 *
 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
 * to a contexts is via a context execution list, ergo "Execlists".
 *
 * LRC implementation:
 * Regarding the creation of contexts, we have:
 *
 * - One global default context.
 * - One local default context for each opened fd.
 * - One local extra context for each context create ioctl call.
 *
 * Now that ringbuffers belong per-context (and not per-engine, like before)
 * and that contexts are uniquely tied to a given engine (and not reusable,
 * like before) we need:
 *
 * - One ringbuffer per-engine inside each context.
 * - One backing object per-engine inside each context.
 *
 * The global default context starts its life with these new objects fully
 * allocated and populated. The local default context for each opened fd is
 * more complex, because we don't know at creation time which engine is going
 * to use them. To handle this, we have implemented a deferred creation of LR
 * contexts:
 *
 * The local context starts its life as a hollow or blank holder, that only
 * gets populated for a given engine once we receive an execbuffer. If later
 * on we receive another execbuffer ioctl for the same context but a different
 * engine, we allocate/populate a new ringbuffer and context backing object and
 * so on.
 *
 * Finally, regarding local contexts created using the ioctl call: as they are
 * only allowed with the render ring, we can allocate & populate them right
 * away (no need to defer anything, at least for now).
 *
 * Execlists implementation:
90 91
 * Execlists are the new method by which, on gen8+ hardware, workloads are
 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
 * This method works as follows:
 *
 * When a request is committed, its commands (the BB start and any leading or
 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
 * for the appropriate context. The tail pointer in the hardware context is not
 * updated at this time, but instead, kept by the driver in the ringbuffer
 * structure. A structure representing this request is added to a request queue
 * for the appropriate engine: this structure contains a copy of the context's
 * tail after the request was written to the ring buffer and a pointer to the
 * context itself.
 *
 * If the engine's request queue was empty before the request was added, the
 * queue is processed immediately. Otherwise the queue will be processed during
 * a context switch interrupt. In any case, elements on the queue will get sent
 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
 * globally unique 20-bits submission ID.
 *
 * When execution of a request completes, the GPU updates the context status
 * buffer with a context complete event and generates a context switch interrupt.
 * During the interrupt handling, the driver examines the events in the buffer:
 * for each context complete event, if the announced ID matches that on the head
 * of the request queue, then that request is retired and removed from the queue.
 *
 * After processing, if any requests were retired and the queue is not empty
 * then a new execution list can be submitted. The two requests at the front of
 * the queue are next to be submitted but since a context may not occur twice in
 * an execution list, if subsequent requests have the same ID as the first then
 * the two requests must be combined. This is done simply by discarding requests
 * at the head of the queue until either only one requests is left (in which case
 * we use a NULL second context) or the first two requests have unique IDs.
 *
 * By always executing the first two requests in the queue the driver ensures
 * that the GPU is kept as busy as possible. In the case where a single context
 * completes but a second context is still executing, the request for this second
 * context will be at the head of the queue when we remove the first one. This
 * request will then be resubmitted along with a new request for a different context,
 * which will cause the hardware to continue executing the second request and queue
 * the new request (the GPU detects the condition of a context getting preempted
 * with the same context and optimizes the context switch flow by not doing
 * preemption, but just sampling the new tail pointer).
 *
133
 */
134
#include <linux/interrupt.h>
135 136 137 138

#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
139
#include "i915_gem_render_state.h"
140
#include "intel_lrc_reg.h"
141
#include "intel_mocs.h"
142

143 144 145 146 147 148 149 150 151 152 153 154 155
#define RING_EXECLIST_QFULL		(1 << 0x2)
#define RING_EXECLIST1_VALID		(1 << 0x3)
#define RING_EXECLIST0_VALID		(1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
#define RING_EXECLIST1_ACTIVE		(1 << 0x11)
#define RING_EXECLIST0_ACTIVE		(1 << 0x12)

#define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
#define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
156

157
#define GEN8_CTX_STATUS_COMPLETED_MASK \
158
	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159

160 161
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
162
#define WA_TAIL_DWORDS 2
163
#define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
C
Chris Wilson 已提交
164
#define PREEMPT_ID 0x1
165

166
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
167
					    struct intel_engine_cs *engine);
168 169 170 171
static void execlists_init_reg_state(u32 *reg_state,
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring);
172

173
/**
174 175 176
 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
 * 					  descriptor for a pinned context
 * @ctx: Context to work on
177
 * @engine: Engine the descriptor will be used with
178
 *
179 180 181 182 183
 * The context descriptor encodes various attributes of a context,
 * including its GTT address and some flags. Because it's fairly
 * expensive to calculate, we'll just do it once and cache the result,
 * which remains valid until the context is unpinned.
 *
184 185
 * This is what a descriptor looks like, from LSB to MSB::
 *
186
 *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
187 188 189 190
 *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
 *      bits 32-52:    ctx ID, a globally unique tag
 *      bits 53-54:    mbz, reserved for use by hardware
 *      bits 55-63:    group ID, currently unused and set to 0
191
 */
192
static void
193
intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
194
				   struct intel_engine_cs *engine)
195
{
196
	struct intel_context *ce = &ctx->engine[engine->id];
197
	u64 desc;
198

199
	BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
200

201
	desc = ctx->desc_template;				/* bits  0-11 */
202
	desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
203
								/* bits 12-31 */
204
	desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;		/* bits 32-52 */
205

206
	ce->lrc_desc = desc;
207 208
}

209 210 211 212
static struct i915_priolist *
lookup_priolist(struct intel_engine_cs *engine,
		struct i915_priotree *pt,
		int prio)
213
{
214
	struct intel_engine_execlists * const execlists = &engine->execlists;
215 216 217 218
	struct i915_priolist *p;
	struct rb_node **parent, *rb;
	bool first = true;

219
	if (unlikely(execlists->no_priolist))
220 221 222 223 224
		prio = I915_PRIORITY_NORMAL;

find_priolist:
	/* most positive priority is scheduled first, equal priorities fifo */
	rb = NULL;
225
	parent = &execlists->queue.rb_node;
226 227 228 229 230 231 232 233 234
	while (*parent) {
		rb = *parent;
		p = rb_entry(rb, typeof(*p), node);
		if (prio > p->priority) {
			parent = &rb->rb_left;
		} else if (prio < p->priority) {
			parent = &rb->rb_right;
			first = false;
		} else {
235
			return p;
236 237 238 239
		}
	}

	if (prio == I915_PRIORITY_NORMAL) {
240
		p = &execlists->default_priolist;
241 242 243 244 245 246 247 248 249 250 251 252 253 254
	} else {
		p = kmem_cache_alloc(engine->i915->priorities, GFP_ATOMIC);
		/* Convert an allocation failure to a priority bump */
		if (unlikely(!p)) {
			prio = I915_PRIORITY_NORMAL; /* recurses just once */

			/* To maintain ordering with all rendering, after an
			 * allocation failure we have to disable all scheduling.
			 * Requests will then be executed in fifo, and schedule
			 * will ensure that dependencies are emitted in fifo.
			 * There will be still some reordering with existing
			 * requests, so if userspace lied about their
			 * dependencies that reordering may be visible.
			 */
255
			execlists->no_priolist = true;
256 257 258 259 260
			goto find_priolist;
		}
	}

	p->priority = prio;
261
	INIT_LIST_HEAD(&p->requests);
262
	rb_link_node(&p->node, rb, parent);
263
	rb_insert_color(&p->node, &execlists->queue);
264 265

	if (first)
266
		execlists->first = &p->node;
267

268
	return ptr_pack_bits(p, first, 1);
269 270
}

271 272 273 274 275 276
static void unwind_wa_tail(struct drm_i915_gem_request *rq)
{
	rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
	assert_ring_tail_valid(rq->ring, rq->tail);
}

277
static void __unwind_incomplete_requests(struct intel_engine_cs *engine)
278 279
{
	struct drm_i915_gem_request *rq, *rn;
280 281
	struct i915_priolist *uninitialized_var(p);
	int last_prio = I915_PRIORITY_INVALID;
282 283 284 285 286 287 288 289 290 291 292 293

	lockdep_assert_held(&engine->timeline->lock);

	list_for_each_entry_safe_reverse(rq, rn,
					 &engine->timeline->requests,
					 link) {
		if (i915_gem_request_completed(rq))
			return;

		__i915_gem_request_unsubmit(rq);
		unwind_wa_tail(rq);

294 295 296 297 298 299 300 301 302 303 304
		GEM_BUG_ON(rq->priotree.priority == I915_PRIORITY_INVALID);
		if (rq->priotree.priority != last_prio) {
			p = lookup_priolist(engine,
					    &rq->priotree,
					    rq->priotree.priority);
			p = ptr_mask_bits(p, 1);

			last_prio = rq->priotree.priority;
		}

		list_add(&rq->priotree.link, &p->requests);
305 306 307
	}
}

308
void
309 310 311 312 313 314 315 316 317 318
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
{
	struct intel_engine_cs *engine =
		container_of(execlists, typeof(*engine), execlists);

	spin_lock_irq(&engine->timeline->lock);
	__unwind_incomplete_requests(engine);
	spin_unlock_irq(&engine->timeline->lock);
}

319 320 321
static inline void
execlists_context_status_change(struct drm_i915_gem_request *rq,
				unsigned long status)
322
{
323 324 325 326 327 328
	/*
	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
	 * The compiler should eliminate this function as dead-code.
	 */
	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
		return;
329

330 331
	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
				   status, rq);
332 333
}

334 335 336 337
static inline void
execlists_context_schedule_in(struct drm_i915_gem_request *rq)
{
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
338
	intel_engine_context_in(rq->engine);
339 340 341 342 343
}

static inline void
execlists_context_schedule_out(struct drm_i915_gem_request *rq)
{
344
	intel_engine_context_out(rq->engine);
345 346 347
	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
}

348 349 350 351 352 353 354 355 356
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
	ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
	ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}

357
static u64 execlists_update_context(struct drm_i915_gem_request *rq)
358
{
359
	struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
360 361
	struct i915_hw_ppgtt *ppgtt =
		rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
362
	u32 *reg_state = ce->lrc_reg_state;
363

364
	reg_state[CTX_RING_TAIL+1] = intel_ring_set_tail(rq->ring, rq->tail);
365

366 367 368 369 370
	/* True 32b PPGTT with dynamic page allocation: update PDP
	 * registers and point the unallocated PDPs to scratch page.
	 * PML4 is allocated during ppgtt init, so this is not needed
	 * in 48-bit mode.
	 */
371
	if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
372
		execlists_update_context_pdps(ppgtt, reg_state);
373 374

	return ce->lrc_desc;
375 376
}

C
Chris Wilson 已提交
377 378 379 380 381 382
static inline void elsp_write(u64 desc, u32 __iomem *elsp)
{
	writel(upper_32_bits(desc), elsp);
	writel(lower_32_bits(desc), elsp);
}

383
static void execlists_submit_ports(struct intel_engine_cs *engine)
384
{
385
	struct execlist_port *port = engine->execlists.port;
386
	unsigned int n;
387

388
	for (n = execlists_num_ports(&engine->execlists); n--; ) {
389 390 391 392 393 394 395 396
		struct drm_i915_gem_request *rq;
		unsigned int count;
		u64 desc;

		rq = port_unpack(&port[n], &count);
		if (rq) {
			GEM_BUG_ON(count > !n);
			if (!count++)
397
				execlists_context_schedule_in(rq);
398 399 400
			port_set(&port[n], port_pack(rq, count));
			desc = execlists_update_context(rq);
			GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
401 402 403

			GEM_TRACE("%s in[%d]:  ctx=%d.%d, seqno=%x\n",
				  engine->name, n,
404
				  port[n].context_id, count,
405
				  rq->global_seqno);
406 407 408 409
		} else {
			GEM_BUG_ON(!n);
			desc = 0;
		}
410

411
		elsp_write(desc, engine->execlists.elsp);
412
	}
413
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
414 415
}

416
static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
417
{
418
	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
419
		i915_gem_context_force_single_submission(ctx));
420
}
421

422 423 424 425 426
static bool can_merge_ctx(const struct i915_gem_context *prev,
			  const struct i915_gem_context *next)
{
	if (prev != next)
		return false;
427

428 429
	if (ctx_single_port_submission(prev))
		return false;
430

431
	return true;
432 433
}

434 435 436 437 438 439 440 441 442 443 444
static void port_assign(struct execlist_port *port,
			struct drm_i915_gem_request *rq)
{
	GEM_BUG_ON(rq == port_request(port));

	if (port_isset(port))
		i915_gem_request_put(port_request(port));

	port_set(port, port_pack(i915_gem_request_get(rq), port_count(port)));
}

C
Chris Wilson 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
static void inject_preempt_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce =
		&engine->i915->preempt_context->engine[engine->id];
	unsigned int n;

	GEM_BUG_ON(engine->i915->preempt_context->hw_id != PREEMPT_ID);
	GEM_BUG_ON(!IS_ALIGNED(ce->ring->size, WA_TAIL_BYTES));

	memset(ce->ring->vaddr + ce->ring->tail, 0, WA_TAIL_BYTES);
	ce->ring->tail += WA_TAIL_BYTES;
	ce->ring->tail &= (ce->ring->size - 1);
	ce->lrc_reg_state[CTX_RING_TAIL+1] = ce->ring->tail;

459 460 461 462 463 464
	GEM_BUG_ON((ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1] &
		    _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				       CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)) !=
		   _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				      CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT));

465
	GEM_TRACE("%s\n", engine->name);
C
Chris Wilson 已提交
466
	for (n = execlists_num_ports(&engine->execlists); --n; )
467
		elsp_write(0, engine->execlists.elsp);
C
Chris Wilson 已提交
468

469
	elsp_write(ce->lrc_desc, engine->execlists.elsp);
470
	execlists_clear_active(&engine->execlists, EXECLISTS_ACTIVE_HWACK);
C
Chris Wilson 已提交
471 472
}

473
static void execlists_dequeue(struct intel_engine_cs *engine)
474
{
475 476
	struct intel_engine_execlists * const execlists = &engine->execlists;
	struct execlist_port *port = execlists->port;
477 478
	const struct execlist_port * const last_port =
		&execlists->port[execlists->port_mask];
C
Chris Wilson 已提交
479
	struct drm_i915_gem_request *last = port_request(port);
480
	struct rb_node *rb;
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	bool submit = false;

	/* Hardware submission is through 2 ports. Conceptually each port
	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
	 * static for a context, and unique to each, so we only execute
	 * requests belonging to a single context from each ring. RING_HEAD
	 * is maintained by the CS in the context image, it marks the place
	 * where it got up to last time, and through RING_TAIL we tell the CS
	 * where we want to execute up to this time.
	 *
	 * In this list the requests are in order of execution. Consecutive
	 * requests from the same context are adjacent in the ringbuffer. We
	 * can combine these requests into a single RING_TAIL update:
	 *
	 *              RING_HEAD...req1...req2
	 *                                    ^- RING_TAIL
	 * since to execute req2 the CS must first execute req1.
	 *
	 * Our goal then is to point each port to the end of a consecutive
	 * sequence of requests as being the most optimal (fewest wake ups
	 * and context switches) submission.
502
	 */
503

504
	spin_lock_irq(&engine->timeline->lock);
505 506
	rb = execlists->first;
	GEM_BUG_ON(rb_first(&execlists->queue) != rb);
C
Chris Wilson 已提交
507 508 509 510 511 512 513 514 515 516
	if (!rb)
		goto unlock;

	if (last) {
		/*
		 * Don't resubmit or switch until all outstanding
		 * preemptions (lite-restore) are seen. Then we
		 * know the next preemption status we see corresponds
		 * to this ELSP update.
		 */
517
		GEM_BUG_ON(!port_count(&port[0]));
C
Chris Wilson 已提交
518 519 520
		if (port_count(&port[0]) > 1)
			goto unlock;

521 522 523 524 525 526 527 528 529 530
		/*
		 * If we write to ELSP a second time before the HW has had
		 * a chance to respond to the previous write, we can confuse
		 * the HW and hit "undefined behaviour". After writing to ELSP,
		 * we must then wait until we see a context-switch event from
		 * the HW to indicate that it has had a chance to respond.
		 */
		if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
			goto unlock;

531
		if (HAS_LOGICAL_RING_PREEMPTION(engine->i915) &&
C
Chris Wilson 已提交
532 533 534 535 536 537 538
		    rb_entry(rb, struct i915_priolist, node)->priority >
		    max(last->priotree.priority, 0)) {
			/*
			 * Switch to our empty preempt context so
			 * the state of the GPU is known (idle).
			 */
			inject_preempt_context(engine);
539 540
			execlists_set_active(execlists,
					     EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
			goto unlock;
		} else {
			/*
			 * In theory, we could coalesce more requests onto
			 * the second port (the first port is active, with
			 * no preemptions pending). However, that means we
			 * then have to deal with the possible lite-restore
			 * of the second port (as we submit the ELSP, there
			 * may be a context-switch) but also we may complete
			 * the resubmission before the context-switch. Ergo,
			 * coalescing onto the second port will cause a
			 * preemption event, but we cannot predict whether
			 * that will affect port[0] or port[1].
			 *
			 * If the second port is already active, we can wait
			 * until the next context-switch before contemplating
			 * new requests. The GPU will be busy and we should be
			 * able to resubmit the new ELSP before it idles,
			 * avoiding pipeline bubbles (momentary pauses where
			 * the driver is unable to keep up the supply of new
			 * work).
			 */
			if (port_count(&port[1]))
				goto unlock;

			/* WaIdleLiteRestore:bdw,skl
			 * Apply the wa NOOPs to prevent
			 * ring:HEAD == req:TAIL as we resubmit the
			 * request. See gen8_emit_breadcrumb() for
			 * where we prepare the padding after the
			 * end of the request.
			 */
			last->tail = last->wa_tail;
		}
	}

	do {
578 579 580 581 582 583 584 585 586 587 588 589 590 591
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
		struct drm_i915_gem_request *rq, *rn;

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			/*
			 * Can we combine this request with the current port?
			 * It has to be the same context/ringbuffer and not
			 * have any exceptions (e.g. GVT saying never to
			 * combine contexts).
			 *
			 * If we can combine the requests, we can execute both
			 * by updating the RING_TAIL to point to the end of the
			 * second request, and so we never need to tell the
			 * hardware about the first.
592
			 */
593 594 595 596 597 598
			if (last && !can_merge_ctx(rq->ctx, last->ctx)) {
				/*
				 * If we are on the second port and cannot
				 * combine this request with the last, then we
				 * are done.
				 */
599
				if (port == last_port) {
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				/*
				 * If GVT overrides us we only ever submit
				 * port[0], leaving port[1] empty. Note that we
				 * also have to be careful that we don't queue
				 * the same context (even though a different
				 * request) to the second port.
				 */
				if (ctx_single_port_submission(last->ctx) ||
				    ctx_single_port_submission(rq->ctx)) {
					__list_del_many(&p->requests,
							&rq->priotree.link);
					goto done;
				}

				GEM_BUG_ON(last->ctx == rq->ctx);

				if (submit)
					port_assign(port, last);
				port++;
624 625

				GEM_BUG_ON(port_isset(port));
626
			}
627

628 629
			INIT_LIST_HEAD(&rq->priotree.link);
			__i915_gem_request_submit(rq);
630
			trace_i915_gem_request_in(rq, port_index(port, execlists));
631 632
			last = rq;
			submit = true;
633
		}
634

635
		rb = rb_next(rb);
636
		rb_erase(&p->node, &execlists->queue);
637 638
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
639
			kmem_cache_free(engine->i915->priorities, p);
C
Chris Wilson 已提交
640
	} while (rb);
641
done:
642
	execlists->first = rb;
643
	if (submit)
644
		port_assign(port, last);
C
Chris Wilson 已提交
645
unlock:
646
	spin_unlock_irq(&engine->timeline->lock);
647

648 649
	if (submit) {
		execlists_set_active(execlists, EXECLISTS_ACTIVE_USER);
650
		execlists_submit_ports(engine);
651
	}
652 653
}

654
void
655
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
656
{
657
	struct execlist_port *port = execlists->port;
658
	unsigned int num_ports = execlists_num_ports(execlists);
659

660
	while (num_ports-- && port_isset(port)) {
661 662
		struct drm_i915_gem_request *rq = port_request(port);

663
		GEM_BUG_ON(!execlists->active);
664
		intel_engine_context_out(rq->engine);
665
		execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_PREEMPTED);
666 667
		i915_gem_request_put(rq);

668 669 670
		memset(port, 0, sizeof(*port));
		port++;
	}
671 672
}

673 674
static void execlists_cancel_requests(struct intel_engine_cs *engine)
{
675
	struct intel_engine_execlists * const execlists = &engine->execlists;
676 677 678 679 680 681 682
	struct drm_i915_gem_request *rq, *rn;
	struct rb_node *rb;
	unsigned long flags;

	spin_lock_irqsave(&engine->timeline->lock, flags);

	/* Cancel the requests on the HW and clear the ELSP tracker. */
683
	execlists_cancel_port_requests(execlists);
684 685 686 687 688 689 690 691 692

	/* Mark all executing requests as skipped. */
	list_for_each_entry(rq, &engine->timeline->requests, link) {
		GEM_BUG_ON(!rq->global_seqno);
		if (!i915_gem_request_completed(rq))
			dma_fence_set_error(&rq->fence, -EIO);
	}

	/* Flush the queued requests to the timeline list (for retiring). */
693
	rb = execlists->first;
694 695 696 697 698 699 700 701 702 703 704
	while (rb) {
		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);

		list_for_each_entry_safe(rq, rn, &p->requests, priotree.link) {
			INIT_LIST_HEAD(&rq->priotree.link);

			dma_fence_set_error(&rq->fence, -EIO);
			__i915_gem_request_submit(rq);
		}

		rb = rb_next(rb);
705
		rb_erase(&p->node, &execlists->queue);
706 707 708 709 710 711 712
		INIT_LIST_HEAD(&p->requests);
		if (p->priority != I915_PRIORITY_NORMAL)
			kmem_cache_free(engine->i915->priorities, p);
	}

	/* Remaining _unready_ requests will be nop'ed when submitted */

713

714 715
	execlists->queue = RB_ROOT;
	execlists->first = NULL;
716
	GEM_BUG_ON(port_isset(execlists->port));
717 718 719 720 721 722 723 724 725 726 727 728

	/*
	 * The port is checked prior to scheduling a tasklet, but
	 * just in case we have suspended the tasklet to do the
	 * wedging make sure that when it wakes, it decides there
	 * is no work to do by clearing the irq_posted bit.
	 */
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);

	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

729
/*
730 731 732
 * Check the unread Context Status Buffers and manage the submission of new
 * contexts to the ELSP accordingly.
 */
733
static void execlists_submission_tasklet(unsigned long data)
734
{
735 736
	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
	struct intel_engine_execlists * const execlists = &engine->execlists;
C
Chris Wilson 已提交
737
	struct execlist_port * const port = execlists->port;
738
	struct drm_i915_private *dev_priv = engine->i915;
739
	bool fw = false;
740

741 742 743 744 745 746 747 748 749
	/* We can skip acquiring intel_runtime_pm_get() here as it was taken
	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
	 * not be relinquished until the device is idle (see
	 * i915_gem_idle_work_handler()). As a precaution, we make sure
	 * that all ELSP are drained i.e. we have processed the CSB,
	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
	 */
	GEM_BUG_ON(!dev_priv->gt.awake);

750 751 752 753 754
	/* Prefer doing test_and_clear_bit() as a two stage operation to avoid
	 * imposing the cost of a locked atomic transaction when submitting a
	 * new request (outside of the context-switch interrupt).
	 */
	while (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
755 756 757
		/* The HWSP contains a (cacheable) mirror of the CSB */
		const u32 *buf =
			&engine->status_page.page_addr[I915_HWS_CSB_BUF0_INDEX];
758
		unsigned int head, tail;
759

760
		if (unlikely(execlists->csb_use_mmio)) {
761 762
			buf = (u32 * __force)
				(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0)));
763
			execlists->csb_head = -1; /* force mmio read of CSB ptrs */
764 765
		}

766 767 768 769 770 771 772 773 774 775 776
		/* The write will be ordered by the uncached read (itself
		 * a memory barrier), so we do not need another in the form
		 * of a locked instruction. The race between the interrupt
		 * handler and the split test/clear is harmless as we order
		 * our clear before the CSB read. If the interrupt arrived
		 * first between the test and the clear, we read the updated
		 * CSB and clear the bit. If the interrupt arrives as we read
		 * the CSB or later (i.e. after we had cleared the bit) the bit
		 * is set and we do a new loop.
		 */
		__clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
777
		if (unlikely(execlists->csb_head == -1)) { /* following a reset */
778 779 780 781 782 783
			if (!fw) {
				intel_uncore_forcewake_get(dev_priv,
							   execlists->fw_domains);
				fw = true;
			}

784 785 786
			head = readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
			tail = GEN8_CSB_WRITE_PTR(head);
			head = GEN8_CSB_READ_PTR(head);
787
			execlists->csb_head = head;
788 789 790 791 792
		} else {
			const int write_idx =
				intel_hws_csb_write_index(dev_priv) -
				I915_HWS_CSB_BUF0_INDEX;

793
			head = execlists->csb_head;
794 795
			tail = READ_ONCE(buf[write_idx]);
		}
796
		GEM_TRACE("%s cs-irq head=%d [%d%s], tail=%d [%d%s]\n",
797
			  engine->name,
798 799
			  head, GEN8_CSB_READ_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?",
			  tail, GEN8_CSB_WRITE_PTR(readl(dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)))), fw ? "" : "?");
800

801
		while (head != tail) {
802
			struct drm_i915_gem_request *rq;
803
			unsigned int status;
804
			unsigned int count;
805 806 807

			if (++head == GEN8_CSB_ENTRIES)
				head = 0;
808

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
			/* We are flying near dragons again.
			 *
			 * We hold a reference to the request in execlist_port[]
			 * but no more than that. We are operating in softirq
			 * context and so cannot hold any mutex or sleep. That
			 * prevents us stopping the requests we are processing
			 * in port[] from being retired simultaneously (the
			 * breadcrumb will be complete before we see the
			 * context-switch). As we only hold the reference to the
			 * request, any pointer chasing underneath the request
			 * is subject to a potential use-after-free. Thus we
			 * store all of the bookkeeping within port[] as
			 * required, and avoid using unguarded pointers beneath
			 * request itself. The same applies to the atomic
			 * status notifier.
			 */

826
			status = READ_ONCE(buf[2 * head]); /* maybe mmio! */
827
			GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
828
				  engine->name, head,
829 830
				  status, buf[2*head + 1],
				  execlists->active);
831 832 833 834 835 836 837 838 839

			if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
				      GEN8_CTX_STATUS_PREEMPTED))
				execlists_set_active(execlists,
						     EXECLISTS_ACTIVE_HWACK);
			if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_HWACK);

840 841 842
			if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
				continue;

843 844 845
			/* We should never get a COMPLETED | IDLE_ACTIVE! */
			GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);

846
			if (status & GEN8_CTX_STATUS_COMPLETE &&
C
Chris Wilson 已提交
847
			    buf[2*head + 1] == PREEMPT_ID) {
848 849
				GEM_TRACE("%s preempt-idle\n", engine->name);

850 851
				execlists_cancel_port_requests(execlists);
				execlists_unwind_incomplete_requests(execlists);
C
Chris Wilson 已提交
852

853 854 855 856
				GEM_BUG_ON(!execlists_is_active(execlists,
								EXECLISTS_ACTIVE_PREEMPT));
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_PREEMPT);
C
Chris Wilson 已提交
857 858 859 860
				continue;
			}

			if (status & GEN8_CTX_STATUS_PREEMPTED &&
861 862
			    execlists_is_active(execlists,
						EXECLISTS_ACTIVE_PREEMPT))
C
Chris Wilson 已提交
863 864
				continue;

865 866 867
			GEM_BUG_ON(!execlists_is_active(execlists,
							EXECLISTS_ACTIVE_USER));

868
			/* Check the context/desc id for this event matches */
869
			GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
870

871
			rq = port_unpack(port, &count);
872 873
			GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
				  engine->name,
874
				  port->context_id, count,
875
				  rq ? rq->global_seqno : 0);
876 877
			GEM_BUG_ON(count == 0);
			if (--count == 0) {
878
				GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
879 880
				GEM_BUG_ON(port_isset(&port[1]) &&
					   !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
881
				GEM_BUG_ON(!i915_gem_request_completed(rq));
882
				execlists_context_schedule_out(rq);
883 884
				trace_i915_gem_request_out(rq);
				i915_gem_request_put(rq);
885

886
				execlists_port_complete(execlists, port);
887 888
			} else {
				port_set(port, port_pack(rq, count));
889
			}
890

891 892
			/* After the final element, the hw should be idle */
			GEM_BUG_ON(port_count(port) == 0 &&
893
				   !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
894 895 896
			if (port_count(port) == 0)
				execlists_clear_active(execlists,
						       EXECLISTS_ACTIVE_USER);
897
		}
898

899 900
		if (head != execlists->csb_head) {
			execlists->csb_head = head;
901 902 903
			writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK, head << 8),
			       dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine)));
		}
904 905
	}

906
	if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT))
907
		execlists_dequeue(engine);
908

909 910
	if (fw)
		intel_uncore_forcewake_put(dev_priv, execlists->fw_domains);
911 912
}

913 914 915 916 917 918 919
static void insert_request(struct intel_engine_cs *engine,
			   struct i915_priotree *pt,
			   int prio)
{
	struct i915_priolist *p = lookup_priolist(engine, pt, prio);

	list_add_tail(&pt->link, &ptr_mask_bits(p, 1)->requests);
C
Chris Wilson 已提交
920
	if (ptr_unmask_bits(p, 1))
921
		tasklet_hi_schedule(&engine->execlists.tasklet);
922 923
}

924
static void execlists_submit_request(struct drm_i915_gem_request *request)
925
{
926
	struct intel_engine_cs *engine = request->engine;
927
	unsigned long flags;
928

929 930
	/* Will be called from irq-context when using foreign fences. */
	spin_lock_irqsave(&engine->timeline->lock, flags);
931

932
	insert_request(engine, &request->priotree, request->priotree.priority);
933

934
	GEM_BUG_ON(!engine->execlists.first);
935 936
	GEM_BUG_ON(list_empty(&request->priotree.link));

937
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
938 939
}

940 941 942 943 944
static struct drm_i915_gem_request *pt_to_request(struct i915_priotree *pt)
{
	return container_of(pt, struct drm_i915_gem_request, priotree);
}

945 946 947
static struct intel_engine_cs *
pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
{
948
	struct intel_engine_cs *engine = pt_to_request(pt)->engine;
949 950

	GEM_BUG_ON(!locked);
951 952

	if (engine != locked) {
953 954
		spin_unlock(&locked->timeline->lock);
		spin_lock(&engine->timeline->lock);
955 956 957 958 959 960 961
	}

	return engine;
}

static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
{
962
	struct intel_engine_cs *engine;
963 964 965 966
	struct i915_dependency *dep, *p;
	struct i915_dependency stack;
	LIST_HEAD(dfs);

967 968
	GEM_BUG_ON(prio == I915_PRIORITY_INVALID);

969 970 971
	if (i915_gem_request_completed(request))
		return;

972 973 974
	if (prio <= READ_ONCE(request->priotree.priority))
		return;

975 976
	/* Need BKL in order to use the temporary link inside i915_dependency */
	lockdep_assert_held(&request->i915->drm.struct_mutex);
977 978 979 980

	stack.signaler = &request->priotree;
	list_add(&stack.dfs_link, &dfs);

981 982
	/*
	 * Recursively bump all dependent priorities to match the new request.
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
	 *
	 * A naive approach would be to use recursion:
	 * static void update_priorities(struct i915_priotree *pt, prio) {
	 *	list_for_each_entry(dep, &pt->signalers_list, signal_link)
	 *		update_priorities(dep->signal, prio)
	 *	insert_request(pt);
	 * }
	 * but that may have unlimited recursion depth and so runs a very
	 * real risk of overunning the kernel stack. Instead, we build
	 * a flat list of all dependencies starting with the current request.
	 * As we walk the list of dependencies, we add all of its dependencies
	 * to the end of the list (this may include an already visited
	 * request) and continue to walk onwards onto the new dependencies. The
	 * end result is a topological list of requests in reverse order, the
	 * last element in the list is the request we must execute first.
	 */
999
	list_for_each_entry(dep, &dfs, dfs_link) {
1000 1001
		struct i915_priotree *pt = dep->signaler;

1002 1003
		/*
		 * Within an engine, there can be no cycle, but we may
1004 1005 1006 1007 1008
		 * refer to the same dependency chain multiple times
		 * (redundant dependencies are not eliminated) and across
		 * engines.
		 */
		list_for_each_entry(p, &pt->signalers_list, signal_link) {
1009 1010
			GEM_BUG_ON(p == dep); /* no cycles! */

1011
			if (i915_priotree_signaled(p->signaler))
1012 1013
				continue;

1014
			GEM_BUG_ON(p->signaler->priority < pt->priority);
1015 1016
			if (prio > READ_ONCE(p->signaler->priority))
				list_move_tail(&p->dfs_link, &dfs);
1017
		}
1018 1019
	}

1020 1021
	/*
	 * If we didn't need to bump any existing priorities, and we haven't
1022 1023 1024 1025
	 * yet submitted this request (i.e. there is no potential race with
	 * execlists_submit_request()), we can set our own priority and skip
	 * acquiring the engine locks.
	 */
1026
	if (request->priotree.priority == I915_PRIORITY_INVALID) {
1027 1028 1029 1030 1031 1032 1033
		GEM_BUG_ON(!list_empty(&request->priotree.link));
		request->priotree.priority = prio;
		if (stack.dfs_link.next == stack.dfs_link.prev)
			return;
		__list_del_entry(&stack.dfs_link);
	}

1034 1035 1036
	engine = request->engine;
	spin_lock_irq(&engine->timeline->lock);

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	/* Fifo and depth-first replacement ensure our deps execute before us */
	list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
		struct i915_priotree *pt = dep->signaler;

		INIT_LIST_HEAD(&dep->dfs_link);

		engine = pt_lock_engine(pt, engine);

		if (prio <= pt->priority)
			continue;

		pt->priority = prio;
1049 1050 1051
		if (!list_empty(&pt->link)) {
			__list_del_entry(&pt->link);
			insert_request(engine, pt, prio);
1052
		}
1053 1054
	}

1055
	spin_unlock_irq(&engine->timeline->lock);
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
static int __context_pin(struct i915_gem_context *ctx, struct i915_vma *vma)
{
	unsigned int flags;
	int err;

	/*
	 * Clear this page out of any CPU caches for coherent swap-in/out.
	 * We only want to do this on the first bind so that we do not stall
	 * on an active context (which by nature is already on the GPU).
	 */
	if (!(vma->flags & I915_VMA_GLOBAL_BIND)) {
		err = i915_gem_object_set_to_gtt_domain(vma->obj, true);
		if (err)
			return err;
	}

	flags = PIN_GLOBAL | PIN_HIGH;
	if (ctx->ggtt_offset_bias)
		flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;

	return i915_vma_pin(vma, 0, GEN8_LR_CONTEXT_ALIGN, flags);
}

1081 1082 1083
static struct intel_ring *
execlists_context_pin(struct intel_engine_cs *engine,
		      struct i915_gem_context *ctx)
1084
{
1085
	struct intel_context *ce = &ctx->engine[engine->id];
1086
	void *vaddr;
1087
	int ret;
1088

1089
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1090

1091 1092
	if (likely(ce->pin_count++))
		goto out;
1093
	GEM_BUG_ON(!ce->pin_count); /* no overflow please! */
1094

1095 1096 1097
	ret = execlists_context_deferred_alloc(ctx, engine);
	if (ret)
		goto err;
1098
	GEM_BUG_ON(!ce->state);
1099

1100
	ret = __context_pin(ctx, ce->state);
1101
	if (ret)
1102
		goto err;
1103

1104
	vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
1105 1106
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
1107
		goto unpin_vma;
1108 1109
	}

1110
	ret = intel_ring_pin(ce->ring, ctx->i915, ctx->ggtt_offset_bias);
1111
	if (ret)
1112
		goto unpin_map;
1113

1114
	intel_lr_context_descriptor_update(ctx, engine);
1115

1116 1117
	ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1118
		i915_ggtt_offset(ce->ring->vma);
1119

1120
	ce->state->obj->pin_global++;
1121
	i915_gem_context_get(ctx);
1122 1123
out:
	return ce->ring;
1124

1125
unpin_map:
1126 1127 1128
	i915_gem_object_unpin_map(ce->state->obj);
unpin_vma:
	__i915_vma_unpin(ce->state);
1129
err:
1130
	ce->pin_count = 0;
1131
	return ERR_PTR(ret);
1132 1133
}

1134 1135
static void execlists_context_unpin(struct intel_engine_cs *engine,
				    struct i915_gem_context *ctx)
1136
{
1137
	struct intel_context *ce = &ctx->engine[engine->id];
1138

1139
	lockdep_assert_held(&ctx->i915->drm.struct_mutex);
1140
	GEM_BUG_ON(ce->pin_count == 0);
1141

1142
	if (--ce->pin_count)
1143
		return;
1144

1145
	intel_ring_unpin(ce->ring);
1146

1147
	ce->state->obj->pin_global--;
1148 1149
	i915_gem_object_unpin_map(ce->state->obj);
	i915_vma_unpin(ce->state);
1150

1151
	i915_gem_context_put(ctx);
1152 1153
}

1154
static int execlists_request_alloc(struct drm_i915_gem_request *request)
1155 1156 1157
{
	struct intel_engine_cs *engine = request->engine;
	struct intel_context *ce = &request->ctx->engine[engine->id];
1158
	int ret;
1159

1160 1161
	GEM_BUG_ON(!ce->pin_count);

1162 1163 1164 1165 1166 1167
	/* Flush enough space to reduce the likelihood of waiting after
	 * we start building the request - in which case we will just
	 * have to repeat work.
	 */
	request->reserved_space += EXECLISTS_REQUEST_SIZE;

1168 1169 1170
	ret = intel_ring_wait_for_space(request->ring, request->reserved_space);
	if (ret)
		return ret;
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

	/* Note that after this point, we have committed to using
	 * this request as it is being used to both track the
	 * state of engine initialisation and liveness of the
	 * golden renderstate above. Think twice before you try
	 * to cancel/unwind this request now.
	 */

	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
	return 0;
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/*
 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
 * but there is a slight complication as this is applied in WA batch where the
 * values are only initialized once so we cannot take register value at the
 * beginning and reuse it further; hence we save its value to memory, upload a
 * constant value with bit21 set and then we restore it back with the saved value.
 * To simplify the WA, a constant value is formed by using the default value
 * of this register. This shouldn't be a problem because we are only modifying
 * it for a short period and this batch in non-premptible. We can ofcourse
 * use additional instructions that read the actual value of the register
 * at that time and set our bit of interest but it makes the WA complicated.
 *
 * This WA is also required for Gen9 so extracting as a function avoids
 * code duplication.
 */
1199 1200
static u32 *
gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1201
{
1202 1203 1204 1205 1206 1207 1208 1209 1210
	*batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;

1211 1212 1213 1214
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_DC_FLUSH_ENABLE,
				       0);
1215 1216 1217 1218 1219 1220 1221

	*batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
	*batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
	*batch++ = i915_ggtt_offset(engine->scratch) + 256;
	*batch++ = 0;

	return batch;
1222 1223
}

1224 1225 1226 1227 1228 1229
/*
 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
 * initialized at the beginning and shared across all contexts but this field
 * helps us to have multiple batches at different offsets and select them based
 * on a criteria. At the moment this batch always start at the beginning of the page
 * and at this point we don't have multiple wa_ctx batch buffers.
1230
 *
1231 1232
 * The number of WA applied are not known at the beginning; we use this field
 * to return the no of DWORDS written.
1233
 *
1234 1235 1236 1237
 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
 * so it adds NOOPs as padding to make it cacheline aligned.
 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
 * makes a complete batch buffer.
1238
 */
1239
static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1240
{
1241
	/* WaDisableCtxRestoreArbitration:bdw,chv */
1242
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1243

1244
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1245 1246
	if (IS_BROADWELL(engine->i915))
		batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1247

1248 1249
	/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
	/* Actual scratch location is at 128 bytes offset */
1250 1251 1252 1253 1254 1255 1256
	batch = gen8_emit_pipe_control(batch,
				       PIPE_CONTROL_FLUSH_L3 |
				       PIPE_CONTROL_GLOBAL_GTT_IVB |
				       PIPE_CONTROL_CS_STALL |
				       PIPE_CONTROL_QW_WRITE,
				       i915_ggtt_offset(engine->scratch) +
				       2 * CACHELINE_BYTES);
1257

C
Chris Wilson 已提交
1258 1259
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1260
	/* Pad to end of cacheline */
1261 1262
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1263 1264 1265 1266 1267 1268 1269

	/*
	 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
	 * execution depends on the length specified in terms of cache lines
	 * in the register CTX_RCS_INDIRECT_CTX
	 */

1270
	return batch;
1271 1272
}

1273
static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1274
{
C
Chris Wilson 已提交
1275 1276
	*batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;

1277
	/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1278
	batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1279

1280
	/* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1281 1282 1283 1284 1285
	*batch++ = MI_LOAD_REGISTER_IMM(1);
	*batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
	*batch++ = _MASKED_BIT_DISABLE(
			GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
	*batch++ = MI_NOOP;
1286

1287 1288
	/* WaClearSlmSpaceAtContextSwitch:kbl */
	/* Actual scratch location is at 128 bytes offset */
1289
	if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1290 1291 1292 1293 1294 1295 1296
		batch = gen8_emit_pipe_control(batch,
					       PIPE_CONTROL_FLUSH_L3 |
					       PIPE_CONTROL_GLOBAL_GTT_IVB |
					       PIPE_CONTROL_CS_STALL |
					       PIPE_CONTROL_QW_WRITE,
					       i915_ggtt_offset(engine->scratch)
					       + 2 * CACHELINE_BYTES);
1297
	}
1298

1299
	/* WaMediaPoolStateCmdInWABB:bxt,glk */
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	if (HAS_POOLED_EU(engine->i915)) {
		/*
		 * EU pool configuration is setup along with golden context
		 * during context initialization. This value depends on
		 * device type (2x6 or 3x6) and needs to be updated based
		 * on which subslice is disabled especially for 2x6
		 * devices, however it is safe to load default
		 * configuration of 3x6 device instead of masking off
		 * corresponding bits because HW ignores bits of a disabled
		 * subslice and drops down to appropriate config. Please
		 * see render_state_setup() in i915_gem_render_state.c for
		 * possible configurations, to avoid duplication they are
		 * not shown here again.
		 */
1314 1315 1316 1317 1318 1319
		*batch++ = GEN9_MEDIA_POOL_STATE;
		*batch++ = GEN9_MEDIA_POOL_ENABLE;
		*batch++ = 0x00777000;
		*batch++ = 0;
		*batch++ = 0;
		*batch++ = 0;
1320 1321
	}

C
Chris Wilson 已提交
1322 1323
	*batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1324
	/* Pad to end of cacheline */
1325 1326
	while ((unsigned long)batch % CACHELINE_BYTES)
		*batch++ = MI_NOOP;
1327

1328
	return batch;
1329 1330
}

1331 1332 1333
#define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)

static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1334
{
1335 1336 1337
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	int err;
1338

1339
	obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1340 1341
	if (IS_ERR(obj))
		return PTR_ERR(obj);
1342

1343
	vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1344 1345 1346
	if (IS_ERR(vma)) {
		err = PTR_ERR(vma);
		goto err;
1347 1348
	}

1349 1350 1351 1352 1353
	err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
	if (err)
		goto err;

	engine->wa_ctx.vma = vma;
1354
	return 0;
1355 1356 1357 1358

err:
	i915_gem_object_put(obj);
	return err;
1359 1360
}

1361
static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1362
{
1363
	i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1364 1365
}

1366 1367
typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);

1368
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1369
{
1370
	struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1371 1372 1373
	struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
					    &wa_ctx->per_ctx };
	wa_bb_func_t wa_bb_fn[2];
1374
	struct page *page;
1375 1376
	void *batch, *batch_ptr;
	unsigned int i;
1377
	int ret;
1378

1379
	if (GEM_WARN_ON(engine->id != RCS))
1380
		return -EINVAL;
1381

1382
	switch (INTEL_GEN(engine->i915)) {
1383 1384
	case 10:
		return 0;
1385 1386
	case 9:
		wa_bb_fn[0] = gen9_init_indirectctx_bb;
1387
		wa_bb_fn[1] = NULL;
1388 1389 1390
		break;
	case 8:
		wa_bb_fn[0] = gen8_init_indirectctx_bb;
1391
		wa_bb_fn[1] = NULL;
1392 1393 1394
		break;
	default:
		MISSING_CASE(INTEL_GEN(engine->i915));
1395
		return 0;
1396
	}
1397

1398
	ret = lrc_setup_wa_ctx(engine);
1399 1400 1401 1402 1403
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
		return ret;
	}

1404
	page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1405
	batch = batch_ptr = kmap_atomic(page);
1406

1407 1408 1409 1410 1411 1412 1413
	/*
	 * Emit the two workaround batch buffers, recording the offset from the
	 * start of the workaround batch buffer object for each and their
	 * respective sizes.
	 */
	for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
		wa_bb[i]->offset = batch_ptr - batch;
1414 1415
		if (GEM_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
					    CACHELINE_BYTES))) {
1416 1417 1418
			ret = -EINVAL;
			break;
		}
1419 1420
		if (wa_bb_fn[i])
			batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1421
		wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1422 1423
	}

1424 1425
	BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);

1426 1427
	kunmap_atomic(batch);
	if (ret)
1428
		lrc_destroy_wa_ctx(engine);
1429 1430 1431 1432

	return ret;
}

1433 1434 1435 1436 1437 1438 1439 1440
static u8 gtiir[] = {
	[RCS] = 0,
	[BCS] = 0,
	[VCS] = 1,
	[VCS2] = 1,
	[VECS] = 3,
};

1441
static void enable_execlists(struct intel_engine_cs *engine)
1442
{
1443
	struct drm_i915_private *dev_priv = engine->i915;
1444 1445

	I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461

	/*
	 * Make sure we're not enabling the new 12-deep CSB
	 * FIFO as that requires a slightly updated handling
	 * in the ctx switch irq. Since we're currently only
	 * using only 2 elements of the enhanced execlists the
	 * deeper FIFO it's not needed and it's not worth adding
	 * more statements to the irq handler to support it.
	 */
	if (INTEL_GEN(dev_priv) >= 11)
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_DISABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
	else
		I915_WRITE(RING_MODE_GEN7(engine),
			   _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));

1462 1463 1464 1465 1466 1467 1468
	I915_WRITE(RING_HWS_PGA(engine->mmio_base),
		   engine->status_page.ggtt_offset);
	POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}

static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
1469
	struct intel_engine_execlists * const execlists = &engine->execlists;
1470 1471 1472 1473 1474
	int ret;

	ret = intel_mocs_init_engine(engine);
	if (ret)
		return ret;
1475

1476
	intel_engine_reset_breadcrumbs(engine);
1477
	intel_engine_init_hangcheck(engine);
1478

1479
	enable_execlists(engine);
1480
	DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1481

1482 1483
	GEM_BUG_ON(engine->id >= ARRAY_SIZE(gtiir));

1484
	execlists->csb_head = -1;
1485
	execlists->active = 0;
1486

1487
	/* After a GPU reset, we may have requests to replay */
1488
	if (execlists->first)
1489
		tasklet_schedule(&execlists->tasklet);
1490

1491
	return 0;
1492 1493
}

1494
static int gen8_init_render_ring(struct intel_engine_cs *engine)
1495
{
1496
	struct drm_i915_private *dev_priv = engine->i915;
1497 1498
	int ret;

1499
	ret = gen8_init_common_ring(engine);
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (ret)
		return ret;

	/* We need to disable the AsyncFlip performance optimisations in order
	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
	 * programmed to '1' on all products.
	 *
	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
	 */
	I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));

	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));

1513
	return init_workarounds_ring(engine);
1514 1515
}

1516
static int gen9_init_render_ring(struct intel_engine_cs *engine)
1517 1518 1519
{
	int ret;

1520
	ret = gen8_init_common_ring(engine);
1521 1522 1523
	if (ret)
		return ret;

1524
	return init_workarounds_ring(engine);
1525 1526
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
static void reset_irq(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;

	/*
	 * Clear any pending interrupt state.
	 *
	 * We do it twice out of paranoia that some of the IIR are double
	 * buffered, and if we only reset it once there may still be
	 * an interrupt pending.
	 */
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	I915_WRITE(GEN8_GT_IIR(gtiir[engine->id]),
		   GT_CONTEXT_SWITCH_INTERRUPT << engine->irq_shift);
	clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
}

1545 1546 1547
static void reset_common_ring(struct intel_engine_cs *engine,
			      struct drm_i915_gem_request *request)
{
1548
	struct intel_engine_execlists * const execlists = &engine->execlists;
1549
	struct intel_context *ce;
1550
	unsigned long flags;
1551

1552 1553
	GEM_TRACE("%s seqno=%x\n",
		  engine->name, request ? request->global_seqno : 0);
1554 1555 1556

	reset_irq(engine);

1557 1558
	spin_lock_irqsave(&engine->timeline->lock, flags);

1559 1560 1561 1562 1563 1564 1565 1566 1567
	/*
	 * Catch up with any missed context-switch interrupts.
	 *
	 * Ideally we would just read the remaining CSB entries now that we
	 * know the gpu is idle. However, the CSB registers are sometimes^W
	 * often trashed across a GPU reset! Instead we have to rely on
	 * guessing the missed context-switch events by looking at what
	 * requests were completed.
	 */
1568
	execlists_cancel_port_requests(execlists);
1569

1570
	/* Push back any incomplete requests for replay after the reset. */
1571
	__unwind_incomplete_requests(engine);
1572

1573
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584

	/* If the request was innocent, we leave the request in the ELSP
	 * and will try to replay it on restarting. The context image may
	 * have been corrupted by the reset, in which case we may have
	 * to service a new GPU hang, but more likely we can continue on
	 * without impact.
	 *
	 * If the request was guilty, we presume the context is corrupt
	 * and have to at least restore the RING register in the context
	 * image back to the expected values to skip over the guilty request.
	 */
1585
	if (!request || request->fence.error != -EIO)
1586
		return;
1587

1588 1589 1590 1591 1592 1593 1594
	/* We want a simple context + ring to execute the breadcrumb update.
	 * We cannot rely on the context being intact across the GPU hang,
	 * so clear it and rebuild just what we need for the breadcrumb.
	 * All pending requests for this context will be zapped, and any
	 * future request will be after userspace has had the opportunity
	 * to recreate its own state.
	 */
1595
	ce = &request->ctx->engine[engine->id];
1596 1597 1598
	execlists_init_reg_state(ce->lrc_reg_state,
				 request->ctx, engine, ce->ring);

1599
	/* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1600 1601
	ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
		i915_ggtt_offset(ce->ring->vma);
1602
	ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1603

1604 1605 1606
	request->ring->head = request->postfix;
	intel_ring_update_space(request->ring);

1607
	/* Reset WaIdleLiteRestore:bdw,skl as well */
1608
	unwind_wa_tail(request);
1609 1610
}

1611 1612 1613
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
	struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1614
	struct intel_engine_cs *engine = req->engine;
1615
	const int num_lri_cmds = GEN8_3LVL_PDPES * 2;
1616 1617
	u32 *cs;
	int i;
1618

1619 1620 1621
	cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1622

1623
	*cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1624
	for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
1625 1626
		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);

1627 1628 1629 1630
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
		*cs++ = upper_32_bits(pd_daddr);
		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
		*cs++ = lower_32_bits(pd_daddr);
1631 1632
	}

1633 1634
	*cs++ = MI_NOOP;
	intel_ring_advance(req, cs);
1635 1636 1637 1638

	return 0;
}

1639
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1640
			      u64 offset, u32 len,
1641
			      const unsigned int flags)
1642
{
1643
	u32 *cs;
1644 1645
	int ret;

1646 1647 1648 1649
	/* Don't rely in hw updating PDPs, specially in lite-restore.
	 * Ideally, we should set Force PD Restore in ctx descriptor,
	 * but we can't. Force Restore would be a second option, but
	 * it is unsafe in case of lite-restore (because the ctx is
1650 1651
	 * not idle). PML4 is allocated during ppgtt init so this is
	 * not needed in 48-bit.*/
1652
	if (req->ctx->ppgtt &&
1653 1654 1655 1656 1657 1658
	    (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings) &&
	    !i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
	    !intel_vgpu_active(req->i915)) {
		ret = intel_logical_ring_emit_pdps(req);
		if (ret)
			return ret;
1659

1660
		req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1661 1662
	}

1663 1664 1665
	cs = intel_ring_begin(req, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1666

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
	/*
	 * WaDisableCtxRestoreArbitration:bdw,chv
	 *
	 * We don't need to perform MI_ARB_ENABLE as often as we do (in
	 * particular all the gen that do not need the w/a at all!), if we
	 * took care to make sure that on every switch into this context
	 * (both ordinary and for preemption) that arbitrartion was enabled
	 * we would be fine. However, there doesn't seem to be a downside to
	 * being paranoid and making sure it is set before each batch and
	 * every context-switch.
	 *
	 * Note that if we fail to enable arbitration before the request
	 * is complete, then we do not see the context-switch interrupt and
	 * the engine hangs (with RING_HEAD == RING_TAIL).
	 *
	 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
	 */
1684 1685
	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;

1686
	/* FIXME(BDW): Address space and security selectors. */
1687 1688 1689
	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8)) |
		(flags & I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1690 1691 1692
	*cs++ = lower_32_bits(offset);
	*cs++ = upper_32_bits(offset);
	intel_ring_advance(req, cs);
1693 1694 1695 1696

	return 0;
}

1697
static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1698
{
1699
	struct drm_i915_private *dev_priv = engine->i915;
1700 1701 1702
	I915_WRITE_IMR(engine,
		       ~(engine->irq_enable_mask | engine->irq_keep_mask));
	POSTING_READ_FW(RING_IMR(engine->mmio_base));
1703 1704
}

1705
static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1706
{
1707
	struct drm_i915_private *dev_priv = engine->i915;
1708
	I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1709 1710
}

1711
static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1712
{
1713
	u32 cmd, *cs;
1714

1715 1716 1717
	cs = intel_ring_begin(request, 4);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1718 1719 1720

	cmd = MI_FLUSH_DW + 1;

1721 1722 1723 1724 1725 1726 1727
	/* We always require a command barrier so that subsequent
	 * commands, such as breadcrumb interrupts, are strictly ordered
	 * wrt the contents of the write cache being flushed to memory
	 * (and thus being coherent from the CPU).
	 */
	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;

1728
	if (mode & EMIT_INVALIDATE) {
1729
		cmd |= MI_INVALIDATE_TLB;
1730
		if (request->engine->id == VCS)
1731
			cmd |= MI_INVALIDATE_BSD;
1732 1733
	}

1734 1735 1736 1737 1738
	*cs++ = cmd;
	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0; /* upper addr */
	*cs++ = 0; /* value */
	intel_ring_advance(request, cs);
1739 1740 1741 1742

	return 0;
}

1743
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1744
				  u32 mode)
1745
{
1746
	struct intel_engine_cs *engine = request->engine;
1747 1748
	u32 scratch_addr =
		i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
M
Mika Kuoppala 已提交
1749
	bool vf_flush_wa = false, dc_flush_wa = false;
1750
	u32 *cs, flags = 0;
M
Mika Kuoppala 已提交
1751
	int len;
1752 1753 1754

	flags |= PIPE_CONTROL_CS_STALL;

1755
	if (mode & EMIT_FLUSH) {
1756 1757
		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1758
		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1759
		flags |= PIPE_CONTROL_FLUSH_ENABLE;
1760 1761
	}

1762
	if (mode & EMIT_INVALIDATE) {
1763 1764 1765 1766 1767 1768 1769 1770 1771
		flags |= PIPE_CONTROL_TLB_INVALIDATE;
		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
		flags |= PIPE_CONTROL_QW_WRITE;
		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;

1772 1773 1774 1775
		/*
		 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
		 * pipe control.
		 */
1776
		if (IS_GEN9(request->i915))
1777
			vf_flush_wa = true;
M
Mika Kuoppala 已提交
1778 1779 1780 1781

		/* WaForGAMHang:kbl */
		if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
			dc_flush_wa = true;
1782
	}
1783

M
Mika Kuoppala 已提交
1784 1785 1786 1787 1788 1789 1790 1791
	len = 6;

	if (vf_flush_wa)
		len += 6;

	if (dc_flush_wa)
		len += 12;

1792 1793 1794
	cs = intel_ring_begin(request, len);
	if (IS_ERR(cs))
		return PTR_ERR(cs);
1795

1796 1797
	if (vf_flush_wa)
		cs = gen8_emit_pipe_control(cs, 0, 0);
1798

1799 1800 1801
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
					    0);
M
Mika Kuoppala 已提交
1802

1803
	cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
M
Mika Kuoppala 已提交
1804

1805 1806
	if (dc_flush_wa)
		cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
M
Mika Kuoppala 已提交
1807

1808
	intel_ring_advance(request, cs);
1809 1810 1811 1812

	return 0;
}

1813 1814 1815 1816 1817
/*
 * Reserve space for 2 NOOPs at the end of each request to be
 * used as a workaround for not being allowed to do lite
 * restore with HEAD==TAIL (WaIdleLiteRestore).
 */
1818
static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1819
{
C
Chris Wilson 已提交
1820 1821
	/* Ensure there's always at least one preemption point per-request. */
	*cs++ = MI_ARB_CHECK;
1822 1823
	*cs++ = MI_NOOP;
	request->wa_tail = intel_ring_offset(request, cs);
C
Chris Wilson 已提交
1824
}
1825

1826
static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
C
Chris Wilson 已提交
1827
{
1828 1829
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1830

1831 1832
	cs = gen8_emit_ggtt_write(cs, request->global_seqno,
				  intel_hws_seqno_address(request->engine));
1833 1834 1835
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1836
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1837

1838
	gen8_emit_wa_tail(request, cs);
1839
}
1840 1841
static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;

1842
static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request *request,
1843
					u32 *cs)
1844
{
1845 1846 1847
	/* We're using qword write, seqno should be aligned to 8 bytes. */
	BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);

1848 1849
	cs = gen8_emit_ggtt_write_rcs(cs, request->global_seqno,
				      intel_hws_seqno_address(request->engine));
1850 1851 1852
	*cs++ = MI_USER_INTERRUPT;
	*cs++ = MI_NOOP;
	request->tail = intel_ring_offset(request, cs);
1853
	assert_ring_tail_valid(request->ring, request->tail);
C
Chris Wilson 已提交
1854

1855
	gen8_emit_wa_tail(request, cs);
1856
}
1857
static const int gen8_emit_breadcrumb_rcs_sz = 8 + WA_TAIL_DWORDS;
1858

1859
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1860 1861 1862
{
	int ret;

1863
	ret = intel_ring_workarounds_emit(req);
1864 1865 1866
	if (ret)
		return ret;

1867 1868 1869 1870 1871 1872 1873 1874
	ret = intel_rcs_context_init_mocs(req);
	/*
	 * Failing to program the MOCS is non-fatal.The system will not
	 * run at peak performance. So generate an error and carry on.
	 */
	if (ret)
		DRM_ERROR("MOCS failed to program: expect performance issues.\n");

1875
	return i915_gem_render_state_emit(req);
1876 1877
}

1878 1879
/**
 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1880
 * @engine: Engine Command Streamer.
1881
 */
1882
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1883
{
1884
	struct drm_i915_private *dev_priv;
1885

1886 1887 1888 1889
	/*
	 * Tasklet cannot be active at this point due intel_mark_active/idle
	 * so this is just for documentation.
	 */
1890 1891 1892
	if (WARN_ON(test_bit(TASKLET_STATE_SCHED,
			     &engine->execlists.tasklet.state)))
		tasklet_kill(&engine->execlists.tasklet);
1893

1894
	dev_priv = engine->i915;
1895

1896 1897
	if (engine->buffer) {
		WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1898
	}
1899

1900 1901
	if (engine->cleanup)
		engine->cleanup(engine);
1902

1903
	intel_engine_cleanup_common(engine);
1904

1905
	lrc_destroy_wa_ctx(engine);
1906

1907
	engine->i915 = NULL;
1908 1909
	dev_priv->engine[engine->id] = NULL;
	kfree(engine);
1910 1911
}

1912
static void execlists_set_default_submission(struct intel_engine_cs *engine)
1913
{
1914
	engine->submit_request = execlists_submit_request;
1915
	engine->cancel_requests = execlists_cancel_requests;
1916
	engine->schedule = execlists_schedule;
1917
	engine->execlists.tasklet.func = execlists_submission_tasklet;
1918 1919 1920

	engine->park = NULL;
	engine->unpark = NULL;
1921 1922

	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
1923 1924
}

1925
static void
1926
logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1927 1928
{
	/* Default vfuncs which can be overriden by each engine. */
1929
	engine->init_hw = gen8_init_common_ring;
1930
	engine->reset_hw = reset_common_ring;
1931 1932 1933 1934

	engine->context_pin = execlists_context_pin;
	engine->context_unpin = execlists_context_unpin;

1935 1936
	engine->request_alloc = execlists_request_alloc;

1937
	engine->emit_flush = gen8_emit_flush;
1938
	engine->emit_breadcrumb = gen8_emit_breadcrumb;
1939
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1940 1941

	engine->set_default_submission = execlists_set_default_submission;
1942

1943 1944
	engine->irq_enable = gen8_logical_ring_enable_irq;
	engine->irq_disable = gen8_logical_ring_disable_irq;
1945
	engine->emit_bb_start = gen8_emit_bb_start;
1946 1947
}

1948
static inline void
1949
logical_ring_default_irqs(struct intel_engine_cs *engine)
1950
{
1951
	unsigned shift = engine->irq_shift;
1952 1953
	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1954 1955
}

1956 1957 1958 1959 1960 1961
static void
logical_ring_setup(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
	enum forcewake_domains fw_domains;

1962 1963
	intel_engine_setup_common(engine);

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978
	/* Intentionally left blank. */
	engine->buffer = NULL;

	fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
						    RING_ELSP(engine),
						    FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_PTR(engine),
						     FW_REG_READ | FW_REG_WRITE);

	fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
						     RING_CONTEXT_STATUS_BUF_BASE(engine),
						     FW_REG_READ);

1979
	engine->execlists.fw_domains = fw_domains;
1980

1981 1982
	tasklet_init(&engine->execlists.tasklet,
		     execlists_submission_tasklet, (unsigned long)engine);
1983 1984 1985 1986 1987

	logical_ring_default_vfuncs(engine);
	logical_ring_default_irqs(engine);
}

1988
static int logical_ring_init(struct intel_engine_cs *engine)
1989 1990 1991
{
	int ret;

1992
	ret = intel_engine_init_common(engine);
1993 1994 1995
	if (ret)
		goto error;

1996 1997 1998
	engine->execlists.elsp =
		engine->i915->regs + i915_mmio_reg_offset(RING_ELSP(engine));

1999 2000 2001 2002 2003 2004 2005
	return 0;

error:
	intel_logical_ring_cleanup(engine);
	return ret;
}

2006
int logical_render_ring_init(struct intel_engine_cs *engine)
2007 2008 2009 2010
{
	struct drm_i915_private *dev_priv = engine->i915;
	int ret;

2011 2012
	logical_ring_setup(engine);

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
	if (HAS_L3_DPF(dev_priv))
		engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;

	/* Override some for render ring. */
	if (INTEL_GEN(dev_priv) >= 9)
		engine->init_hw = gen9_init_render_ring;
	else
		engine->init_hw = gen8_init_render_ring;
	engine->init_context = gen8_init_rcs_context;
	engine->emit_flush = gen8_emit_flush_render;
2023 2024
	engine->emit_breadcrumb = gen8_emit_breadcrumb_rcs;
	engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_rcs_sz;
2025

2026
	ret = intel_engine_create_scratch(engine, PAGE_SIZE);
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
	if (ret)
		return ret;

	ret = intel_init_workaround_bb(engine);
	if (ret) {
		/*
		 * We continue even if we fail to initialize WA batch
		 * because we only expect rare glitches but nothing
		 * critical to prevent us from using GPU
		 */
		DRM_ERROR("WA batch buffer initialization failed: %d\n",
			  ret);
	}

2041
	return logical_ring_init(engine);
2042 2043
}

2044
int logical_xcs_ring_init(struct intel_engine_cs *engine)
2045 2046 2047 2048
{
	logical_ring_setup(engine);

	return logical_ring_init(engine);
2049 2050
}

2051
static u32
2052
make_rpcs(struct drm_i915_private *dev_priv)
2053 2054 2055 2056 2057 2058 2059
{
	u32 rpcs = 0;

	/*
	 * No explicit RPCS request is needed to ensure full
	 * slice/subslice/EU enablement prior to Gen9.
	*/
2060
	if (INTEL_GEN(dev_priv) < 9)
2061 2062 2063 2064 2065 2066 2067 2068
		return 0;

	/*
	 * Starting in Gen9, render power gating can leave
	 * slice/subslice/EU in a partially enabled state. We
	 * must make an explicit request through RPCS for full
	 * enablement.
	*/
2069
	if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
2070
		rpcs |= GEN8_RPCS_S_CNT_ENABLE;
2071
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
2072 2073 2074 2075
			GEN8_RPCS_S_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2076
	if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
2077
		rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
2078
		rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
2079 2080 2081 2082
			GEN8_RPCS_SS_CNT_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

2083 2084
	if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2085
			GEN8_RPCS_EU_MIN_SHIFT;
2086
		rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
2087 2088 2089 2090 2091 2092 2093
			GEN8_RPCS_EU_MAX_SHIFT;
		rpcs |= GEN8_RPCS_ENABLE;
	}

	return rpcs;
}

2094
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2095 2096 2097
{
	u32 indirect_ctx_offset;

2098
	switch (INTEL_GEN(engine->i915)) {
2099
	default:
2100
		MISSING_CASE(INTEL_GEN(engine->i915));
2101
		/* fall through */
2102 2103 2104 2105
	case 10:
		indirect_ctx_offset =
			GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	case 9:
		indirect_ctx_offset =
			GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	case 8:
		indirect_ctx_offset =
			GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
		break;
	}

	return indirect_ctx_offset;
}

2119
static void execlists_init_reg_state(u32 *regs,
2120 2121 2122
				     struct i915_gem_context *ctx,
				     struct intel_engine_cs *engine,
				     struct intel_ring *ring)
2123
{
2124 2125
	struct drm_i915_private *dev_priv = engine->i915;
	struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
	u32 base = engine->mmio_base;
	bool rcs = engine->id == RCS;

	/* A context is actually a big batch buffer with several
	 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
	 * values we are setting here are only for the first context restore:
	 * on a subsequent save, the GPU will recreate this batchbuffer with new
	 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
	 * we are not initializing here).
	 */
	regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
				 MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(engine),
2140 2141
		_MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
				    CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) |
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
		_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
				   (HAS_RESOURCE_STREAMER(dev_priv) ?
				   CTX_CTRL_RS_CTX_ENABLE : 0)));
	CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
	CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
	CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
		RING_CTL_SIZE(ring->size) | RING_VALID);
	CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
	CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
	CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
	if (rcs) {
2157 2158
		struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;

2159 2160 2161
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
		CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
			RING_INDIRECT_CTX_OFFSET(base), 0);
2162
		if (wa_ctx->indirect_ctx.size) {
2163
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2164

2165
			regs[CTX_RCS_INDIRECT_CTX + 1] =
2166 2167
				(ggtt_offset + wa_ctx->indirect_ctx.offset) |
				(wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2168

2169
			regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2170
				intel_lr_indirect_ctx_offset(engine) << 6;
2171 2172 2173 2174 2175
		}

		CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
		if (wa_ctx->per_ctx.size) {
			u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2176

2177
			regs[CTX_BB_PER_CTX_PTR + 1] =
2178
				(ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2179
		}
2180
	}
2181 2182 2183 2184

	regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;

	CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2185
	/* PDP values well be assigned later if needed */
2186 2187 2188 2189 2190 2191 2192 2193
	CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3), 0);
	CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2), 0);
	CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1), 0);
	CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0), 0);
	CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0), 0);
2194

2195
	if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
2196 2197 2198 2199
		/* 64b PPGTT (48bit canonical)
		 * PDP0_DESCRIPTOR contains the base address to PML4 and
		 * other PDP Descriptors are ignored.
		 */
2200
		ASSIGN_CTX_PML4(ppgtt, regs);
2201 2202
	}

2203 2204 2205 2206
	if (rcs) {
		regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
		CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
			make_rpcs(dev_priv));
2207 2208

		i915_oa_init_reg_state(engine, ctx, regs);
2209
	}
2210 2211 2212 2213 2214 2215 2216 2217 2218
}

static int
populate_lr_context(struct i915_gem_context *ctx,
		    struct drm_i915_gem_object *ctx_obj,
		    struct intel_engine_cs *engine,
		    struct intel_ring *ring)
{
	void *vaddr;
2219
	u32 *regs;
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	int ret;

	ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
	if (ret) {
		DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
		return ret;
	}

	vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
		DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
		return ret;
	}
C
Chris Wilson 已提交
2234
	ctx_obj->mm.dirty = true;
2235

2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
	if (engine->default_state) {
		/*
		 * We only want to copy over the template context state;
		 * skipping over the headers reserved for GuC communication,
		 * leaving those as zero.
		 */
		const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
		void *defaults;

		defaults = i915_gem_object_pin_map(engine->default_state,
						   I915_MAP_WB);
		if (IS_ERR(defaults))
			return PTR_ERR(defaults);

		memcpy(vaddr + start, defaults + start, engine->context_size);
		i915_gem_object_unpin_map(engine->default_state);
	}

2254 2255
	/* The second page of the context object contains some fields which must
	 * be set up prior to the first execution. */
2256 2257 2258 2259 2260
	regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
	execlists_init_reg_state(regs, ctx, engine, ring);
	if (!engine->default_state)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2261 2262 2263 2264
	if (ctx->hw_id == PREEMPT_ID)
		regs[CTX_CONTEXT_CONTROL + 1] |=
			_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
					   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2265

2266
	i915_gem_object_unpin_map(ctx_obj);
2267 2268 2269 2270

	return 0;
}

2271
static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2272
					    struct intel_engine_cs *engine)
2273
{
2274
	struct drm_i915_gem_object *ctx_obj;
2275
	struct intel_context *ce = &ctx->engine[engine->id];
2276
	struct i915_vma *vma;
2277
	uint32_t context_size;
2278
	struct intel_ring *ring;
2279 2280
	int ret;

2281 2282
	if (ce->state)
		return 0;
2283

2284
	context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2285

2286 2287 2288 2289 2290
	/*
	 * Before the actual start of the context image, we insert a few pages
	 * for our own use and for sharing with the GuC.
	 */
	context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2291

2292
	ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2293
	if (IS_ERR(ctx_obj)) {
2294
		DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2295
		return PTR_ERR(ctx_obj);
2296 2297
	}

2298
	vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2299 2300 2301 2302 2303
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto error_deref_obj;
	}

2304
	ring = intel_engine_create_ring(engine, ctx->ring_size);
2305 2306
	if (IS_ERR(ring)) {
		ret = PTR_ERR(ring);
2307
		goto error_deref_obj;
2308 2309
	}

2310
	ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2311 2312
	if (ret) {
		DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2313
		goto error_ring_free;
2314 2315
	}

2316
	ce->ring = ring;
2317
	ce->state = vma;
2318 2319

	return 0;
2320

2321
error_ring_free:
2322
	intel_ring_free(ring);
2323
error_deref_obj:
2324
	i915_gem_object_put(ctx_obj);
2325
	return ret;
2326
}
2327

2328
void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2329
{
2330
	struct intel_engine_cs *engine;
2331
	struct i915_gem_context *ctx;
2332
	enum intel_engine_id id;
2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343

	/* Because we emit WA_TAIL_DWORDS there may be a disparity
	 * between our bookkeeping in ce->ring->head and ce->ring->tail and
	 * that stored in context. As we only write new commands from
	 * ce->ring->tail onwards, everything before that is junk. If the GPU
	 * starts reading from its RING_HEAD from the context, it may try to
	 * execute that junk and die.
	 *
	 * So to avoid that we reset the context images upon resume. For
	 * simplicity, we just zero everything out.
	 */
2344
	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
2345
		for_each_engine(engine, dev_priv, id) {
2346 2347
			struct intel_context *ce = &ctx->engine[engine->id];
			u32 *reg;
2348

2349 2350
			if (!ce->state)
				continue;
2351

2352 2353 2354 2355
			reg = i915_gem_object_pin_map(ce->state->obj,
						      I915_MAP_WB);
			if (WARN_ON(IS_ERR(reg)))
				continue;
2356

2357 2358 2359
			reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
			reg[CTX_RING_HEAD+1] = 0;
			reg[CTX_RING_TAIL+1] = 0;
2360

C
Chris Wilson 已提交
2361
			ce->state->obj->mm.dirty = true;
2362
			i915_gem_object_unpin_map(ce->state->obj);
2363

2364
			intel_ring_reset(ce->ring, 0);
2365
		}
2366 2367
	}
}